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ATTEMPTS TO USE THE POWER OF MODERN
GROUP THEORY OF FINITE SIMPLE GROUPS
FOR CALCULATING GALOIS GROUPS

SHREERAM S. ABHYANKAR

Dedicated to Silvio Greco in occasion of his 60-th birthday.

This is the text of my lectures in Catania (Sicily) in April 2001, and at
a Group Theory Conference in Oberwohlfach (Germany) in April 1997. The
Catania visit was in honor of the 60-th birthday of my good friend Sylvio
Greco.

The muse of poetry is responsible for the above poetic rendition of
the original title of my talk which was more like “Recognition Theorems
and Galois Theory” or “Nice Equations for Nice Groups.” At any rate,
various Recognition Theorems of Group Theory provide powerful tools for
computing Galois groups. Examples of such Recognition Theorems are:

(1) CT = Classification Theorem of Finite Simple Groups,

(2) CDT = Classification of Doubly Transitive Permutation Groups (using
CT),

(3) CR3 =C(Classification of Rank 3 Permutation Groups (again using CT),

(4) Jordan-Margraff Theorems on Limits of Transitivity,

(5) Burnside’s Theorem (which is a special case of the O’Nan Scott Theo-
rem),
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(6) Zassenhaus-Feit-Suzuki Theorem,

(7) Kantor’s Rank 3 Theorem (using Buekenhout-Shult’s Polar Space The-
orem),

(8) Cameron-Kantor’s Theorems on Transitive Collineation Groups, and

(9) Liebeck’s Orbit Size Theorems (which uses CT).

I shall illustrate how these Recognition Theorems can be used for dis-
covering nice equations whose expected Galois groups are various preas-
signed nice groups and then for establishing that their Galois groups indeed
have the desired values.

History. In my 1957 paper [1], as a bi-product of my Ph. D. Thesis work
on resolution of singularities, I discovered that, unlike characteristic zero,
in nonzero characteristic p, the affine line is not simply connected, and as
examples of this I wrote down the following two families of polynomials

Y"—i—l—i—ZaiY"" and Y”—i—Y—i—ZaiY""
1=1 1=1

where ay, ..., a, are polynomials in an indeterminate X , and may be parameters
T,S, ..., with coefficients in a ground field k of characteristic p,and n > n; >
. > n, > 0 are integers such that their differences n — ny, ..., n — n, are

divisible by p, and in the first case n is nondivisible by p whereas in the second
case n is divisible by p; note that in both the cases the Y-discriminant of the
polynomial is 1. As a special case of the first family. I considered the trinomial

YPH 4 XY 41

where ¢ > 0 is prime to p, and suggested that its Galois group over k(X), as
well as the Galois groups of various other members of the two families over
k(X) or k(X,T,...), be computed. By an indirect argument concerning this
trinomial I showed that as subquotients of the algebraic fundamental group
ma(Ly) of the affine line L; over k we get all finite groups, and this led me
to the conjecture that if k is algebraically closed then w4 (L;) consists of all
quasi- p groups, i.e., finite groups generated by their p-Sylow subgroups. Here
ma(Ly) is defined to be the set of all Galois groups of finite unramified Galois
coverings of L, and by subquotients of w4 (L;) we mean quotient groups of
subgroups of members of m4(L;). Note that every finite simple group whose
order is divisible by p is automatically quasi-p.

At the instigation of Serre, after a gap of thirty years, in 1988, I returned to
the calculation of these Galois groups and, following his advice, started learning
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group theory for that purpose. Actually, as a college student in Bombay, I
was fond of group theory, and wrote to Philip Hall for advice on how to go
about solving the odd order problem which I had read in Birkhoff-Maclane’s
Survey of Modern Algebra. At Hall’s suggestion, I was busily reading the
papers B. H. and Hanna Neumann, and Reinhold Baer. Then coming to
Harvard as a graduate student, I fell under the spell of Oscar Zariski and forgot
all about group theory. But when the question of retraining in group theory
arose, fortunately I remembered that as a graduate student I was quite friendly
with Danny Gorenstein, whom I took to Cornell when I became an assistant
professor, and that is how Danny became a group theorist, as I was delayed by a
car accident and he was caught by Herstein. At Cornell, I became quite chummy
with fellow assistant professor Walter Feit who later on, in collaboration with
John Thompson, solved the odd order problem. At any rate, in March 1989,
I spent a week with Walter and a week with Danny learning modern group
theory. But soon they advised me consult specialists in transitivity like Bill
Kantor and Peter Cameron. I was amused to realize that Bill Kantor was a
student of Peter Dembowski who was a student of Reinhold Baer, and Peter
Cameron was a student of Peter Neumann who is a son of Bernard and Hanna
Neumann. What a small world! Perhaps I should add that at Harvard I had
taken a course with Richard Brauer who was a friend of Oscar Zariski. I could
also mention that in Bombay I studied some group theory with F. W. Levi who
was a friend of my father and returned to the Free University of Berlin in 1956.
My father S. K. Abhyankar, who was a professor of mathematics in Gwalior,
taught me basic mathematics from ancient Sanskrit books, and introduced me
to Burnside-Panton’s Theory of Equations where I first learnt group theory. This
was William Snow Burnside, and not the group theorist William Burnside.

Trinomials. As a result of this retraining in group theory, as reported in my
1992 paper [2], by using CDT, I showed that if k£ is algebraically closed and
t > 1 with (p, t) # (7, 2) then the Galois group of the above trinomial

Y, 4 XY+ 1

is the alternating group A,4,; in case of (p, ) = (7, 2), by using hyperelliptic
curves, I showed that it is PSL(2, 8); finally, in case of + = 1, by using
the Zassenhaus-Feit-Suzuki Theorem, I showed that it is PSL(2, p). For
CDT, which gives a complete list of doubly transitive permutation groups, see
Cameron [14] or Kantor [18]. For the Zassenhaus-Feit-Suzuki Theorem, which
given a complete list of doubly transitive groups in which only the identity fixes
three points, see Volume III of Huppert-Blackburn [16]; indeed, for a while in
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my travels I carried the three huge volumes of Huppert-Blckburn [16] together
with the two big volumes of Suzuki [21], until I became wiser and replaced
them with the compact books of Aschbacher [12] and Kleidman-Liebeck [19].
A little later, for ¢+ > 2, I could replace CDT by Jordan-Margraff Theorems
on limits of transitivity which say that if a primitive permutation group is such
and such then it must be either the alternating group A,, or the symmetric group
S,. However, from the + = 2 case, that is in showing that the Galois group of
YP*2 4+ XY? + 1 (with2 # p # 7) is A,42, | have been unable to remove the
use of CDT and hence of CT.

Let me note that a small part of the trinomial story, which can be settled by
using Burnside’s Theorem, turned out to be sufficient to settle the two variable
case of Hilbert’s 13th problem by giving an example of an algebraic function of
two variables which cannot be expressed as a composition of algebraic functions
of one variable; see my paper [9] in the Proceedings of the 1995 Franco-
Belgian Conference. The said Theorem of Burnside, which has now been
generalized into the O’Nan-Scott Theorem, says that a doubly transitive group
has a unique minimal normal subgroup, which is either elementary abelian or
simple according as whether it is regular or not.

In studying Volume III of Huppert-Blackburn [16], I learnt enough about
the Mathieu groups to prove that (as reported in [4] and [5] and partly in
collaboration with Popp, Seiler and Yie), assuming k to be algebraically closed
and computing Galois groups over k(X), for p = 3 the Galois group of
Y 4 XY? 41 is My, and it is isomorphic with the Galois group of Y2 +Y + X
verifying the fact that M;; has a permutation representation of degree 12, and
for p = 2 the Galois groups of Y2 + XY3 + 1 and Y** + Y* + Y + X are My
and M,4 respectively, with similar explicit polynomials having Galois groups
Mzz, M12 and Allt(Mlz) in case of p = 2.

Turning to the + = 1 case of the above trinomial, i.e., to the trinomial
YP*+! + XY + 1, the proof using the Zassenhaus-Feit-Suzuki Theorem actually
showed that the for any power ¢ = p* > 1 of p, the Galois group of
Y9+t 4 XY + 1 over k(X) with k algebraically closed is PSL(2, ¢). It took
me almost four years to write Y'*9 + XY + 1 in place of Y9*! + XY + 1 which
suggested the generalization to the trinomial

F*=F*Y)=Y" V4 XY +(-1mD
where we are using the abbreviation

(i)=14+qg+q¢ +...+4".
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By replacing Zassenhaus-Feit-Suzuki by Cameron-Kantor’s [15] Theorem I on
transitive collineation groups, in [3] I showed that

Gal (F*, k(X)) = PSL (m, q)

i.e., the Galois group of F* over k(X) is PSL(m, g), also for m > 2. In [3]
I also showed that if we take the X from the coefficient of Y and make it the
constant term then the Galois group changes from PSL(m, g) to PGL(m, g),
i.e.,

Gal (F**, k(X)) = PGL (m, q)

where
F*=F*Y)=Y"V 4y 4+X.

By passing to the vectorial associates of the projective polynomials F* and F™**,
i.e., to the polynomials

D =@*(Y) = YF* (Y9 ) =Y"" + XY + (—)" Ny

and
P =d™(Y) = YF* (YT ) =Y + Y + XY

we get
Gal (®*, k(X)) = SL (m,¢) and Gal (®**, k(X)) = GL (m, q).

Thus the Galois groups of ®* and ®** act on an m dimensioanl vector space
over GF(q), whereas the Galois groups of F* and F** act on the corresponding
m — 1 dimensional projective space over GF(g), and this is why we call o+
and ®** the vectorial associates of the projective polynomials F* and F**.
Actually, this calculation of the Galois groups of F*, F**, ®* and 6**, remains
valid if instead of assuming & to be algebraically closed we only assume that
GF(g) C k. Moreover, without any assumption on k, upon letting é be the
unique divisor of u such that

Gal(Y? =Y, k) = Z;
where Z; is the cyclic group of order §, it can be shown that
Gal (F*, k(X)) =PTI'Ls(m,q) and Gal (@™, k(X)) = 'L (m, q)

where I'Ls(m, q) is the unique group between GL(m, g) and I'L(m, g) such
that I'Ls(m, q)/GL(m, q) = Zs and PI'Ls(m, q) is the image of I'Ls(m, q)
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under the canonical epimorphism I'L(m, g) — PI'L(m, g), and it can also be
shown that

Gal (F*, k(X)) e PI'SLs(m,q) and Gal (®*, k(X)) € I'SLs(m, q).

where by ['SLs(m, q) we denote the set of all groups I between SL(m, g) and
I'Ls(m, g) such that I NGL(m, g) = SL(m, gq) <l with I /SL(m, q) = Zs, and
by PI'SLs(m, q) we denote the set of images of all the members of I'SLs(m, q)
under the canonical epimorphism I'L(m, g) — PI'L(m, g); it can be shown
that I'SLs(m, g¢) is a nonempty family which is a complete set of conjugate
subgroups of I'L(m, q) and every I in I'SL;s(m, g) is a split extension of
SL(m, g) such that I'Ls(m, q) is generated by GL(m, ¢) and I. Finally, for
every divisor d of ¢—1, upon letting F*@ and ®*@ be obtained by substituting
(=D)=D x4 for X in F** and ®** respectively, i.e., upon letting

F*@ — F*(d)(y) =ymb Ly (_1)(m—1)Xd

and
D = D (y) = y¢" 4y 4 (—1)"mNxdy

it can be shown that if GF(q) C k then
Gal (F*¥ k(X)) = PGL®(m, q) and Gal (®*?, k(X)) = GL® (m, q)

where GLY (m, ¢) is the unique group between SL(m, ¢) and GL(m, g) such
that GL(m, ¢)/GL (m, q) = Z,; and where PGLY (m, ¢) is the image of
GLY (m, q) under the canonical epimorphism GL(m, ¢) — PGL(m, g). More-
over, without any assumption on k it can be shown that

Gal (F*@ k(X)) ePTL¥(m,q) and Gal (®*@, k(X)) e LY (m, q)

where by FLfsd) (m, q) we denote the set of all groups J between SL(m, ¢) and
I'Ls(m, ¢) such that JNGL(m, ¢) = GL'Y (m, g)<J with J/GLY (m, q) = Z;
and such that I < J for some I € FSLéd)(m, q), and by PFLgd)(m, q) we
denote the set of images of all the members of FLéd) (m, q) under the canonical
epimorphism I'L(m, g) — PI'L(m, ¢); again it can be shown that FLgd) (m, q)
is a nonempty family which is a complete set of conjugate subgroups of
I'L(m, q) such that every J in FLfsd) (m, q) is a split extension of GL“ (m, q)
and together with GL(m, g) generates I'Ls(m, q).
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Quintinomials and Sextinomials. Changing m to 2m and adding two terms to
the trinomial f* we get the quintinomial

F=F) =Yyl praym 4 xym=1 4 7ym=2 41
and its vectorial associate
6 — 6(Y) — YF(Yq_l) — Yq2m + Tqum+l + qum + qumfl + Y

and in [7], by using Kantor’s Rank 3 Theorem [17], I showed that if GF(g) C k
then

Gal (F,k(X,T)) = PSp(2m,q) and Gal(®,k(X,T)) = Sp(2m, q).

The said Rank 3 Theorem of Kantor asserts that if the subdegrees of a Rank
3 permutation group coincide with the subdegrees of a classical geometry
(symplectic or unitary or orthogonal) then it is a group of automorphisms of such
a geometry. Kantor deduces this from the Buekenhout-Shult characterization of
polar geometries which in turn is based on the work of Tits [22] on spherical
buildings. Actually in [7] I gave the above values of the Galois groups of F
and of ® only under the stronger assumption of k£ being algebraically closed.
That the weaker assumption GF(q) C k is sufficient was later proved in my
joint papers [10] and [11] with Paul Loomis where we also considered the

o~

deformations of F and @ given by
Fi = Fi(y) = Y@= L paym 4 xym=1 4 ga" ' pym=2) 4 gm=1
and
B =@ (Y) = YF(YT ) =y 479y 4+ XY 48" Ty 45Dy
and showed that if GF(¢) C k then
Gal (F*, k(X, T, S)) = PGSp(2m, q)
and R
Gal (®*, k(X, T, S)) = GSp(2m, q).
By adding yet another term we get the sextinomials
F~=F(Y) =YD 7@yl 4 xaylm _ xym=2 _pym=3) _
and

d =0 (Y) =Y + TVY4

m+2 m+1 m—1 m—2

+ X9y —xy!" Ty —y

and in [8], again by using Kantor’s Rank 3 Theorem [17], I showed that if k is
algebraically closed then

Gal (F~,k(X,T)) =PQ (2m,q) and Gal(® ,k(X,T)) = Q (2m,q).
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Quartinomials. Assuming that ¢ = g’*> where ¢’ is a power of p, and adding
only one term we get the quartinomials

FT — FT(Y) — Y(Zm—z) + Xq’y(m—l) + XY(m_2> +1

and
ot =f(¥) = v + X7y + Xy +Y

and in [6], by using Liebeck’s Orbit Size Theorem [20], I showed that if & is
algebraically closed then

Gal (FT, k(X)) =PSU@2m—1,¢) and Gal(®', k(X)) = SU2m—1, q").
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