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I. For rectilinear boundaries a number of solutions of the two-dimen-
sional wave equation
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are known, in which the boundary condition satisfied by ¢ is

¢ =0, . , (2.1)
or d

% -0, (2.2)

on denoting a normal element drawn to the boundary. In the transverse
vibrations of membranes the condition (2.1) amounts to a fixed edge, and in
Hydro-dynamics of inviscid liquids (2.2) is to be satisfied over a fixed
boundary. Some such solutions satisfying (2.1) have been given by B. R.
Seth.? For hexagonal and equilateral boundaries* incomplete solutions have
been obtained by D. G. Christopherson? and B. B. Sen.3

Christopherson’s
solution has been completed by P. N. Sharma.*

2. When the boundary condition is nonhomogeneous solutions of the
wave equation for rectilinear boundaries have not received much attention,
though formal solutions can be obtained through the Green’s function. In
a recent investigation of some problems in the bending of elastic plates it
was required to determine solutions of (1) satisfying the boundary condition

é=1k, a constant. (2.3)

It is proposed to give some of these solutions. It is found that for equilateral,
some rhombus and pentagonal boundaries the solution can be obtained
in a finite number of trigonometrical terrus.

3. Assuming that € =< cos (pt/c) we can rewrite (1) as

Vv % -+ pih=0. (3.1)

* The complete solution for an equilateral boundary was originally obtained by Lamé
in Legons sur IElasticite.
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A typical solution of (3-1) is
¢=2x (p v/ cos 0) ;5 (py sin ¢). (3-2)

It may be noted that when applied to the vibrations of a membrane
the condition (2.3) means that its edge is vibrating harmonically.

4. For a rectangular section with sides x= 4 a, y= 4 b, we see that
k cos px sec pa satisfies the boundary condition (2-3) over x= 4+ a. Using
the Fourier’s expansion for cos px which vanishes for x= + a, we get o

o=k [cos pxsecpa— X A, sec by/p?— a,? cos ax cos VpT =,
. -

where o,=(2#n 4 1) 7[2a,

A _2(=™p?
" ae, (p 2— anz)

For a right-angled isosceles triangular section with sides x=a, y=a,

y + x=0, we see that the functions to be used for the individual sides can

be taken to be of the form sin px, sin py and cos %;2 (x + »), respectively.

On account of the symmetry which exists about the line y = x we now
take two Fourier series which are such that their sum vanishes over y=—x
and in which terms can be obtained from one another by interchanging
x and y. Thus we get

Lo P s _ sin px , sin py
¢=k cos L5 G+ ) + 3k (1= cos pay2) B s

— {J A cosec ar/pi— a2 [cos a,x sin 4/p*— a,* y-+ cos a,y sin /p?— a2 x]
~ 2B, sec a 4/p*— B2 [sin B.x cos /p* — B.% y+ sin a,y cos 4/p% — B2 x]
L}

where a,=(2n 4 1)n/2a, B,=n=/a, and )

A, = pteos®dpa V2 (= 1)1k B, p? sin? dpa /2
aa, (3p*— o, a (3p*— B,» (p*—B.H
For an equilateral section with sides y=a, y= 4+ x +/3. we should take

functions of the type cos py, sin py, cos 4px /3 cos 4py and cos ipx 4/3
sin 3py. It is found that no Fourier expansions are required, and we get

¢ ==k [2 cos }py cos $px 4/3 — cos py]
— k cot § pa [2 sin 4py cos % px 4/3 — sin pV]. o (6)




