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ATTEMPTS TO USE THE POWER OF MODERN

GROUP THEORY OF FINITE SIMPLE GROUPS

FOR CALCULATING GALOIS GROUPS

SHREERAM S. ABHYANKAR

Dedicated to Silvio Greco in occasion of his 60-th birthday.

This is the text of my lectures in Catania (Sicily) in April 2001, and at
a Group Theory Conference in Oberwohlfach (Germany) in April 1997. The
Catania visit was in honor of the 60-th birthday of my good friend Sylvio
Greco.

The muse of poetry is responsible for the above poetic rendition of
the original title of my talk which was more like �Recognition Theorems
and Galois Theory� or �Nice Equations for Nice Groups.� At any rate,
various Recognition Theorems of Group Theory provide powerful tools for
computing Galois groups. Examples of such Recognition Theorems are:

(1) CT = Classi�cation Theorem of Finite Simple Groups,
(2) CDT = Classi�cation of Doubly Transitive Permutation Groups (using

CT),
(3) CR3 = Classi�cation of Rank 3 Permutation Groups (again using CT),
(4) Jordan-Margraff Theorems on Limits of Transitivity,
(5) Burnside�s Theorem (which is a special case of the O�Nan Scott Theo-

rem),
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(6) Zassenhaus-Feit-Suzuki Theorem,
(7) Kantor�s Rank 3 Theorem (using Buekenhout-Shult�s Polar Space The-

orem),
(8) Cameron-Kantor�s Theorems on Transitive Collineation Groups, and
(9) Liebeck�s Orbit Size Theorems (which uses CT).

I shall illustrate how these Recognition Theorems can be used for dis-
covering nice equations whose expected Galois groups are various preas-
signed nice groups and then for establishing that their Galois groups indeed
have the desired values.

History. In my 1957 paper [1], as a bi-product of my Ph. D. Thesis work
on resolution of singularities, I discovered that, unlike characteristic zero,
in nonzero characteristic p, the af�ne line is not simply connected, and as
examples of this I wrote down the following two families of polynomials

Yn + 1+

r�

1=1

aiY
ni and Yn + Y +

r�

1=1

aiY
ni

where a1, . . . , ar are polynomials in an indeterminate X , andmay be parameters
T , S, . . ., with coef�cients in a ground �eld k of characteristic p, and n > n1 >

. . . > nr ≥ 0 are integers such that their differences n − n1, . . . , n − nr are
divisible by p, and in the �rst case n is nondivisible by p whereas in the second
case n is divisible by p; note that in both the cases the Y -discriminant of the
polynomial is 1. As a special case of the �rst family. I considered the trinomial

Y p+t + XY t + 1

where t > 0 is prime to p, and suggested that its Galois group over k(X ), as
well as the Galois groups of various other members of the two families over
k(X ) or k(X, T , . . .), be computed. By an indirect argument concerning this
trinomial I showed that as subquotients of the algebraic fundamental group
πA(Lk) of the af�ne line Lk over k we get all �nite groups, and this led me
to the conjecture that if k is algebraically closed then πA(Lk) consists of all
quasi-p groups, i.e., �nite groups generated by their p-Sylow subgroups. Here
πA(Lk) is de�ned to be the set of all Galois groups of �nite unrami�ed Galois
coverings of Lk , and by subquotients of πA(Lk) we mean quotient groups of
subgroups of members of πA(Lk). Note that every �nite simple group whose
order is divisible by p is automatically quasi-p.

At the instigation of Serre, after a gap of thirty years, in 1988, I returned to
the calculation of these Galois groups and, following his advice, started learning
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group theory for that purpose. Actually, as a college student in Bombay, I
was fond of group theory, and wrote to Philip Hall for advice on how to go
about solving the odd order problem which I had read in Birkhoff-Maclane�s
Survey of Modern Algebra. At Hall�s suggestion, I was busily reading the
papers B. H. and Hanna Neumann, and Reinhold Baer. Then coming to
Harvard as a graduate student, I fell under the spell of Oscar Zariski and forgot
all about group theory. But when the question of retraining in group theory
arose, fortunately I remembered that as a graduate student I was quite friendly
with Danny Gorenstein, whom I took to Cornell when I became an assistant
professor, and that is how Danny became a group theorist, as I was delayed by a
car accident and he was caught by Herstein. At Cornell, I became quite chummy
with fellow assistant professor Walter Feit who later on, in collaboration with
John Thompson, solved the odd order problem. At any rate, in March 1989,
I spent a week with Walter and a week with Danny learning modern group
theory. But soon they advised me consult specialists in transitivity like Bill
Kantor and Peter Cameron. I was amused to realize that Bill Kantor was a
student of Peter Dembowski who was a student of Reinhold Baer, and Peter
Cameron was a student of Peter Neumann who is a son of Bernard and Hanna
Neumann. What a small world! Perhaps I should add that at Harvard I had
taken a course with Richard Brauer who was a friend of Oscar Zariski. I could
also mention that in Bombay I studied some group theory with F. W. Levi who
was a friend of my father and returned to the Free University of Berlin in 1956.
My father S. K. Abhyankar, who was a professor of mathematics in Gwalior,
taught me basic mathematics from ancient Sanskrit books, and introduced me
to Burnside-Panton�s Theory of Equations where I �rst learnt group theory. This
was William Snow Burnside, and not the group theorist William Burnside.

Trinomials. As a result of this retraining in group theory, as reported in my
1992 paper [2], by using CDT, I showed that if k is algebraically closed and
t > 1 with (p, t) �= (7, 2) then the Galois group of the above trinomial

Y p+t + XY t + 1

is the alternating group Ap+t ; in case of (p, t) = (7, 2), by using hyperelliptic
curves, I showed that it is PSL(2, 8); �nally, in case of t = 1, by using
the Zassenhaus-Feit-Suzuki Theorem, I showed that it is PSL(2, p). For
CDT, which gives a complete list of doubly transitive permutation groups, see
Cameron [14] or Kantor [18]. For the Zassenhaus-Feit-Suzuki Theorem, which
given a complete list of doubly transitive groups in which only the identity �xes
three points, see Volume III of Huppert-Blackburn [16]; indeed, for a while in
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my travels I carried the three huge volumes of Huppert-Blckburn [16] together
with the two big volumes of Suzuki [21], until I became wiser and replaced
them with the compact books of Aschbacher [12] and Kleidman-Liebeck [19].
A little later, for t > 2, I could replace CDT by Jordan-Margraff Theorems
on limits of transitivity which say that if a primitive permutation group is such
and such then it must be either the alternating group An or the symmetric group
Sn . However, from the t = 2 case, that is in showing that the Galois group of
Y p+2 + XY 2 + 1 (with 2 �= p �= 7) is Ap+2 , I have been unable to remove the
use of CDT and hence of CT.

Let me note that a small part of the trinomial story, which can be settled by
using Burnside�s Theorem, turned out to be suf�cient to settle the two variable
case of Hilbert�s 13th problem by giving an example of an algebraic function of
two variables which cannot be expressed as a composition of algebraic functions
of one variable; see my paper [9] in the Proceedings of the 1995 Franco-
Belgian Conference. The said Theorem of Burnside, which has now been
generalized into the O�Nan-Scott Theorem, says that a doubly transitive group
has a unique minimal normal subgroup, which is either elementary abelian or
simple according as whether it is regular or not.

In studying Volume III of Huppert-Blackburn [16], I learnt enough about
the Mathieu groups to prove that (as reported in [4] and [5] and partly in
collaboration with Popp, Seiler and Yie), assuming k to be algebraically closed
and computing Galois groups over k(X ), for p = 3 the Galois group of
Y 11+XY 2+1 is M11 and it is isomorphic with the Galois group of Y

12+Y +X
verifying the fact that M11 has a permutation representation of degree 12, and
for p = 2 the Galois groups of Y 23 + XY 3 + 1 and Y 24 + Y 4 + Y + X are M23

and M24 respectively, with similar explicit polynomials having Galois groups
M22, M12 and Aut(M12) in case of p = 2.

Turning to the t = 1 case of the above trinomial, i.e., to the trinomial
Y p+1 + XY + 1, the proof using the Zassenhaus-Feit-Suzuki Theorem actually
showed that the for any power q = pu > 1 of p, the Galois group of
Yq+1 + XY + 1 over k(X ) with k algebraically closed is PSL(2, q). It took
me almost four years to write Y 1+q + XY +1 in place of Yq+1+ XY +1 which
suggested the generalization to the trinomial

F∗ = F∗(Y ) = Y �m−1� + XY + (−1)�m−1�

where we are using the abbreviation

�i� = 1+ q + q2 + . . . + qi .
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By replacing Zassenhaus-Feit-Suzuki by Cameron-Kantor�s [15] Theorem I on
transitive collineation groups, in [3] I showed that

Gal (F∗, k(X )) = PSL (m, q)

i.e., the Galois group of F∗ over k(X ) is PSL(m, q), also for m > 2. In [3]
I also showed that if we take the X from the coef�cient of Y and make it the
constant term then the Galois group changes from PSL(m, q) to PGL(m, q),
i.e.,

Gal (F∗∗, k(X )) = PGL (m, q)

where
F∗∗ = F∗∗(Y ) = Y �m−1� + Y + X .

By passing to the vectorial associates of the projective polynomials F∗ and F∗∗ ,
i.e., to the polynomials

��∗ = ��∗(Y ) = Y F∗(Yq−1) = Yqm + XYq + (−1)�m−1�Y

and
��∗∗ = ��∗∗(Y ) = Y F∗∗(Yq−1) = Yqm + Yq + XY

we get

Gal (��∗, k(X )) = SL (m, q) and Gal (��∗∗, k(X )) = GL (m, q).

Thus the Galois groups of ��∗ and ��∗∗ act on an m dimensioanl vector space
over GF(q), whereas the Galois groups of F∗ and F∗∗ act on the corresponding
m − 1 dimensional projective space over GF(q), and this is why we call ��∗

and ��∗∗ the vectorial associates of the projective polynomials F∗ and F∗∗ .
Actually, this calculation of the Galois groups of F∗, F∗∗, ��∗ and ��∗∗ , remains
valid if instead of assuming k to be algebraically closed we only assume that
GF(q) ⊂ k. Moreover, without any assumption on k, upon letting δ be the
unique divisor of u such that

Gal (Yq − Y, k) = Zδ

where Zδ is the cyclic group of order δ , it can be shown that

Gal (F∗∗, k(X )) = P �Lδ(m, q) and Gal (��∗∗, k(X )) = �Lδ(m, q)

where �Lδ(m, q) is the unique group between GL(m, q) and �L(m, q) such
that �Lδ(m, q)/GL(m, q) = Zδ and P�Lδ(m, q) is the image of �Lδ(m, q)
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under the canonical epimorphism �L(m, q) → P�L(m, q), and it can also be
shown that

Gal (F∗, k(X )) ∈ P�SLδ(m, q) and Gal (��∗, k(X )) ∈ �SLδ(m, q).

where by �SLδ(m, q) we denote the set of all groups I between SL(m, q) and
�Lδ(m, q) such that I ∩GL(m, q) = SL(m, q)� I with I/SL(m, q) = Zδ , and
by P�SLδ(m, q) we denote the set of images of all the members of �SLδ(m, q)

under the canonical epimorphism �L(m, q) → P�L(m, q); it can be shown
that �SLδ(m, q) is a nonempty family which is a complete set of conjugate
subgroups of �L(m, q) and every I in �SLδ(m, q) is a split extension of
SL(m, q) such that �Lδ(m, q) is generated by GL(m, q) and I . Finally, for
every divisor d of q−1, upon letting F∗(d) and ��∗(d) be obtained by substituting
(−1)�m−1�Xd for X in F∗∗ and ��∗∗ respectively, i.e., upon letting

F∗(d) = F∗(d)(Y ) = Y �m−1� + Y + (−1)�m−1�Xd

and
��∗(d) = ��∗(d)(Y ) = Yqm + Yq + (−1)�m−1�XdY

it can be shown that if GF(q) ⊂ k then

Gal (F∗(d), k(X )) = PGL(d)(m, q) and Gal (��∗(d), k(X )) = GL(d)(m, q)

where GL(d)(m, q) is the unique group between SL(m, q) and GL(m, q) such
that GL(m, q)/GL(d)(m, q) = Zd and where PGL

(d)(m, q) is the image of
GL(d)(m, q) under the canonical epimorphism GL(m, q) → PGL(m, q). More-
over, without any assumption on k it can be shown that

Gal (F∗(d), k(X )) ∈ P�L
(d)
δ (m, q) and Gal (��∗(d), k(X )) ∈ �L

(d)
δ (m, q)

where by �L
(d)
δ (m, q) we denote the set of all groups J between SL(m, q) and

�Lδ(m, q) such that J∩GL(m, q) = GL(d)(m, q)�J with J/GL(d)(m, q) = Zδ

and such that I < J for some I ∈ �SL
(d)
δ (m, q), and by P�L

(d)
δ (m, q) we

denote the set of images of all the members of �L(d)
δ (m, q) under the canonical

epimorphism �L(m, q) → P�L(m, q); again it can be shown that �L(d)
δ (m, q)

is a nonempty family which is a complete set of conjugate subgroups of
�L(m, q) such that every J in �L(d)

δ (m, q) is a split extension of GL(d)(m, q)

and together with GL(m, q) generates �Lδ(m, q).
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Quintinomials and Sextinomials. Changing m to 2m and adding two terms to
the trinomial f ∗ we get the quintinomial

F = F(Y ) = Y �2m−1� + T qY �m� + XY �m−1� + TY �m−2� + 1

and its vectorial associate

�� = ��(Y ) = Y F(Yq−1) = Yq2m + T qYqm+1

+ XYqm + TYqm−1

+ Y

and in [7], by using Kantor�s Rank 3 Theorem [17], I showed that if GF(q) ⊂ k
then

Gal (F, k(X, T )) = PSp(2m, q) and Gal (��, k(X, T )) = Sp(2m, q).

The said Rank 3 Theorem of Kantor asserts that if the subdegrees of a Rank
3 permutation group coincide with the subdegrees of a classical geometry
(symplectic or unitary or orthogonal) then it is a group of automorphisms of such
a geometry. Kantor deduces this from the Buekenhout-Shult characterization of
polar geometries which in turn is based on the work of Tits [22] on spherical
buildings. Actually in [7] I gave the above values of the Galois groups of F
and of � only under the stronger assumption of k being algebraically closed.
That the weaker assumption GF(q) ⊂ k is suf�cient was later proved in my
joint papers [10] and [11] with Paul Loomis where we also considered the
deformations of F and �� given by

F � = F �(Y ) = Y �2m−1� + T qY �m� + XY �m−1� + Sq
m−1

TY �m−2� + S�m−1�

and

��� = ���(Y ) = Y F(Yq−1) = Yq2m +T qYqm+1

+XYqm +Sq
m−1

TYqm−1

+S�m−1�Y

and showed that if GF(q) ⊂ k then

Gal (F �, k(X, T , S)) = PGSp(2m, q)

and
Gal (���, k(X, T , S)) = GSp(2m, q).

By adding yet another term we get the sextinomials

F− = F−(Y ) = Y �2m−1� + T q2Y �m+1� + XqY �m� − XY �m−2� − T Y �m−3� − 1

and

�− = �−(Y ) = Yq2m + T q2Yqm+2

+ XqYqm+1

− XYqm−1

− TYqm−2

− Y

and in [8], again by using Kantor�s Rank 3 Theorem [17], I showed that if k is
algebraically closed then

Gal (F−, k(X, T )) = P�−(2m, q) and Gal (��−, k(X, T )) = �−(2m, q).
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Quartinomials. Assuming that q = q �2 where q � is a power of p, and adding
only one term we get the quartinomials

F† = F†(Y ) = Y �2m−2� + Xq �

Y �m−1� + XY �m−2� + 1

and
�† = �†(Y ) = Yq2m−1

+ Xq �

Yqm + XYqm−1

+ Y

and in [6], by using Liebeck�s Orbit Size Theorem [20], I showed that if k is
algebraically closed then

Gal (F†, k(X )) = PSU(2m−1, q �) and Gal (��†, k(X )) = SU(2m−1, q �).
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