The day of the train

Control of the Control of the State of the S

But the first of the state

The transport of the rest of the largest two free discounted from tally to be a specific of the rest of the second ordered for Mark 1. It is a specific or a specific of the rest of the r

If the plane also to the most a and a catalogy the equation?

The property of the selection of the second of the statement of the extension of the extension of the second of th

If a become and along an edge making the normal, and palong a little control and palong a little case of a control of the people will be control or about medical and the people will be control or about medical and the control of th

a dwarg the radical follows well Shows are "due them that there could not a first the second of the

At a charged odge the boundary conditions are

At a supported edge these conditions become

W=0,
$$\sigma \nabla^2 W = \sigma \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) W = (\sigma - 1) \frac{\partial^2 W}{\partial n^2}$$
 (2.4)

For rectilinear plates the distinction between s and μ disappears.

SUPPORTED EDGES

To begin with we take the case of a rectilinear plate whose edges are a supported. Rayleigh² has given the solution for a rectangular plate. can be shewn that the problem of the rectilinear plate can be reduced to the of a rectilinear membrane.

For the transverse vibrations of a membrane the differential equation to be satisfied by W is

$$\nabla^2 \mathbf{W} + k^2 \mathbf{W} = 0$$

with the condition that W=0 over the boundary. Operating (3) by ∇ we get

$$\nabla^4 \mathbf{W} = k^4 \mathbf{W} \tag{}$$

which is the same as (1). Any solution of (3), therefore, also satisfies (1) Over the boundary W = 0, and hence from (3) $\nabla^2 W = 0$. We can now sho that (2.4) also reduces to this condition.

As W = 0 over the boundary, we have, differentiating along the boundar $\partial W/\partial s = 0$, $\partial^2 W/\partial s^2 = 0$. Also

$$\nabla^2 \mathbf{W} = \frac{\partial^2 \mathbf{W}}{\partial s^2} + \frac{1}{\rho} \frac{\partial \mathbf{W}}{\partial n} + \frac{\partial^2 \mathbf{W}}{\partial n^2},$$

which for a rectilinear boundary $(\rho = \infty)$ reduces to

$$\nabla^2 \mathbf{W} = \frac{\partial^2 \mathbf{W}}{\partial s^2} + \frac{\partial^2 \mathbf{W}}{\partial n^2} = \frac{\partial^2 \mathbf{W}}{\partial n^2}$$

Thus (2.4) also becomes $\nabla^2 W = 0$. For a simply supported rectiline boundary the boundary conditions can therefore be put in the form $W = \nabla^2 W = 0.9$, 10

Hence, if we know the solution for a membrane, the corresponding solution for a plate can be easily written down. In fact the form of W give by Rayleigh for a rectangular plate is the same as that for a membrane.

TRIANGULAR PLATES

We have already discussed in another paper¹¹ the transverse vibratio of triangular membranes. For triangular plates it is therefore quite sufficie to give the main results,

Riest with a record where the stople over the agree to

grand for the grand was to be a major to the grand with the firequence as

$$\frac{1}{4} = \frac{1}{4} + \frac{1}{12} +$$

The grant course of game in

The column of a collection and the about of the comment and are given by

$$W = \sin \frac{m_{\rm Pl}}{\sigma} \sin \frac{p_{\rm Pl}}{d} - \sin \frac{p_{\rm Pl}}{d} - \sin \frac{m_{\rm Pl}}{d} \tag{8}$$

Tightheral place. The corresponding tendth are given by

$$\frac{1}{2} = \frac{1}{2} \left[m^2 + mn + n^2 \right] \sqrt{\frac{D}{m_0}}$$
 (9.2)

$$\frac{r_{s}}{r} = \frac{1}{2} \frac{n}{n} \sqrt{\frac{1}{m_{s}^{2}}} \tag{9.1}$$

the sides of the plater being a contact of a !

Instacles triangular plate containing an angle of 120. In this case the results are

$$W = 2 \sin \frac{(m + n + 1) \cos \sqrt{3}}{2}$$

$$= 2 \cos \left(2m + 1 + \frac{2n + 1}{2}\right) \frac{\pi x}{a} \cos \frac{(2n + 1) \cos \sqrt{3}}{2a}$$

$$+ 2 \cos \left(2n + 1 + \frac{2m + 1}{2}\right) \frac{\pi x}{a} \cos \frac{(2m + 1) \cos \sqrt{3}}{2a}. (10.1)$$

$$\frac{p}{\pi} = \frac{\pi}{a^2} \left[(2m+1)^2 + (2m+1)(2n+1) + (2n+1)^2 \right] \sqrt{\frac{\overline{D}}{m_0}}, (10.2)$$

$$\frac{p_0}{\pi} = \frac{7\pi}{2} \frac{\pi}{a^2} \sqrt{\frac{\overline{D}}{m_0}}, (10.3)$$

$$W_0 = 2 \sin \frac{2\pi x}{a} \sin \frac{\pi y \sqrt{3}}{a} - 2 \cos \frac{5\pi x}{2a} \cos \frac{\pi y \sqrt{3}}{2a}$$

$$+ 2 \cos \frac{\pi x}{2a} \cos \frac{3\pi y \sqrt{3}}{2a} \qquad (10.4)$$

In this case the modes are all symmetrical. The sides are given by x = a, $y = x\sqrt{3}$, $y + x\sqrt{3} = 2a/\sqrt{3}$.

Right-angled triangle containing an angle of 60°.—If the sides are taken as x = a, $y = a/\sqrt{3}$, $y = x\sqrt{3}$, the results given in (10) hold good in this case as well.

RHOMBUS AND A REGULAR HEXAGON

If we take the sides of the rhombus, which contains an angle of 120°, as x = 0, x = a, $y = x/\sqrt{3}$, $y = x/\sqrt{3} + 2a/\sqrt{3}$, and those of the regular hexagon as $x = \pm a$, $y = \pm x/\sqrt{3} \pm 2a/\sqrt{3}$, the solution in (9) holds good.¹²

In all the above cases we find that the frequency is proportional to $\frac{1}{a^2}\sqrt{\frac{\overline{D}}{m}}$.

CLAMPED EDGES

Square-plate.—If we take the sides of the plate as $y = \pm x \pm 2a$, we find that the solutions given in (6) and (7) also satisfy the condition $\partial W/\partial n = 0$ over the boundary. Thus the conditions W = 0, $\partial W/\partial n = 0$ for a clamped edge are satisfied on all the sides of the plate. It is found that these conditions are also satisfied on the lines $y = \pm x$. Hence (6) and (7) give the symmetrical vibrations.

If we use this solution for a right-angled isosceles plate we find that the conditions for a clamped edge are satisfied on the equal sides $y = \pm x$, but that on the edge x = a the conditions for a supported edge are only satisfied. Hence it may be used when the equal sides of the plate are clamped and the base is supported.

Free vibrations of a square-plate.—If the edges are free the boundary condition (2.1) must also be satisfied. Since $\nabla^2 W = -k^2 W$ and

$$\frac{\partial^{3}W}{\partial n \, \partial s^{2}} = \frac{1}{2} \frac{\partial}{\partial n} \left(\frac{\partial}{\partial x} \pm \frac{\partial}{\partial y} \right)^{2} W = \frac{1}{2} \frac{\partial}{\partial n} \left[\nabla^{2}W \pm 2 \frac{\partial^{2}W}{\partial x \, \partial y} \right]$$

$$= \frac{1}{2} \frac{\partial}{\partial n} \left[-k^{2}W \pm \frac{\pi^{2}}{2a^{2}} (2m+1) (2n+1) W \right],$$

$$= \frac{1}{2} \left[-k^{2} \pm \frac{\pi^{2}}{2a^{2}} (2m+1) (2n+1) \right] \frac{\partial W}{\partial n}.$$

We see that (2.1) is also satisfied on all the sides of the plate. The solution in (6) and (7) can therefore also be used for the free symmetrical vibrations of a square plate.

As in the case of clamped edges, this solution can be used for a rightangled isosceles triangle whose equal sides are free but whose base is supported.

SUMMARY

The problem of the vibrations of a rectilinear plate with supported edges can be reduced to the corresponding problem of a vibrating membrane. Exact solutions are given for a number of triangular plates. The free and clamped vibrations of a square and a right-angled isosceles triangular plate have also been discussed.

REFERENCES

1.	Kirchhoff		Journal für Math. (Crelle), 1850, 40.
2.	Rayleigh	••	Theory of Sound, 1894, Vol. I, Chap. X.
3.	Mathieu		Journal de Math. (Liouville), 1869, 14, (Sér. 2).
4.	Barthélémy	••	Toulouse Mém. de l' Acad., 1877, 9.
5.	Mary D. Waller		Proc. Phy. Soc., 1939, 51, 831; 1941, 53, 35.
6.	Rayleigh		Phil. Mag., 1911, 22, 225.
7.	Ritz		Ann. Phys., Leipzig, 1909, 28, 737.
8.	Timoshenko		Vibration Problems in Engineering, 1937, 2nd ed., § 70.
9.	Stevenson	••	Phil. Mag., 1943, 34, 110.
10.	Timoshenko	••	Theory of Plates and Shells, 1940, 100.
11.	Seth	• •	Proc. Ind. Acad. Sci. (A), 1940, 12, 487.

Ibid., 1941, 13, 390.