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Finite Strain in Elastic Problems—II
By W. M. SHEPHERD and B. R. SETH

(Communicated by L. N. G. Filon, F.R.S.—Received 8 March, 1936)

1—INTRODUCTION

In a recent paper* one of the authors has developed the theory of finite
strain in elastic problems on the hypothesis that the second order terms in
the components of strain may not be neglected. Owingt to the magnitude
of the displacements considered, it has been necessary to use throughout
the coordinates of the points of the body after strain instead of those
before strain, as is always done in the theory of small strains. The
method has already been applied, in the paper mentioned above, to a few
particular cases, viz., (i) a cylinder subjected to uniform tension; (ii) a
rectangular plate bent into the form of a right cylinder ; and (iii) the torsion
of a right circular cylinder. As may be expected, the tension stretch
curve is not now a straight line as in the ordinary theory, but is more
like that found in practice for some materials.

The object of the present paper is to apply the hypothesis to the follow-
ing further problems:— ‘,

(i) a thick spherical shell subjected to uniform, but not necessarily
equal, normal tractions on the inner and outer surfaces;

(ii) a thick cylindrical shell or tube under the same type of internal
and external traction as in (i), but which is constrained by end
tractions to remain in a state of plane strain;

(iii) a thick cylindrical tube turned inside out under the same types of
traction as in (ii);

(iv) a thick cylindrical tube turned inside out under no surface trac-
tions;

(v) the particular forms of problems (i) and (ii) arising when the shells
are thin.

2—GENERAL FORMULAE

. Let (u, v, w) be the components of the displacement of a point whose
coordinates in the strained state are (x, y, z). The strains are then given

* Seth, ¢ Phil. Trans.,” A, vol. 234, pp. 231-264 (1935).
1 Coker and Filon, ‘ Photo-elasticity,” p. 188.
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by equations of the types*
ou 1 ou <§g>2 [ Ow\?)
Se = 7y {<8x> T +(\8x>f’

= Dy B (a0 o w)

vz Oy dy 0z = oy oz = 9y ozl
The stress-strain relations are the same as those holding when the strains
are small, viz.,

xx = A3 + 2uS,,

yZ = us,, etc.

3—THE SOLUTION FOR THE THICK SPHERICAL SHELL

Let us take rectangular cartesian coordinates referred to an origin
at the centre of the shell and spherical polar coordinates connected with
them by the relations

x = rsin 0 cos ¢, y = rsin 0sin ¢, z=rcos f.

It is clear from the symmetry of the problem that the displacements are
purely radial and a function of r only. Let this radial displacement be

u, and assume that
u=~10—P)r,

where P is a function of r only.
The displacements in the directions Ox, Oy, Oz are then given by

u=(1-"P)x, =(1-=Py, w=(1-P)z
and we find that the stresses are given by equations of the types
= 1@ 20 (- P — e+ 20 (E L 13 (2] G
o P
xy = —2uxy de + 2<‘f£> } (3.12)

Each body stress equation leads to the same equation for P, viz.,

4(x+2)l’d—P+2(k+3u)< >+(x+2u)( )

. 321
On putting _r_Q____V A4 3p
P dr ’ A2

* Coker and Filon, « Photo elasticity,” p. 188.
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equation (3.21) becomes

(1+V)P +V2+2FV+3_0, (3.22)
so that A+ V)av
—_ [ d+V)dVv_
logP = j P (3.23)
Now

_A+3p_ 3—4y
A+2p 2(1—1)’

where v is Poisson’s ratio, and since 0 < n < % it follows that
1< F< 3/2.
Making use of this result and integrating equation (3.23) we obtain

_ _F—1 af V+F 1 2
log P = ST —rtant |t F2)} 1log (V +2FV—{—3)+(§I;4)

where H is a constant.
Since .
dV _ 5 dV
re = PV 7P’ (3.25)
we have, using equation (3.22),
_ (1+V)dv
log r jV(V2+2FV+3)’

ie.,
log r = tlog (V2 4 2FV + 3) — 1log (V?)
3—F _ V+F
e ) H K (3D
where K is a constant.

Equations (3.24) and (3.31) give the relation between P and r in terms.
of the parameter V. The two constants K and H must be determined.
from the boundary conditions.

The values of V are not wholly unrestricted. If 7’ is the distance of a
point of the shell from the centre in the unstrained state, which is at a
distance 7 in the strained state, then 7 and 7 must increase together, i.e.,
dr'[dr is positive throughout. But

r'=r—u,=Pr,
so that

%’7': 4-1-’+P P + V). (3.32)
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Since u, < r, it follows that P >0 and consequently we obtain the
condition

V>—1
It follows from equation (3.11) that
rr=30r+20) 1 —PY)— 1 (A +20)P2QV + V3.  (341)
This may be written, introducing a new symbol R,
- 2
R=l—2 P o ia—na+vp 640

Tt 2n 144

To go further in the solution it is necessary to assign a value to Poisson’s
ratio. - The problem has been solved for two values of : (i) n = 0-25,
and (ii) v = 0-49 (india-rubber). Any other value in therange 0 <~ n < %
might have been used without altering the method of procedure.

(@) n=0-25 (A= p).

With this value of Poisson’s ratio, equations (3.24), (3.31), and (3.42)
now take the forms

log (AP) = — }log ((3V + 41 + 11} + \/Lu tan-1 {3—1’/%‘.‘} (3.51)

log (Br) = — % log (V?) + tlog {(3V + 4)* + 11}

5 . (3Vid4
T 0 {\/11 } (3.52)

log (A?R) = 21og (AP) — log 5 + log {3 (1 + V)® + 2}. (3.53)

In these equations and throughout the paper the logarithms are to the
base e. A and B are new constants replacing H and K. The relation

TABLE 1
\" log (AP) log(Br) log(A%R) \" log (AP) log (Br) log(A2R)
0 —w —0-423 —1-761 1/4 —1-467 0-565 —2-643
10 —3-087 —0-331 —1-883 1/6 —1-439 0-701 —2-682
7 —2-794  -—-0-296 —1:929 1/12 —1-411 0-934 —2-723
5 —2-538 —0-253 —1-985 0 —1-383 © —2-766
4 —2-382 —0-218 —2-029 —1/12- —1-355 0-940 —2-812
3 —2-198 —0-164 —2-094 —1/6 —1-:328 0-713 —2-859
2 —1-978 —0-075 —2-198 —1/3 —1:276 0-496 —2-958
32 —1-849 —0-001 —2-276 —1/2 —1-229 0-378 —3-056
1 —1-707 0-115 —2-384 —2/3 —1-190 0-314 —3-143
3/4 —1-630 0-204 —2-455 —5/6 —1-164 0-278 --3-203
1/2 —1-550 0-334 —2-540 —1 —1-154 0-267 —3-225
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between AR and Br is now known in parametric form. The values of
log (AP), log (Br), and log (A’R) corresponding to certain values of V
have been calculated and are given in Table 1.

b 7 = 0-49, (A =49 p).
Equations (3.24), (3.31), (3.42) now take the forms

log (AP) = 0-0140043 tan~1 (0-714214 V + 0-728218)
— 3log (V2 + 2-039216 V + 3), (3.61)
log (Br) = — 0-471475 tan~* (0-714214 V + 0-728218)
+ 1log (V2 +%2-039216 V + 3) — L log (V?), (3.62)
log (A?R) = 2 log (AP) + log {(1 + V)2 + 1-92157} — 1-0721211, (3.63)

and the corresponding values of log (AP), log (Br), and log (A%R) are
given in Table II.

TaBLE II
v —log (AP) log (Br) —log(A®R) V —log(AP) log(Br) —log(A%R)
© 0 —0-7406 1-02813 1/4  0-6263 0-3270 1-07650

o

2-3875 —0-6460
2:0773  —0-6088
1-8026 —0-5622

0 03548 1/6  0-5973 0-4682 1-07799
7

5

4 1-6326 —0-5242
3

2

03831 1/12  0-5686 0-7064 07949
-04174 0 0-5405 0 -08098
-04445 —1/12 0-5131 0-7242 -08247
‘04840 —1/6  0-4867 0-5041 08391

1

1

1

1-4311 —0-4660 1
-05455 —1/3  0-4378 0-2994  1-08661

1

1

1

1

1-1866 —0-3661

3/2 1-0438 —0-2837
1 0-8856 —0-1551
3/4 0-8012 —0-0578
1/2 0-7142 0-0834

-05899 —1/2  0-3961 0-1972 -08890
-06478  —2/3  0-3639 0-1412 09060
‘06828 —5/6  0-3435 0-1135 -09161
-07221 -1 0-3365 0-1056 -09193

— e bk ke bk e

The relation between log (Br) and log (AZR) is shown graphically in

fig. 1, and that between log (Br) and log (AP) in fig. 2. These graphs are

to be used for the solution of all forms of the problem arising from

different boundary conditions. To obtain accurate results the reader

must draw his own graphs on a large scale, using the data of the tables.
Now suppose that the boundary conditions are

«, when r=a,

3)
fl

B, when r=b,

3)
Il

“and that the corresponding values of R are R, and R,. It follows
that an increment of log (b/a) in log (Br) corresponds to an increment
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log (Rg/R,) in log (A%2R). In a particular case these increments are
represented by the line LM (fig. 1). We must now find the chord of the
curve, equal and parallel to LM. This chord is HK. If H is the point

where
log (A?R) = ¢ and log (Br) = p,

then A and B are given by the equations

2log A =g — logR,,
log B = p — loga.
A and B having been determined the values of R (and hence 77) at all

points for which a < r < b are given by the points of the curve between
H and K. The stress 00 (= ¢¢) is determined as follows. We have

=302+ 20)(1 —P) -1 +20)PV(V+2) (37D
00=dd=1Gr+20)(1 —P) — 0PV (V+2). (3.72)
On eliminating V between these two equations we obtain the relation

(h +20) 60 = w(3r + 2w) (1 — P?) + . (3.73)

The quantity P must be found in terms of r from the graph in fig. 2.
The stresses in an india-rubber shell corresponding to two sets of boundary
conditions have been calculated in order to illustrate the method and to
discover the characteristics of the solution.

Example 1—The boundary conditions chosen are

a=3, R,=1-02
b=5 R,=1-0.

This means that a shell of internal radius 3 and external radius 5 (both
measured after strain) is subjected to an internal pressure of amount
0-0304 2 and is free from traction on the outer surface. The corresponding
line and chord are respectively LM and HK in fig. 1. We find that

&'v
log B = — 1:490, 2log A = — 1-0729.

The stresses corresponding to several values of V have been calculated
by the method described above and are shown in Table III. The last
figure in these values may have a small error.

It is rather unexpected to find that the stress 60 is greatest at about
half-way through the material, but the total variation is not large.
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V=-1
B \H'
Kl
—V=(

M
I
Ml
L 02 04 06
tog(Br)
Fic. 1
A
V=00
25
a
=
ool 2:0
(@]
N
15
\q-o
\0
(-5 mmm——e
v
B
-06 -04 -02 0 02 04 06
log (Br)

FiG. 2.
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TaBLE III
r 300 325 350 375 400 425 450 475 5-00

........ 0-0159 0-0165 0-0174 0-0179 0-0179 0-0178 0-0173 0-0165 0-0161

—rrh ... 0-0304 0-0236 0-0181 0-0132 0:0094 0-0062 0-0040 0-0018 0-0000

We find that the value of P at the inner surface is 0-493 and at the outer
surface is 0-854, so that before strain the internal and external radii were
1-48 and 4-27. The increase in diameter of the shell is, as would be
expected, accompanied by a decrease in thickness.

The magnitudes of the displacements in this case are such that no
comparison with the results of the small strain theory is possible.

Example 1I—The boundary conditions chosen are

a=3, R,=10,
b=5, R,=1-0075.

The shell is subjected to an external pressure of amount 0-0114 % and is
free from traction on the inside. The corresponding line and chord
are L*M! and H*K! (in fig. 1) and we find that

log B = — 0-938, 2log A = — 1-0901.

Again the stresses have been calculated and are given in Table IV.

TaBLE IV
r 3-00 3-25 3-50 375 4-00 4-25 4-50 4-75 5-00
- @/7\ ...... 0-0250 0-0213 0-0193 0-0178 0-0171 0-0167 0-0162 0-0158 0-0155
— r';/l ...... 0-0000 0-0040 0:0059 0-:0076 0-0091 0-0100 0-0106 0-0111. 0-0114

The values of P on the inner and outer boundaries are found to be
1:191 and 1-038, so that the internal and external radii in the unstrained
state are 3-57 and 5-19.

The graphs for the case of n = 0-25 are very similar to those in figs.
1 and 2 and the results found will be of the same type.

In one particular case the solution may be obtained without the use of
the graphs. If the values of 7r at the inner and outer boundaries are the
same, or what amounts to the same thing, there is no central hole, it is
clear from the form of the graph (fig. 1) that AR has the value corre-
sponding to V= 0. (This will be true for all values of v.) Equation
(3.42) then shows that P> = R. Both R and P are constant throughout
the material and we have

P e o1 2
<7>_P"R_l 3 F 2u°


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on November 10, 2011

Finite Strain in Elastic Problems 179

From the ordinary theory

PNE o \?

(7) - <1 3)\+2u> ’
so that the two are equivalent if ;;/(37\ + 2p) is sufficiently small to make
its square negligible.

4—DEDUCTIONS FROM THE SOLUTION FOR THE SPHERICAL SHELL

It appears from the graph in fig. 1 that there are restrictions on the
boundary conditions. We must consider only those sets of boundary
conditions which correspond to chords of the curve. Owing to the
existence of the end points A and B, correspondingto V= 0 and V= —1,
the gradient of the curve lies between certain limits, and it follows that
the gradient of the chord also lies between these limits. (This is a
necessary but not sufficient condition.) From equations (3.22), (3.25),
(3.42) we have

dR _2PP(V+1)(V+2) 1—2q
dV~ ~ VE4+2FV+3 1+’

and
ldr 14V
rdV —~ V(V24+2FV +3)°

On combining these two results, it follows that

d(logR) _rdR _ 2PV(V+2) 1-—2y
d(logr) Radr R 1+’

and, using equation (3.42),
dogR) _ _ 2V(V+2) (1 —2y)
d(logr) 29+ A=) A+ V)
From equations (3.71) and (3.72) we obtain

—

0 — rr = pP2V (V + 2),

@.1)

so that the gradient is given by

d(logR) _ _4(r — 69)

d(logr)  3n42p — 2
At A where V =

“4.2)

d(logR) __ 2(1— 2v)
d(ogr) 1—xn °
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and at B where V = — 1

d(ogR) _1—2q

d(logr) n

Now we have shown (3.32) that
ar'

T =P+,
so that at A
ar
=
and at B
ar’
67—0

It follows that the point A corresponds to infinite contraction an'd the
point B to infinite extension. These may be interpreted as yield points
for the material.

The limitation on the values of the gradient implies that

L ST B
_1-—12q < 2(rr )A < 1 — 2y ’ 4.3)
1—n 3n 4 20 — 2rr 27
or, writing this in a more symmetrical form,
A+2u—200 1
U 3+ 2u <1 (4.4)

1— %  3a+2p—2m 27

In the form (4.3) the condition has an interesting interpretation. Two of
the rival hypotheses as to the condition for the breakdown of the material
appear to be combined in it The condition may be violated owing to
the greatness of one of the principal stresses or by the greatness of the
principal stress difference. This matter will be referred to again in §6
of the paper. '

It is clear from the position of the end-points of the graph in fig. 1
that when breakdown occurs, either through. infinite extension or infinite
contraction, it must occur first on the inner surface of the shell.

There is one other case in which breakdown occurs as a result of finite
surface tractions. If the internal and external surface:\ tractions are equal
we have seen that R = P2, and so, if R =0, i.e., rr =% (37 4 2y), it
follows that P = 0 and the material is infinitely stretched.


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on November 10, 2011

Finite Strain in Elastic Problems 181

5—THE SOLUTION FOR THE CYLINDRICAL SHELL

The solution of the corresponding problem for a circular cylindrical
shell or tube held at its ends, so that it is in a state of plane strain,
is very similar to that for a spherical shell already given.

Take rectangular cartesian axes Ox, Oy, Oz such that Oz is the axis
of the cylindrical surfaces and let p, 6, z be cylindrical coordinates related
to the cartesian coordinates by the equations '

x=pcos 0, y = psin 0.
In this case assume that
u=(1—'Q)x’ U=(1_Q)y, W——~O,

where Q is a function of p only.

If ¢’ is the distance from the axis before strain, of a particle which after
strain is at a distance p, then p’ = pQ. The stresses are given by the
equations

w0k ) (- Q) — O+ 209 (20043 (T s
=040 - -0+ 209 {22+ 1 (50} 61
2= - Q- {292+ 3(22), (5.13)

~ ot (5.14)
r= o 0 1G]

One of the body stress equations is identically satisfied and the other two
each give
3QdQ | 22 + 54 (dQ qQ)aq .
o do * A+ 2u (d ) <Q+ dg* 0. (2D
On putting

PdQ:U 20 4 Sp —G,
Q& 20+

equation (5.21) becomes

(1+U)QdQ+U2+2GU+2—~O (5;22)

2h4+ 50 _ 5— 679
2020 A0 —1)

Since
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‘and

0< n< 4,

1< G < 5/4.
Using this condition and integrating equation (5.22), we obtain
_ G—1 4/ G+U
log Q= 76— ™ {5 o)
—4log{(U+GpP+2—-G*}+L, (523)

it follows that

where L is a constant.
Again, since

£4dQ
Q dp v
we have from equation (5.22)

1do _ 1+U0

pdU U (U2 + 2GU + 2y’
and on integration this gives

log p = }log (U2 + 2GU +2) — }log (U

2—G a2f U4+G >
— s | g o G2)} +M, (532)
where M is a constant.

The relation between Q and p is given by the equations (5.23) and
(5.32) in terms of the parameter U. ‘
It is easily shown that

oo = A+ g — Q{2+ (A + 2p) (U + 1)},

(5.31)

so that, if we put ~
R=1— P |
A
we obtain
R=Q{n+ (1—=)(U+ 1)L (5.41)

On giving 7 the value 0-25 (i.e., putting A = u), equations (5.23), (5.32),
(5.41) take the forms

log (AQ) = \/23 tan! {7 + 6U

V23
log (Bp) = % log {(7 + 6U)* + 23}

} —3log{(7 + 6UR +23),  (5.51)

W 5 . . (1+6U
— Hlog (U) — 555 ta? {73_ } (5.52)
log (A’R) = 2 log (AQ) — log 4 + log {3 (V + 1) + 1}, (5.53)

where A and B are new constants replacing L and M.


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on November 10, 2011

Finite Strain in Elastic Problems 183

The values of log (AQ), log (Bp), log (A?R) corresponding to chosen
values of U are given in Table V.

TABLE V
U log(AQ) log(Bp) log(A%R) U log(AQ) log(Bp) log(A*R)
0 e 0-078 —3-216 —1/2 —1-687 0-900 —4-200
10 —3-895 0-171 —3:278 -=2/3 —1-616 0-778 --4-331
6 —3-463 0-227 —3-315 —5/6 —1-566 0-709 —4-437
4 —3-150 0-291 —3-356 —1 —1-546 0-687 —4-479
3 —2-949 0-349 —3-392 ~—-3/2 —1-730 0-827 —4-287
2 —2-699 0-451 —3-453 —7/4 —1-913 0-940 —4-223
1 —2-375 0-680 —3-571 —2 —2-104 1-042 —4-207
12 —2-172 0-964 —3-682 —5/2° —2-448 1-196 —4-234
1/6 —2-018 1-475 —3-796 —3 —2-727 1-298 —4-:275
112 —1-977 1-813 —3-832 —4 —3-142 1-418 —4-337
0 —1-936 —_ —3-872 —6 —3-674 1-528 —4-404
—1/12 —1-894 1-799 —3-916 —10 —4-283 1-608 —4-455
—1/6 —1-852 1-448 —3:964 —w — 1-714 —4-526
—1/3 —1-767 1-097 —4-074
V=00_C
v--1 B
44t
L M
401
2 0 _ = V0
=
%
I
361
32 A :V-oo i 1 1 L i i 1 1 1
04 12 16 2:0
1og(Bp)
FiG. 3.

The graph of the relation between log (A?R) and log (Bp) is shown in
fig. 3. To solve a particular problem, the reader must draw a large
scale graph using the data of Table V. In this case there is no restriction
on the values of U as there was on the values of V in § 3 of the paper.
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“The values of U less than — 1 have an interesting interpretation. We have
seen that
o = Qp,.

so that
a?-~-—Q+ PdQ Q1+ U).

If U< — 1 it follows that dp’/dp << 0. This can only occur if the
cylinder is turned inside out. In this case the displacements will be
given by

u=(1—Q)x, v=(1-Q)y, w =2z,

V=00 V=-00

<
=
T

-10g (AQ)

D
[38)
T

14

10g(Bp)
Fic. 4.

The addition of the term w = 2z does not affect the stresses, so that the
equations are the same as before. The part of the curve applicable in
this case is the arc BC. The form of the curve in fig. 3, apart from the
arc BC, is very similar to that in fig. 1, and the method of evaluating the
constants A and B is precisely the same as in § 3, both in the ordinary
case and when the tube is turned 1ns1de out.

The values of R, and thence pp, must be found from the graph in
fig. 3, and the values of Q from the graph in fig. 4. The remaining stresses
may now be calculated in terms of pp and Q.
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We have
=0+ w1 - -1 +2WQRUU+2), (560
60 = (1 + ») (1 — Q) — $2QU (U + 2), (5.62)
zz=2(1— Q) — $2QU (U + 2), (5.63)
and consequently

A —n, At u _ A~
ee_zu.x+2u.(1 Q2)—!—7\+2upp (5.64)
2z =00 — p(1 — Q) = (66 + pp). (5.65)

It is of course impossible in practice to turn inside out a tube made
from any of the actual materials for which n = 0-25, so the values of
log (AQ), log (Bp), and log (A®R) have been calculated for »n = 0-49
(india-rubber) for values of U < — 1. This matter is more fully dealt
with in § 7.

6—DEDUCTIONS FROM . THE SOLUTION FOR THE CYLINDRICAL SHELL

As in § 4, it appears that there are restrictions on the boundary con-
ditions. We find, using equations (5.22), (5.31), (5.41), that the gradient
of the curve in fig. 3 is given by

d(logR) _pdR _  QUU+2)(1— 2y (6.1)
d(logr) Rdp R ' '

Equations (5.61) and (5.62) show that
pp — 60 = — pQ (U + 2),

so that
d(loge) A+ p—opp
On substituting for R from equation (5.41) in equation (6.1) we obtain
d(logR) _ _ UU+2)(1—21) 63
d (log p) n+ =) U+ 1)

AtB, U = — 1, so that
d(logR) _ 1 — 29

d (log ¢) 7
At Aand C, U = 4 o and

d(logR) _ 1 —29
d (log p) l—mn"
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It follows that
_l—27)< 99—99A<1—27}‘
l—xn A+ p—pp 7

(6.4)

This condition is similar in type to that in the inequality (4.3) and again
may be written in the more symmetrical form

n_ o orte- 9 1o 6.5)
l—xn A2+ p—opp 7

It is to be noted that in this case gp — 00 is not necessarlly the greatest
principal stress difference. Under certain conditions pp — zzor 66 — zz
may be numerically greater.

In the case of the cylindrical shell, as in that of the spherical shell,
failure, if it occurs, must occur at the inner surface.

When the internal and external surface tractions are equal, we find
that U = 0 and

<%>2=Q2: “I_H-g

Both Q and R are constant throughout the material.
From the ordinary theory we obtain

S P T ) QU T -
@ = {1- 555 iR by o
These values agree if {pp/2 (A 4+ p)}2 may be neglected in comparison

with /2 (A + w). This condition is very similar to that found at the
end of § 3.

7—THE CYLINDRICAL SHELL TURNED INSIDE Out, UNDER NO
TRACTIONS

When the tube is first turned inside out and then subjected to uniform
internal and external surface tractions the problem may be solved in the
way described in §5. The simplest case of all is that in which the
cylindrical surfaces are free from traction, when a zero increment in
log (A2R) corresponds to a given finite increment in log (Bp) The
corresponding chord of the curve (fig. 3) is of the type LM.

We can, however, go further than this and find a solution in which there
is no resultant traction over the ends. If the length of the tube is great
compared with its diameter and the ends are free, this solution will
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accurately represent the conditions at points of the tube not near the
ends.

We may in this case assume d1splacements given by

u=x(1-0Q),
v=y(1_Q)9
w= az,

where Q is a function of p as before and « is a constant. The non-
vanishing stress components now become

oo =3IA[B—(a— 12— Q{1+ (U4 12+ p[1 —Q(U +1)3], (7.11)
00 =4 [B—(a— 12— Q* {1+ (U+ 1]+ p(1—Q, (7.12)
7z = FIAB—(e—1)2—Q%*{1 + (U 4+ D2+ e[l — (e« — 1)2]. (7.13)

One of the body stress equations is satisfied identically and the other
two show that the relation between Q and p is that obtained in equation
(5.21). Proceeding as in § 5, we obtain equations (5.23), (5.32), and (5.41)
where in this case .

—~

7\+

On giving v the value 0-49 we obtain the following equations for
log (AQ), log (Bp), and log (A’R),

log (AQ) = 0-009902 tan—* (1-010000 U -+ 1-019900)
— $log (U2 4 2-019608 U + 2) (7.31)
log (Bg) = % log (U2 + 2-019608 U + 2) — 4 log (U?)
— 0-500049 tan~1 (1-010000 U + 1-019900) (7.32)
log (A’R) = 2 log (AQ) + log [(U + 1) — 0-960784] — 0-673345, (7.33)

where A and B are new constants replacing L and M. Only those values
of U less than —1 are to be used and the values of log (AQ), log (Bp),
and log (A%R) corresponding to chosen values of U are given in Table VI.
The relations shown in Table VI are not illustrated graphically, as a more
accurate method of calculation is necessary. The graphs are, however,
similar in form to the arcs BC of figs. 3 and 4.

The boundary conditions are:

(i) pp = O on the surfaces p = a, p = b (b > a),

(i) the ends are free from resultant traction, i.e.,

b~
J- pzz dp = 0.

R=1-— + {1 — (1 — o2, (7.2)
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TaBLE VI

U log (AQ) log (Be) log (A2R)
—1-0 0-00991 0-00000 —0-69353
—-1-5 —0-10422 0-07698 —0-69052
—1-6 —0-14740 0-10484 —0-68991
—1-75 —0-21840 0-14723 —0-68927
-2:0 —0-34445 0-21452 —0-68890
—2:2 —0-44576 0-26281 —0-68908
—2'5 —0-59148 0-32495 —0-68978
—2-545 —0-61243 0-33326 —0-68991
30 —0-80979 0-40523 —0-69135
—4-0 —1-15974 0-50611 —0-69418
—5:0 —1-42686 0-56599 —0-69616
—6-0 —1-64040 0-60504 —0-69755
—10-0 —2-21663 0-68041 ~0-70037
—o — 0-78547 —0-70445

The boundary condition (i) implies that an increment of amount log (b/a)
in log (Bg) corresponds to a zero increment in log (A2R). In order to
evaluate A, we must first find the value of (1 — «)? and this is to be done
by the use of boundary condition (ii). On using equation (7.13) and
the relation

£dQ _ U,

.o, . .o . Q dp
condition (ii) gives

2‘—,7<b2—a2> [+ 9—1— 1) —
— Q2 — dQA =4[ UQrd(@®), (4D

where Q, and Q, are the values of Q when ¢ = a and ¢ = b respectively.
On the surfaces p = a and p = b we have, since pp =0, R =R,
where
Ry=1+4+ 71— — o)
A? = AR /{1 + n—7 (1 — x)%}. (7.42)
From equations (7.41) and (7.42) we now obtain
AR P —a){l+n—(1—n1— 02}
2n{l +7n— (1 —«)?}
— b2A2Qb2 — a2A2Qa2 + %_

It follows that

.b2
A2QU2d (o). (7.43)

v

Owing to the fact that this equation involves small differences between
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relatively large numbers, it is necessary to obtain greater accuracy than is
possible by the graphical methods used so far. By a method of trial
and error, it is found that the values U = —1:6 and U = — 2-545 each
give log (A%R) = — 0-68991. These values of U are taken as the boundary
values and if we suppose that @ = 1 then we find that b = 1-2566. The
boundary values of AQ are also found from the table, In order to
evaluate « from equation (7.43), we must now find the value of the integral
in that equation. The values of A2Q?U? corresponding to the values of
U in the table were calculated and plotted in a graph against 2. The
values of A2Q?U2 were then read from the graph for 23 equidistant values
of p2. These values were then smoothed by taking differences and the
integral obtained by Simpson’s Rule. This process was repeated to check
the value. This method gives greater accuracy than might be expected
owing to the small range of variation of A?2Q*U2 In this way we obtain
the result

1+9—(0— 7))(1_‘1)220.98009
l+n—n1— «)? '

From this it follows that
(1 — ®)? = 0-9970,
o = 1-9985.
Equation (7.42) now gives the result
A? = AR /{1 + 1 — n (1 — )2} = 0-5009.
With these values of A and (1 — «)* we can use Table VI and equations
(7.11), (7.12), and (7.13) to obtain the results given in Table VII.

TABLE VII
U e zz/x 5 66/
—1-6 1-0 —0-0094 —0-0000 —0-0194
—1-75 1-0438 —0-0062 —0-0007 —0-0122
--2-0 11159 —0-0009 —0-0011 —0-0011
—2-2 1-1712 0-0028 —0-0010 0-0064
—2-545 1-2566 0-0082 —0-0000 0-0165

The values of Q on the inner and outer boundaries are 1-2194 and
0-7659, so that we obtain Table VIII.

TaBLE VIII
Internal External
radius radius Thickness Length
Right side out .... 0-962 1-219 0-257 1-0000

Insideout ........ 1-000 1-257 0:257 1-0015
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The percentage increase in external radius is about 3%, and this is approxi-
mately verified by measurement. The measurement must, of course, be
made at some distance from the ends which naturally turn outwards
when the tube is inside out. This turning outwards of the ends is accom-
panied by a narrowing of the tube near the ends. This is, of course,
well known but is merely an end effect.

8—APPLICATIONS TO THIN SHELLS

When applied to thin shells, the foregoing theory is considerably
simplified. Consider a spherical shell of radius a and small thickness d
subjected to pressures p and p + p, on the inside and outside respectively.

In equation (4.1) we have the result

rdR _ _{(V+12—1}2(1 — 29 @.1)
Rar 2+ A= @ +VR
But
_ 2p —
R 1+37\+2p-, dR 3+ 20
r=a, dr = d,
so that
rdR 2p, 4 _m, say. (8.2)

Rdr 3+2p+2p d

Since the gradient of the graph in fig. 1 is bounded it follows that
p1/(BX + 2p) is small of the order d/a.
From equations (8.1) and (8.2) we obtain

s 2(1—2n) — 2mm
(1+V)—~2(1_27})+m(1~m. (8.3)

On eliminating (1 4+ V) between equations (8.3) and (3.42) and putting
R =1+ 2p/(3x + 2u), we obtain the value of P, given by

= {1 i) )

ie., ‘ (8.4)
2p apy 1 —
2 .
P 1+3?\+2u+d(37\—|—2u) 1 —29°

Since P = r'/r this equation gives the change in the radius of the shell
due to the strain.
The stress 66 (= ¢¢) may be obtained by substituting from equation
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'(8.4) into equation (3 73) or by consideration of the equilibrium of a
portion of the shell and the result is

66 = — p — ip.a/d.

The limitations on the gradient of the graph in fig. 1 take the form

_2(1 =29 2p, 1—29
1 — <37\+2pt+2pd< 7

Consider the two cases (i) zero pressure inside and pressure Il outside,
and (ii) zero pressure outside and pressure II inside. In case (i) the
first part of the inequality gives no information but the second part leads

to
271

I < Br+2 )— (8.51)
In case (ii) the second part of the inequality gives no information, but the
first part leads to
II <4 dl — 2q
3+ 2u+2I1 ~al—n°

or, since II is small compared with 3A 4 2,

271

I < G+ 2 )- | (8.52)

The solution for *the cylindrical shell, in a state of plane strain, is very
similar to the solution for the spherical shell. Again we suppose that the
radius is a, the thickness d, the internal pressure p, and the external
pressure p + p;. We obtain the results

2 P a pg . 1 — 9 ,
(P) @=1+52 +dl+“ = (@6
60 = — p — p, ald, (8.62)
7z = (00 4 pp) = — 0 (2p + py a/d). (8.63)

. The limitations on the gradient (fig. 3) take the form

12y 1 — 29
1 — <H—u+pd< n o

Again, consider the two cases (i) zero pressure inside and pressure IT
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outside, and (ii) zero pressure outside and pressure I inside. Case (i)
leads to the condition '

m< 204w, (8.71)
and case (ii) leads to |
n<i=290+ LS | (8.72)
: | a '

In conclusion, our thanks are due to Professor Filon, through whose
interest in the subject of finite strain we were led to undertake this
work. '

On the Quantization of a Theory Arising from a
Variational Principle for Multiple Integrals
with Application to Born’s Electrodynamics

By P. Weiss, Downing College, Cambridge

(Communicated by P. A. M. Dirac, F.R.S.—Received 18 March, 1936)

1—INTRODUCTION

The transition from classical mechanics to quantum mechanics has
been formulated in various ways. But all these Way§ have the common
feature that they use as starting point mechanics not in its Newtonian
form, but in the form which it was given by Lagrange and Hamilton.
The essence of this form consists in the fact that the differential equations
of motion for a dynamical system with v degrees of freedom can be and
are represented as Euler equations of a variational principle for v functions,
the generalized coordinates, of one variable, the time.

In its purely mathematical aspect the quantization method may,
therefore, be regarded as a mode of taking certain notions and certain
relations arising from a variational principle for several dependent and
one independent variable and of giving them a new meaning.

The partial differential equations of an electromagnetic field, as formu-
lated by Maxwell or as generalized by Miet and recently by Born,} can

+ ¢ Ann. Physik,’ vol. 37, p. 511; vol. 39, p. 1; vol. 40, p. 1 (1912-13).
i Born,  Proc. Roy. Soc.,” A, vol. 143, p. 426 (1934), quoted as I. Born and
Infeld, ¢ Proc. Roy. Soc.,” A, vol. 144, p. 425 (1934), quoted as II.
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