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Abstract

Motivated by the question of how to define an analog of interactive
proofs in the setting of logarithmic time- and space-bounded computa-
tion, we study complexity classes defined in terms of operators quan-
tifying over oracles. We obtain new characterizations of NC1, L, NL,
NP, and NSC (the nondeterministic version of SC). In some cases, we
prove that our simulations are optimal (for instance, in bounding the
number of queries to the oracle).

1 Introduction

Interactive proofs motivate complexity theorists to study new modes of com-
putation. These modes have been studied to great effect in the setting of
polynomial time (e.g. [Sha92, LFKN92, BFL91]) and small space-bounded
classes (e.g. [FL93, CL95]). Is it possible to study interactive proofs in the
context of even smaller complexity classes? Would such a study be useful
or interesting?

It has often proved very useful to study modes of computation on very
small complexity classes, although it has not always been clear at first,
just how these modes should be modeled. For instance, the definition of
alternating Turing machine given in [CKS81] does not allow an interesting
notion of sublinear time complexity, whereas augmenting this model with
random access to the input provides a useful model for studying circuit
complexity classes such as NC1 and AC0 [Ruz81, Sip83]. How can one
define a useful notion of interactive proof system for deterministic log time?

In attempting to answer this and related questions, we take as our start-
ing point the work of Baier and Wagner [BW98a], where it was shown that
(single-prover and multi-prover) interactive proof systems can be modeled
by quantifying over oracles applied to P. This framework is defined quite
elegantly in terms of operators acting on complexity classes, generalizing the
framework initially presented by Schöning [Sch89]. We present the formal
definitions below in Section 2.1.

After we present our definitions, we quickly review in Section 3 the main
results that were known previously, regarding characterizations of complex-
ity classes in terms of operators applied to P. The most important results
regarding interactive proofs are stated there, as well as some additional
characterizations due to Baier and Wagner.

Then, in Section 4, we present the notion of “scaling up” and “scaling
down” characterizations in this framework, and we present some instances
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where “scaling down” does hold, as well as some instances where “scaling
down” does not hold, and we discuss some of the subtleties involved. We
are able to successfully give scaled-down versions of the known characteriza-
tions involving nondeterministic time-bounded complexity classes, and the
characterizations we give are essentially optimal. In this way, we obtain new
characterizations of NP and NL.

Next, in Section 5, we consider how to “scale down” the known char-
acterizations of space-bounded classes. In this way, we obtain new char-
acterizations of NC1 and NSC, the nondeterministic counterpart of Steve’s
class SC, i.e., NSC = NTIME-SPACE(nO(1), logO(1) n). However, a num-
ber of open questions remain, regarding whether it is possible to obtain
true “scaled down” versions of the characterization of PSPACE in terms of
interactive proofs, as given in [Sha92].

2 Definitions

2.1 Oracle Operators

Let us start by formally defining the operators we will use in this paper.
They are operators acting on oracles, and since later we are going to ap-
ply sequences of oracle quantifiers to some base class, we will need oracle
machines with more than one oracle tape.

Definition 2.1. A relativized classK of type σ1 · · ·σk is given by a recursive
enumeration M0,M1,M2, . . . of oracle machines with k oracle tapes each
where σj ∈ {0, 1, 2} is the type of Mi’s jth oracle (i ≥ 0, 1 ≤ j ≤ k). Here,
an oracle of type 2 is a usual oracle with no restriction. An oracle of type 1 is
an oracle where after every query the oracle query tape is not erased (hence
every query is an extension of the previous query). An oracle of type 0 is
simply a word. Access to this word is by using the oracle tape as an index
tape to address bits at specified positions. Now L(Mi) consists of exactly
those tuples (x,X1, . . . , Xk) where M halts accepting on the “actual” input
x with oracles X1, . . . , Xk where Xi is of type σi.

For sake of clarity we explicitly remark that resource bounds are mea-
sured in the length of the actual input x. In the case of space bounds, all
oracle/index tapes are subject to the space restriction. We ask the reader to
note that we are following [BW98a, BW98b] in using the numbers 0, 1, 2 to
refer to different types of operators, because it offers notational convenience
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in this setting. This numbering is unrelated to the convention in type theory,
in which atoms are referred to as type 0 objects, strings as type 1 objects,
and oracles as type 2 objects, etc.

Now we define the following operators [BW98a]:

Definition 2.2. Let K be a relativized class of type σ1 · · ·σkσ. Then we
define the following classes of type σ1 · · ·σk:

For σ = 0 and h : N → N, we have L ∈ ∃h · K iff there is a B ∈ K such
that

(x,X1, . . . , Xk) ∈ L ⇐⇒
(
∃y, |y| = h(|x|)

)
(x,X1, . . . , Xk, y) ∈ B,

and L ∈ ∀h · K iff there is a B ∈ K such that

(x,X1, . . . , Xk) ∈ L ⇐⇒
(
∀y, |y| = h(|x|)

)
(x,X1, . . . , Xk, y) ∈ B.

We use the superscript log to denote the union of all classes obtained by
choosing h ∈ O(logn), p to denote the union of all classes obtained by
choosing h ∈ nO(1), and exp to denote the union of all classes obtained by
choosing h ∈ 2n

O(1)
.

For σ = 1 or σ = 2, L ∈ ∃σ · K iff there is a B ∈ K such that

(x,X1, . . . , Xk) ∈ L ⇐⇒ (∃Y )(x,X1, . . . , Xk, Y ) ∈ B,

and L ∈ ∀σ · K iff there is a B ∈ K such that

(x,X1, . . . , Xk) ∈ L ⇐⇒ (∀Y )(x,X1, . . . , Xk, Y ) ∈ B.

Book, Vollmer, and Wagner in [BVW98] examined the bounded-error
probabilistic operator of type 2. We repeat their definition together with
the definitions of the corresponding type 0 operator (see e.g. [Sch89]). We
also consider a one-sided error operator in the case of type 0.

Definition 2.3. Let K be a relativized class of type σ1 · · ·σk2. Then the
class BP2 · K is of type σ1 · · ·σk, and L ∈ BP2 · K iff there exists a set B ∈ K
such that

µA
[
(x,X1, . . . , Xk) ∈ L↔ (x,X1, . . . , Xk, A) ∈ B

]
≥ 2

3 .

The measure µ : 2{0,1}
ω → [0, 1] is the product measure based on µ0 : 2{0,1}→

[0, 1], where µ0({0}) = µ0({1}) = 1
2 . Here we identify as usual languages

over {0, 1} as infinitely long sequences from {0, 1}ω.
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Definition 2.4. Let h : N → N. Let K be a relativized class of type
σ1 · · ·σk0. Then we say that

1. L ∈ BPhK iff there exists a B ∈ K such that

prob|y|=h(|x|)
[
(x,X1, . . . , Xk) ∈ L↔ (x,X1, . . . , Xk, y) ∈ B

]
≥ 2

3 .

2. L ∈ RhK iff there is a B ∈ K such that

(x,X1, . . . , Xk) ∈ L→ prob|y|=h(|x|)
[
(x,X1, . . . , Xk, y) ∈ B

]
≤ 1

2 ,
(x,X1, . . . , Xk) 6∈ L→ prob|y|=h(|x|)

[
(x,X1, . . . , Xk, y) ∈ B

]
= 1.

3. L ∈ RhK iff there is a B ∈ K such that

(x,X1, . . . , Xk) ∈ L→ prob|y|=h(|x|)
[
(x,X1, . . . , Xk, y) ∈ B

]
= 1,

(x,X1, . . . , Xk) 6∈ L→ prob|y|=h(|x|)
[
(x,X1, . . . , Xk, y) ∈ B

]
≤ 1

2 .

In the following we will apply sequences of operators to base classes such
that the resulting class is of type ε (without any oracle). That is, in the
terminology of Definition 2.1 we have k = 0 and we deal with a usual class
of languages of simple words, not of tuples consisting of words and sets. The
type of the base class will always be implicitly given from the context. If
we write e.g. Qσ1

1 · · ·Q
σk
k ·P, then P is a class of languages of k + 1 tuples

(x,X1, . . . , Xk) where for 1 ≤ j ≤ k, Xj is of type σj if σj ∈ {1, 2} and Xj

is of type 0 if σj ∈ {exp, p, log}.

2.2 Restricting the Number of Queries

Let us now consider restrictions to the number of oracle queries or the num-
ber of spot checks on a random access input tape.

Definition 2.5. Let k ≥ 0, let σ1, σ2, . . . , σk ∈ {1, 2, exp, p, log}, and let
r1, r2, . . . , rk : N→ N. Let

L ∈ Qσ1
1 [r1]Qσ2

2 [r2] · · ·Qσkk [rk] ·K

iff L ∈ Qσ1
1 Q

σ2
2 · · ·Q

σk
k · K via a K machineM which on input (x,X1, . . . , Xk)

makes at most ri(|x|) queries to the i-th oracle or random access input tape
(for 1 ≤ i ≤ k). We omit [ri] if it does not constitute a real restriction (for
example if it is greater than the runtime of the underlying machine).
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2.3 Small Space and Small Depth Classes

In the rest of this paper, we will use the above defined operators to charac-
terize complexity classes defined by small depth of Boolean circuits or small
space on Turing machines. We assume the reader is familiar with the classes
from the inclusion chain

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ · · · ⊆ NC ⊆ P ∩ POLYLOGSPACE,

see, e.g., [Vol99].
We also make reference to the classes

SCk =def DTIME-SPACE(nO(1), logk n) and
NSCk =def NTIME-SPACE(nO(1), logk n).

Steve’s class SC [Coo79] is the union of all SCk, and NSC, the nonde-
terministic analogue of Steve’s class, is the union of all NSCk. Relating
these to the above classes, only SCk ⊆ NSCk ⊆ POLYLOGSPACE and
NC1 ⊆ L = SC1 ⊆ SC2 is known. It is conjectured that NC and SC are
incomparable; see [Ruz81].

3 Known Results

The following relation between type 2 oracle operators and word operators is
known: If K is a class defined by nondeterministic polynomial time machines
(technically, K is leaf language definable, i.e, K = LeafP(B) for some set B
[HLS+93, JMT96]), then Q2 · K = Qexp · K, where Q can be any one of the
above operators [BVW98].

We remark that a connection between the BP2 operator and ALMOST-
classes has been established in [MW95, BVW98], see also [VW97]. There it
was shown that for a great number of classes K, the identities

BP2 · K = BPexp · K = ALMOST-K

hold, where ALMOST-K is the set of all languages L that “K-reduce” to
almost every language, precisely: the measure of the set of all A such that
L ∈ KA is one.

However the main motivation for studying the above operator formalism
stems from the fact that many results in the area of interactive protocols and
probabilistically checkable proofs can be formulated conveniently in terms
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of the operators defined in Section 2. Thus, when seeking an appropriate
generalization to smaller complexity classes, the operator formalism is con-
venient.

Fortnow, Rompel, and Sipser in 1988 (see [FRS94]) characterized the
power of multi-prover interactive proofs by an existential operator ranging
over oracles. Baier and Wagner in 1996 obtained the corresponding result
for single-prover interactive proofs.

Theorem 3.1.

1. NEXPTIME = MIP = ∃2 ·BPp ·P = ∃2 ·Rp ·P [FRS94, BFL91].

2. PSPACE = IP = ∃1 ·BPp ·P = ∃1 ·Rp ·P [BW98a, Sha92].

Because the first equality in both statements is not relativizable, this
yields non-relativizable operator characterizations of the classes PSPACE
and NEXPTIME. In contrast to this, the following characterizations (ob-
tained in [BW98b]) are relativizable.

Theorem 3.2.

1. NEXPTIME = ∃2 · ∀p ·P = ∃2[3] · ∀p ·P.

2. PSPACE = ∃1 · ∀p ·P = ∃1[2] · ∀p ·P.

Because we will use the technique again later on to show our results, we
briefly review the proof of the left to right inclusions.

Proof sketch. 1. The proof builds on a translation of the completeness of
3SAT for NP under DLOGTIME-reductions into the exponential time con-
text, cf. Theorem 4.1 in the next section.

2. (Cf. [BW98a, Theorem 9.2].) The following (relativizable) character-
ization of PSPACE is known [CF91, HLS+93]: A language L is in PSPACE
iff there is a polynomial time computable function f : {0, 1}∗×{0, 1}∗→ A5

(A5 is the group of all even permutations on 5 positions) and a polynomial
p such that x ∈ L ⇐⇒ f(x, 0) ◦ f(x, 1) ◦ · · · ◦ f(x, 2p(x) − 1) = 1, where ◦
is multiplication in A5 and 1 is the identity permutation. Now the sequence
of intermediate results of the evaluation of this term can be encoded as an
oracle. For all i = 0, 1, . . . , 2p(|x|) − 1 it has to be checked whether f(x, i)
transforms the previous intermediate result into the next one. This is a
∀p ·P predicate. The two queries, necessary for every i, are not of type 1,
but one can overcome this difficulty by choosing an appropriate encoding of
the queries (cf. the last step in the proof of our Lemma 5.3 below). ❑
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In [BW98b] it has been proved that this presentation of PSPACE and
NEXPTIME cannot be improved with respect to the number of queries.

The main goal of this paper is to see if characterizations similar to those
above can be provided for small space classes or small depth circuit classes.
Before we turn to this point, we first address the class NP.

4 Scaling down and up: NEXPTIME vs. NP

A known inclusion relating NP with another class can usually easily be scaled
up to obtain a similar result for NEXPTIME. This is done by translational
methods (exponential padding). However, here we are interested in going
the other direction: “scaling down”. We have a result for NEXPTIME such
as

NEXPTIME = ∃2 · ∀p ·P = ∃2[3] · ∀p ·P (1)

= ∃2 ·BPp ·P = ∃2 ·Rp ·P (2)

Can we obtain similar results for NP? What would a “similar result”
be in this context? One’s intuition is to try to reduce logarithmically all of
the resource bounds and operator ranges that are involved, and to obtain
an equality with the property, that the original result can obtained from the
“scaled down” result via padding (“scaling up”).

However it is clear that this will not work in each case. (We give a
concrete example below, showing how some attempts at “scaling down” are
doomed to failure.) If there is a genuine “scaled-down” version of a result,
then it cannot be derived mechanically. Rather, it requires a separate proof.

In this section we want to exemplify what we mean by comparing some
previously-known characterizations of NP and NEXPTIME. Let us start
with an easy example and show how to scale down equation (1).

Theorem 4.1. NP = ∃2 · ∀log ·P = ∃2[3] ·∀log ·DLOGTIME.

Proof sketch. For the inclusion ∃2 · ∀log ·P ⊆ NP, note that, although a
polynomial-time machine M can write queries having a polynomial num-
ber of bits (and thus ranging over an exponentially-large address space),
for each given oracle and for each given logarithmically-long string z, the
polynomial-time machine queries at most a polynomial number of oracle
positions. Thus, in order to determine if x is in a language in ∃2 · ∀log ·P,
it suffices to guess a polynomial number of answers in some oracle A, and
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then execute a poly-time machine MA(x, z) for all of the polynomially-many
choices for z.

For the inclusion NP ⊆ ∃2[3] · ∀log ·DLOGTIME, the proof relies on
the fact that 3-SAT is NP-complete under DLOGTIME-uniform projections
[Imm87]. To accept a 3-SAT formula, the existential quantifier guesses an
assignment. The universal quantifier guesses a clause. The DLOGTIME
computation checks that the clause is satisfied by the assignment. Since we
have 3 literals per clause, we meet the restriction that every DLOGTIME-
computation looks at at most 3 bits in the assignment. ❑

Sitting inside of Theorem 4.1 is a perfect scaled-down version of equa-
tion (1). That is, start with the equality

NEXPTIME = ∃2 · ∀p ·P = ∃2[3] · ∀p ·P.

When we logarithmically reduce all of the bounding functions, NEXPTIME
becomes NP, ∀p becomes ∀log, and P becomes POLYLOGTIME, to yield
the equality

NP = ∃2 · ∀log ·POLYLOGTIME = ∃2[3] · ∀log ·DLOGTIME.

It is natural to wonder if the constant “3” in Theorem 4.1 can be reduced.
As the next theorem shows, this is equivalent to the NL = NP question.

Theorem 4.2. NL = ∃2[2] · ∀log ·DLOGTIME.

Proof. The proof of NL ⊆ ∃2[2] ·∀log ·DLOGTIME relies on the NL-com-
pleteness of 2-SAT under DLOGTIME reductions [Jon75, Imm88, Sze88].
The proof is exactly analogous to that showing that 3-SAT lies in the class
∃2[3] · ∀log ·DLOGTIME.

For the other direction, let the values on the oracle tape be zi (where
1 ≤ i ≤ p(n) for some polynomial p) and let the universally-quantified value
be y (|y| = logn). Then depending on the input x and on y, the machine
first looks at one bit on the oracle tape zi1 and depending on whether it is
0 or 1 looks at either zi2 or at zi3 and then accepts or rejects depending on
the value of this second bit. All this is done within time O(logn). Thus the
acceptance criterion can be written as (zi1 → l2) ∧ (zi1 → l3), where each
lj ∈ {zij , zij} (j = 2, 3), which is a 2-SAT formula with 2 clauses. Taking a
conjunction over all possible y’s we get a 2-SAT formula of polynomial length
that is satisfiable iff the machine accepts. Satisfiability of this formula can
be checked in NL, completing the proof. ❑
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The obvious next step is to ask how to scale down the NEXPTIME =
∃2 ·BPP = ∃2 · coRP result. Observe that it was just this question which was
part of the motivation for the PCP-characterization of NP [AS98, ALM+92],
see also [BFLS91, FGL+96, Bab93]. The PCP result can be formulated in
terms of our operators as follows:

Theorem 4.3 [AS98, ALM+92].

NP = ∃2 ·BPlog ·P = ∃2[O(1)] ·Rlog ·P.

Formally scaling down the NEXPTIME characterization given in equa-
tion (2) would yield something like

NP ?= ∃2 ·Rlog ·DLOGTIME

or
NP ?= ∃2 ·Rlog ·POLYLOGTIME.

Neither of these equalities hold, as the following proposition demonstrates.

Proposition 4.4. 1∗ 6∈ ∃2 ·Rlog ·POLYLOGTIME.

Proof. We essentially follow the proof, given in [FS88], that coNP is not
relativizably contained in IP.

Assume 1∗ ∈ ∃2 ·Rlog ·POLYLOGTIME. Let M be the polylogarithmi-
cally time-bounded Turing machine such that, on input 1n, there exists an
oracle A such that for most y, M(x, y, A) = 1, and such that for any string x
that contains any zeros, for any oracle A, for most strings y, M(x, y, A) = 0.

Let n be large enough, and consider some “good” oracle A that causes
M(x, y, A) to accept for most y.

Given a number i such that 1 ≤ i ≤ n, let us say that i is queried by y
if the computation of M(x, y, A) reads bit i of the input.

An easy counting argument shows that there is some i such that fewer
than one-third of the strings y query i. (To see this, note that there are at
most nk possible strings y, for some k. Each such y queries at most logj n of
the i’s. Thus, on average, each i is queried by at most nk−1/ logj n < nk/3
strings y.)

Thus, M does not have the desired behavior on input 1i−101n−i. ❑
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Remark 4.5. It is not hard to show that ∃2 ·Rlog ·DLOGTIME does con-
tain NTIME(logn) (which is equal to ∃2 ·DLOGTIME).

Thus, it seems at first as if no good options remain to us, in our attempt
to scale down equation (2). Theorem 4.3 is not adequate, since in scaling up
this result, the polynomial time bound becomes an exponential time bound.
Instead, we are in need of a stronger PCP-like characterization of NP. As
we shall see, this is possible.

Fortunately, one can reduce the time bound in Theorem 4.3 to poly-
logarithmic time if the input is encoded in an error-correcting code, see
e.g. [BFLS91], [Bab93, Theorem 2] or [HPS95, Section 4.8]. The encoding
is a polynomial time procedure, but one can hope that such an encoding is
no more time consuming if an additional padding has to be encoded.

To make this precise we define polynomial time strong many-one re-
ducibility between sets as follows: Let A ⊆ {0, 1}∗#∗. (Later, # will
be our padding symbol.) Then A ≤p,s

m B iff there exists a function f
with the following properties: First, f is polynomially length bounded.
Second, given any string of the form (x,m) (m in binary) we can com-
pute every bit of f(x#m) in polynomial time. Finally, f reduces A to B,
i.e. x#m ∈ A ⇐⇒ f(x#m) ∈ B.

We will use this notion of strong many-one reducibility to define an
equivalence relation on complexity classes. Let us write K1 ' K2 if every
set in K1 is reducible to a set in K2 by strong many-one reductions, and
vice-versa. (In most cases of interest to us, we will have K2 ⊆ K1 or vice-
versa.)

As was pointed out to us by S. Safra, the proof of the PCP-theorem
[ALM+92] even yields the following stronger characterization of NP:

Theorem 4.6 [ALM+92]. NP ' ∃2[O(1)] ·Rlog ·POLYLOGTIME.

From this statement one can easily conclude (by translation) the MIP
theorem NEXPTIME = ∃2 ·Rp ·P (equation (2)). The reason for this is
the following: Applying standard translational (padding) techniques, given
a language L in NEXPTIME, the padded version of L, which is in NP, will
reduce to a language in ∃2 ·Rlog ·POLYLOGTIME under strong many-one
reductions. The reduction can actually be performed in time polynomial in
the length of the prefix (without padding symbols) which is polylogarithmic
in the input length. Translating this up shows NEXPTIME ⊆ ∃2 ·Rp ·P.
In fact since we can restrict the number of queries to a constant in Theo-
rem 4.6 the same applies for NEXPTIME, giving the following improvement
of equation (2), already noticed in [Gol97]:
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Corollary 4.7. NEXPTIME = ∃2[O(1)] ·Rp ·P.

5 Scaling down and up: PSPACE vs. ?

As done for NEXPTIME in the previous section, we want to examine in
this section scaled-down versions of the PSPACE characterizations from
Theorem 3.1 and 3.2:

PSPACE = ∃1[2] · ∀p ·P = ∃1 · ∀p ·P (3)

PSPACE = ∃1 ·BPp ·P = ∃1 ·Rp ·P (4)

As in the previous section we have to reduce all resource bounds and
operator ranges logarithmically. But what is the scaled-down counterpart
K of PSPACE? When we scale up K we should arrive at PSPACE, i.e. for
every language A, A ∈ PSPACE iff there is some k ∈ N such that Ak ∈ K,
where Ak =def

{
x#2|x|

k−|x| ∣∣ x ∈ A}. It is obvious that every class K such
that NC1 ⊆ K ⊆ POLYLOGSPACE fulfills this condition and hence is a
scaled-down counterpart of PSPACE. In fact, we can prove several scaled
down versions of equation (3).

Let us start by trying to replace (as in the previous section) the class
P by POLYLOGTIME, i.e., now the class under consideration is the class
∃1[O(1)] ·∀log ·POLYLOGTIME. It turns out that it coincides with the class
NSC =def NTIME-SPACE(nO(1), logO(1) n).

Theorem 5.1.

NSC = ∃1[3] · ∀log ·POLYLOGTIME
= ∃1 · ∀log ·POLYLOGTIME
= ∃1 · ∀log ·SC.

The proof follows immediately from the following two lemmas.

Lemma 5.2. For every s such that logn ≤ s(n) ≤ nO(1), we have

∃1 · ∀log ·DTIME-SPACE(nO(1), s) ⊆ NTIME-SPACE(nO(1), s).

Proof. The proof is similar to the proof of IP ⊆ PSPACE. We simulate
a computation of the form ∃1 · ∀log ·DTIME-SPACE(nO(1), s) by making a
depth first search in the query tree. Note that, since the length of a query
must respect the space bound, a query consists of O(s) bits. Furthermore,
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since the oracle’s access is of type 1, there are at most O(s) queries made
on any execution path. Thus a query-answer sequence can be stored in
O(s) space. In order to search the query tree, we first guess a query-answer
sequence and check that it is the leftmost one in the tree of all possible such
sequences. (That is, it is the sequence generated if all of the oracle queries are
answered negatively.) Then we check that if this is a sequence that actually
occurs on one path of the ∀log ·DTIME-SPACE(nO(1), s) computation, then
this computation path is accepting. That is, we cycle through all possible
strings y of length logn, and verify that either M(x, y) does not ask the
queries in that sequence, or (it does ask that sequence, and it accepts).

Next, we consider the lexicographically next queries-answer-sequence,
check again that if it actually occurs it leads to an accepting computation.
In this way we search the whole query tree. All in all we guess an oracle, but
since access to this oracle is type 1, we only have to store one path in the tree
in order to be able to be consistent with previous answers (we do not have to
store the whole oracle up to the maximal query length). Thus the simulation
is space bounded by s(n) and since s is bounded by a polynomial and we
have only polynomially many ∀log ·DTIME-SPACE(nO(1), s) computations,
the overall time is also polynomial. ❑

Lemma 5.3.

NTIME-SPACE(nO(1), logk) ⊆ ∃1[3] · ∀log ·DTIME(logk+1).

Proof. The proof consists of two main ingredients: First, after observing that
any language in NTIME-SPACE(nO(1), logk) is accepted in these resource
bounds by an “oblivious” machine (whose input head continually sweeps
back and forth across the input tape), we show that any such language is
accepted by small-width nondeterministic circuits. Next, we show that such
circuits can be simulated in ∃1[3] · ∀log ·DTIME(logk+1). The main point
here is that we have to force type 1 behavior while simulating the circuit.

Let A ∈ NTIME-SPACE(nO(1), logk) be recognized by machineM whose
input head sweeps back and forth across its input tape. (It has been observed
before that this is no loss of generality [PF79].) Now a straightforward
modification of an argument of Pippenger [Pip79] shows that A is accepted
by a DLOGTIME-uniform family of circuits {Cn} of the following form:

• Cn consists of O(na logk n) gates arranged in na levels, where gates at
level i are either input gates or are connected to at most two gates at
level i− 1.
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• Each level i has O(logk n) gates, of which exactly one is a “regular”
input gate, and one is a “nondeterministic” input gate. Each “regular”
input gate is connected to some bit of the input string x (and each
bit of the input can be read at several different levels). In contrast,
each “nondeterministic” gate is completely independent of all other
nondeterministic gates. That is, the nondeterministic bits have a “read
once” property.

• x is in A if and only if there is a setting of the nondeterministic gates
that causes Cn to output 1 on input x.

It is easy to see how to construct these circuits. The gates at level i encode
the worktape configuration of M at time i along a computation path. It
is also easy to see that these circuits give an alternate characterization of
NSCk, in the sense that a language is in NSCk if and only if A is accepted
by a circuit family of this type.

It remains only to show that A is in ∃1[3] · ∀log ·DTIME(logk+1).
Let x be a string of length n, and let m be the number of gates in Cn

(including the nondeterministic gates and the input gates). Without loss of
generality, let the gates of Cn have names of the form (i, j) where i denotes
the level on which the gate is located, and j = O(logk n). Furthermore, let
(i, 1) be the input gate on level i, and let (i, 2) be the nondeterministic gate
on level i. Let the output gate of Cn be (na, 3).

Given a vector b of length m (where b should be thought of as a list of
values for each gate of Cn), let b(i, j) denote the value of bit (i, j) of b (i.e.,
the value that b records for gate (i, j)). Note that x is in A if and only if

• there is vector b of length m such that for all (i, j)

– b(i, 1) is equal to the appropriate bit of x, and

– If i = 1 then b(1, j) encodes the jth bit of the initial configuration.

– If i > 1 then the value of b(i, j) is consistent with the values of
its (at most two) predecessors on level i− 1.

– If i = na then b(i, 3) = 1.

It is clear that this computation can be accomplished in ∃2[3] · ∀logDTIME(log)
because Cn is DLOGTIME-uniform, and a deterministic machine can check
if the bits of oracle b satisfy the stated conditions for any given (i, j). How-
ever, we need to carry out this simulation with only type 1 access to the
oracle. In order to do this, we will have to use a different encoding of the
vector b.
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Let b(i) denote the segment b(i, 1), b(i, 2), . . . of length O(logk n) corre-
sponding to level i. Thus b = b(0)b(1) . . . b(na). Observe that it will suffice
if we can devise an oracle encoding of b so that a DTIME(logk) machine on
input (x, (i, j)) can obtain bits from b(i) and b(i− 1) in a type 1 manner.

Let 2v be the smallest power of 2 greater than na. The string b contains
b(i) for i ≤ na; for completeness define b(i) =def 0...000 for na < i < 2v. Con-
struct an oracleB as follows: Given i, 1 ≤ i < 2v, we want to encode b(i) into
B by putting one string into the oracle for every bit in b(i) that is 1. First,
let the length v binary representation of i be u1 · · ·u`−1u`10q. Let b(i) =
b1b2 · · · bc. Then for every 1 ≤ j ≤ c, put the string 0cu10cu20c · · ·0cu`0j
into B iff bj = 1. Then we can recover b(i, j) by asking the oracle for
0cu10cu20c · · ·0cu`0j. Moreover, the reader can easily verify that for any
choice of i and j1, j2, j3 with j1 < j2, it is either the case that the oracle
addresses encoding b(i− 1, j1), b(i− 1, j2), b(i, j3) can be queried in a type
1 manner (in that order), or else the ordering b(i, j3), b(i− 1, j1), b(i− 1, j2)
will work. The length of the oracle queries is now bounded by O(logk+1 n),
and this is the dominant term in the running time. ❑

Corollary 5.4. NSCk ⊆ ∃1[3] · ∀log ·DTIME(logk+1 n) ⊆ ∃1 · ∀log ·SCk+1 ⊆
NSCk+1.

Since NSC is a scaled-down counterpart of PSPACE, the result NSC =
∃1[3] · ∀log ·POLYLOGTIME (Theorem 5.1) is a perfect scaled-down ana-
logue of PSPACE = ∃1[2] · ∀p ·P (equation (3)), except that we need one
oracle query more in our NSC characterization. It is now natural to ask
what happens if in the above we replace POLYLOGTIME by DLOGTIME.
This leads us to a second scaled-down analogue of equation (3) as follows:

Theorem 5.5.

NC1 = ∃1[2] · ∀log ·DLOGTIME
= ∃1 · ∀log ·DLOGTIME

Proof. The inclusion NC1 ⊆ ∃1[2] ·∀log ·DLOGTIME is essentially Barring-
ton’s Theorem [Bar89]. Barrington showed that for every A ∈ NC1 there is
a function f : {0, 1}∗× {0, 1}∗ → A5 computable in logarithmic time and a
polynomial p such that for all x,

x ∈ A ⇐⇒ f(x, 0) ◦ f(x, 1) ◦ · · · ◦ f(x, p(|x|)) = 1.

The proof now is similar to that of Theorem 3.2.2. As in the above proof,
the sequence of intermediate results of the evaluation of this term can be
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encoded as an oracle. For all i = 0, 1, . . . , p(|x|) it has to be checked whether
f(x, i) transforms the previous intermediate result into the next one. This is
a ∀log ·DLOGTIME predicate with two oracle queries. Without further care
however, the two necessary queries for every i are not of type 1, but one can
overcome this difficulty by choosing an appropriate encoding of the queries
and making use of the tree rearranging techniques employed in Lemma 5.3.

To complete the proof, it remains to show that ∃1 · ∀log ·DLOGTIME ⊆
NC1. We actually prove a somewhat more general result in the following
lemma. ❑

Lemma 5.6. Let C be either L or DLOGTIME. Then each language A in
∃1 · ∀log · C is accepted by a family of NC1 circuits with oracle gates for a
language from C.

Proof. Let A be in ∃1 · ∀log · C, as witnessed by some machine M . That is,
for a string x of length n, x is in A if and only if ∃1B such that, for all
strings z of length logn, MB(x, z) accepts.

Recall that the oracle queries that are asked must be short enough to fit
on M ’s tape (which is subject to the logarithmic space bound). Since M is
a deterministic machine, for any given computation of MB(x, z), there is a
string i of length logn such that the set of queries that are asked by machine
M during the computation are a subset of {j : j is a prefix of i}. Thus the
condition “MB(x, z) accepts” can be rewritten as follows: for all strings i
of length logn, either some query asked by MB(x, z) is not a prefix of i, or
all queries asked by MB(x, z) are prefices of i, and MB(x, z) accepts.

For an oracle B and a string i, let
−−→
B(i) denote the sequence of length

|i|+1 consisting of the answers to all queries of the form “is j in B?” where
j is a prefix of i (including the empty prefix). Let [M, x, z, i,

−−→
B(i)] denote

the Boolean value of the condition “either some query asked by MB(x, z)
is not a prefix of i, or all queries asked by MB(x, z) are prefices of i, and
MB(x, z) accepts”. (Note that this condition depends only on the bits that
are present in

−−→
B(i).)

Restating, note that x is in A if and only if

∃1B∀logz∀logi[M, x, z, i,
−−→
B(i)]

which is equivalent to

∃1B∀logi∀logz[M, x, z, i,
−−→
B(i)].

Let us pick the value of B(ε) nondeterministically. Thus

∃1B∀logi∀logz[M, x, z, i,
−−→
B(i)]
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is equivalent to

∃b ∈ {0, 1} ∃1B′∀logi∀logz[M, x, z, i, b
−−→
B′(i)],

where [M, x, z, i, b
−−→
B′(i)] means the same thing as [M, x, z, i,

−−→
B′(i)], except

the value b is used in place of the first bit B(ε) of
−−→
B′(i) when answering the

oracle queries asked by M .
Next note that, if the first bit of i is 0, then the value of [M, x, z, i, b

−−→
B′(i)]

is completely independent of the value of B(1), and similarly if the first bit
of i is 1, then the value of [M, x, z, i, b

−−→
B′(i)] is completely independent of

the value of B(0). Thus we can pick the answers to these queries to B
independently. That is, the expression

∃1B∀logi∀logz[M, x, z, i,
−−→
B(i)]

is equivalent to

∃b ∈ {0, 1} ∀c ∈ {0, 1} ∃b′ ∈ {0, 1}
∃1B′∀i ∈ c{0, 1}logn−1∀logz[M, x, z, i, bb′

−−→
B(i)].

This process can be extended for logn steps, where we first existentially
guess a value for B(j) (for some prefix j of our current i) and then univer-
sally check that the guess is good for both extensions j0 and j1 of j. This
gives a (DLOGTIME-uniform) formula for this expression, where the atomic
predicates of the formula are of the form [M, x, z, α] for some logarithmic-
length string α. The condition [M, x, z, α] can be answered by an oracle
gate for a language in C. This completes the proof. ❑

Theorem 5.1 showed that applied to SC the quantifier sequences ∃1 · ∀log

and ∃1[O(1)] ·∀log add exactly the power of nondeterminism. For the case
of logarithmic space computations however the situation is different:

Theorem 5.7.
L = ∃1[O(1)] ·∀log ·L

= ∃1 · ∀log ·L

Proof. The inclusions from left to right are obvious. The other direction
follows from Lemma 5.6 above. ❑
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Comparing Theorems 5.1 and 5.7, the reader may be tempted to con-
clude that if L = SC, then L = NSC, reasoning as follows: L = ∃1 · ∀log ·L =
∃1 · ∀log · SC = NSC. In fact, no such implication is known to hold. The flaw
in the one-line “proof” lies in the fact that the hypothesized equality L = SC
(concerning two unrelativized classes) does not imply that the “relativized
classes of type 10” L and SC are equal. (See Definition 2.1 regarding rel-
ativized classes of type σ1σ2.) In fact, a simple diagonalization argument
shows that these relativized classes are not equal.

6 Conclusion

In this paper, we presented a number of characterizations of the classes NC1,
L, NL, and NSC in terms of oracle operators. In all our results, we addressed
the question what number of queries is actually necessary.

A number of questions remain open.
First, we want to discuss the question about a scaled-down version of

equation (4). From the discussion at the beginning of Sect. 5, it is clear that
to show NC1 ⊆ ∃1 ·BPlog ·DLOGTIME ⊆ ∃1 ·BPlogPOLYLOGTIME ⊆
POLYLOGSPACE is sufficient to obtain (4) by translation. However the
power of the operator sequence ∃1 ·BPlog is not clear to us. Concern-
ing upper bounds, ∃1 ·BPlog · SC ⊆ NSC can be shown as in the proof
of Lemma 5.2. In fact one can even observe that the simulation given
there constitutes a symmetric algorithm, showing that ∃1 ·BPlog ·L ⊆ SymL.
Concerning lower bounds, inclusions as NC1 ⊆ ∃1 ·BPlog ·POLYLOGTIME
are not very likely for the same reasons as explained in Section 4 (see
the discussion preceding Proposition 4.4). However one might hope for
NC1 ≤p,s

m ∃1 ·BPlog ·POLYLOGTIME, but this is open. Let us therefore
conclude with the question if one of the classes ∃1 ·BPlog ·SC, ∃1 ·BPlog ·L,
∃1 ·BPlog ·POLYLOGTIME, or ∃1 ·BPlog ·DLOGTIME coincides with well-
known classes.

A second question concerns the relation of our Proposition 4.4 with the
relativization result in [FS88]. Can a general correspondence between (poly-)
logtime classes from our context and relativized polynomial time classes,
perhaps along the lines of [BCS92, Ver93], be obtained?
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leaf languages. Information & Computation, 129:21–33, 1996.

[Jon75] N. D. Jones. Space-bounded reducibility among combinatorial
problems. Journal of Computer and System Sciences, 15:68–85,
1975.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam
Nisan. Algebraic methods for interactive proof systems. Journal
of the ACM, 39(4):859–868, October 1992.

[MW95] W. Merkle and Y. Wang. Separations by random oracles and
“Almost” classes for generalized reducibilities. In Proceedings
20th Symposium on Mathematical Foundations of Computer Sci-
ence, volume 969 of Lecture Notes in Computer Science, pages
179–190. Springer Verlag, 1995.

[PF79] N. Pippenger and M. Fischer. Relations among complexity mea-
sures. Journal of the Association for Computing Machinery,
26:361–381, 1979.

[Pip79] N. Pippenger. On simultaneous resource bounds. In Proc. of
20th FOCS, pages 307–311, 1979.

[Ruz81] W. L. Ruzzo. On uniform circuit complexity. Journal of Com-
puter and Systems Sciences, 21:365–383, 1981.
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