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ABSTRACT

Two errors in the analysis of an earlier paper (4p. J., 192, 731, 1974) on the same subject are
corrected. It is found that, as a consequence of the corrections, the solution to the post-Newtonian
equations (appropriate to determining the deformed figures of the Dedekind ellipsoid) now
diverges at a point where the axes of the ellipsoid are in the ratios 1:0.3370:0.2850. In addition,
the fourth-harmonic oscillations of the Dedekind ellipsoid are considered; and it is found that it
becomes dynamically unstable when its axes are in the ratios 1:0.3121:0.2680.

Subject headings: relativity — rotation

I. INTRODUCTION

In an earlier paper (Chandrasekhar and Elbert 1974; this paper will be referred to hereafter as loc. cit.), we
considered the deformed figures of the Dedekind ellipsoid in the first post-Newtonian approximation to general
relativity. In view of the complexity of the analysis (and the fact that the work had been carried out intermittently
over several years), we have always felt uneasy that the work had not been independently checked by someone else.
About a year ago, at our request, Dr. Monique Tassoul undertook to check the analysis of the paper; and she
promptly discovered two errors: first, that the assumed post-Newtonian velocity-field was not general enough to
carry out the analysis consistently; and second, that one of the boundary conditions, namely, that the normal
component of the streaming velocity must vanish on the free boundary, had not been properly applied. We are
immensely grateful to Dr. Tassoul for her patience in scrutinizing the analysis and discovering the errors. While the
modifications necessary to amend the errors are readily enough made, the corrections, both substantive and
otherwise, are too numerous to make for an easy understanding. On that account, we have preferred to replace
entire sections of the paper, so that with the deletions and substitutions the paper can be read coherently.

In addition to the corrections (included in Part I), we have made some amplifications (included in Part II)
relating to the fourth-harmonic oscillations of the Dedekind ellipsoid (for which the necessary equations were set
out in full in an Appendix to the earlier paper and which is, of course, unaffected by the errors noted).

PART I: CORRECTIONS

Delete the entire text between the beginning of the paragraph following equation (16) on page 733 and the end of
§ V on page 738 and replace by the following:

Turning next to the post-Newtonian terms on the right-hand side of equation (11) which are not expressed as
gradients and inserting for the various quantities, we find apart from a factor (#Gp)?/c?,

—x1[402(0: + Qo) + 8a,°B15(4; + A))]
+x,°[44, 0401 + Q2) — 0:102% + 8a,?B1,(34;;, + A12)]
+x1%52[4420:(0: + Q) — 0,0 + 8a,°B15(3452 + A12) + 80:1(4:0: + 4205)]

+x,%3%[44502(0; + Q2) + 8a5%B1x(A415 + A23)] =1, (A7)
303
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and
—%2[40:(Q1 + Q)] + 8a,?By5(4; + 45)]
+x.°[4420:(01 + Q2) — 020,° + 8a,°B15(345; + 412)]
+x2%:%[44, 0:1(01 + Q2) — 05201 + 8a:°B1s(341; + 412) + 805(4:101 + 4,05)]
+x2%5%[4450:(Q1 + Q2) + 8ay°Byo(Ass + 413)] (=12, (18)
e +x3%1%(8a,% Q5°413) + X3x2%(8a,7 Q17 423) (=3). (19

We observe that the coefficient of x;x,% in the expression (17) is not equal to the coefficient of x,x;2 in the
expression (18). Also, the coefficients of x,x5% and x,x32 in the expressions (17) and (18) are not, respectively, equal
to the coefficients of x3x,2 and x,x,2 in the expression (19). Accordingly, these terms cannot be expressed as the
gradient of a scalar function. But equation (11) requires that when these terms are combined with those derived
from v,40v,/0x, they must be so expressible.

b) The Post-Newtonian Velocity Field

As we have already remarked, the Newtonian velocity field, specified in equations (1) and (2), is not consistent
with the post-Newtonian equation of continuity (9) to the requisite order. To rectify this situation, we let

v G G v G
(——,,G;)uz = 0% + "—céﬁ dvy, G Qqx; + %’ 8vy and (?Gﬁﬁ =0+ ”_cz_/’ Svg, (20)

where 8v,, 8v,, and 8v; are quantities that are to be determined consistently with equations (5) and (11). With 0,
and Q, defined as in equation (2), equation (5) is satisfied to zero-order (as we should indeed expect); in the next
higher order we obtain

0

2 2 P gy = L 2 Y g 4
axl 801 + axz 802 + ax3 dva = ’lTGp (lez axl + szl axz) (U +2U + p) ’ (21)

or, inserting for v2, U, and p/p their Newtonian values (as we may for determining the post-Newtonian terms 8v,),
we obtain

2 sty 4 2 smg 4 80 = —2| 0402 — 24, — %o 4y) + 0o 012 — 24, — % A |xxa. (22)
axl 1 ax2 2 axa 3 1 2 1 012 3 2 1 2 022 3 142 -
A particular solution of equation (22) is given by

80, = g1%,%x;, 80 = gaXy?Xy , and 8v3 = g3X3X1Xs (23)
provided ’

2 2
g1+ g2 +3q3 = —[Q1(Q22 — 24, - ’% Aa) + Qz(Q12 — 24, — Z—:z Aa)] . 24)

For the velocity field (20) with 8v, given by equations (23), we find that

vy Ov G
‘ITGBP é;i = 0,0:x; + 1’0_213 [(Q192 + 29:01)%1%* + Qaq1%:%], (25)
Yo 25 _ .00y + T [(Qagy + 20:090%0s" + Q15%5°] 26
wGp 0Xy 12272 c? ¥ aEaima Hae

vy Ov G

W_GBP 3_.762 =0+ ZTZEB (Q293%3%,% + 0193%5%5%) . 27)

The Newtonian terms on the left-hand side of equations (25) and (26) are clearly expressible as the gradient of
10,04(x:% + x,%). We now require that when the terms (17) and (18) are combined with the terms in (25) and (26)

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1978ApJ...220..303C

+ No. 1, 1978 DEFORMED DEDEKIND ELLIPSOIDS 305

(in accordance with eq. [11]) they are also expressible as the gradient of a scalar function. This latter requirement
can be met if

44,0:(01 + Q2) — 01205 + 8a5°B15(342; + A1g) + 80:1(4,0: + 4205)
— [44:0:(Q1 + Q2) — Q5°0; + 8a,°B12(3411 + Ay2) + 804(4:0: + 420))]

= 01(q2 + 2q1) — Qaq: + 295) . (28)

Equations (24) and (28) provide two equations for the three “unknowns” ¢, ¢,, and g. )
We now proceed to write down the general solution of equation (22). It will appear that in the post-Newtonian
Dedekind configuration, the velocity field can, at most, be a cubic polynomial in the coordinates. Consistent with

this requirement and compatible with the expression for 8U (eq. [44] below) we shall write the general solution in
the form

8v; = (q1 + @x2x1® + r1x® + t1x9%5%
and

80y = (g2 — PX1%2% + rax:® + %157, (29

where g, 11, 13, t;, and #, are constants, unspecified for the present. By virtue of equation (24), equation (22) is
identically satisfied by the solution (29); the constants in the solution (29) are, therefore, not restricted in any
manner by equation (22).

The additional terms in the solution (29) contribute to the right-hand sides of equations (25) and (26) the further
post-Newtonian terms

(Q1r2 + Qa)x:® + (Qita + Qat1)x1%3% + (3r102 + gQ1)%1X52 (30)
(Qar1 — Q19)%2% + (Qita + Qat)xoX3® + (3raQ: — qQ2)xax,2, @3n

respectively. To satisfy the requirement that the right-hand side of equation (11) continues to be the gradient of a
scalar function, we impose the condition

3rQs + g0y = 3r:01 — qQ;
9(Q1 + Q2) = 3(r:01 — 1105, (32)

which maintains the equality of the coefficients of x;x,2 and x,x,2.
Turning next to the consideration of the terms in x;x,2 and x3x,2, and x,x52 and x;x,2, we first observe that the
terms on the right-hand side of equation (27) combine with the terms (19) to give

x3%:1%(8a,2 Q2?4135 — Q243) and X3%2%(8a2% 012495 — 0195) - (33)

The corresponding terms in x,x3% and x,x;2 are obtained by combining the terms in the expressions (17) and (30)
and in the expressions (18) and (31); we thus obtain

X1%3°[44504(Q1 + Qo) + 8a52By3(A15 + Agz) — (Qits + Qat)]
X2X3%[44301(Q1 + Q2) + 8a,2Byo(Ays + Ayg) — (Qit2 + Qaty)] . (34

The integrability of equation (11) requires that the coefficients of x3x,;? and x3x, in the expressions (33) agree,
respectively, with those of x;x5% and x,x52 in the expressions (34); and these requirements give

and

or

and

d 4450:(0;1 + Qs) + 8a2®Byo(A15 + Azs) — (Quta + Qo)) = 8a,205°415 — Q245 (35
an
4430:(01 + Q2) + 8a,®Byo(Aas + A1) — (Qitz + Qaty) = 8a,°01%42s — 01gs - (36)
Multiplying equation (35) by Q, and subtracting from it equation (36) multiplied by Q,, we find (on using the
relation 0,0, = —2B,,) that :
Oit; + Oot; = 0. (37
It now readily follows from equation (35) (or [36]) that
gs = —443(01 + Qo) + 44,0415 + 40,201 455 . (38)

Equations (24), (28), and (38) suffice to determine ¢, g5, and g5 uniquely; and the particular solution sopght
becomes determinate. It remains to determine g, ry, r,, #;, and t,; and so far we have obtained two equations,
namely, equations (32) and (37), between them.
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With the reductions that have been effected until now, we can write the integral of equation (11) in the form
s = ao(1 = 325 + v
+ ”—CGZ,—”{2¢ + 20 45 (5)2
+ $x:*[44:1 0501 + Q2) — 0105 + 8a2’B15(3411 + A1) — Qaqs — (Qira + 029)]
+ §%24[44201(01 + Q2) — 020:° + 8a,°B15(3430 + A13) — 0192 — (Qar1 — C19)]

[4450x(01 + Q2) — 01205 + 8a2°B15(345 + A1) + 80:1(4:01 + 4505)7

= Q192 — 24101 — (Q1g + 3r1Q5)
+ 1x,%x,% | or

44,0:(0; + Q2) — 02201 + 8a:2B15(3411 + Aj) + 80:(4.0: + A4:05)
- — Qo — 29205 + (Q29 — 3ra01)
+ 3%,2x32[44304(01 + Q3) + 8a32B13(A415 + Ags)]

+ 3x,2%52[4450:(01 + Q) + 8a,%2B15(A415 + Aga)]

— 3x,2[40:(0; + QI + 8a;%Bi(4; + A,)]

— 32140401 + 0] + 8a,2Bua(d; + Az)]}, (39)

where 8U is the change in the Newtonian gravitational potential of the deformed post-Newtonian configuration.
For the sake of brevity, we shall rewrite equation (31) in the form

3

1 p
Tr—GP;—asAa(l—z )+8U

G
+ _C2P {a1x12 + a2x22 + a3X32 + ¢Z33X34 + a13x12x32 + a23x22x32

+ [ear — HQar2 + Qexs* + [ea2 — HQar1 — 019)1x2*
+ [e1p — 3(Q1g + 3r105) or + $(Qaq — 3ra01))x:x5%, (40)

where o, «;, ;,, €tc., are quantities which can be read off by comparison with equation (39).

IV. THE NATURE OF THE POST-NEWTONIAN DEFORMATION AND THE CHANGE
IN THE GRAVITATIONAL POTENTIAL CAUSED BY IT

We shall suppose that the post-Newtonian figure is obtained by a deformation of the Newtonian figure by the
application of a suitable Lagrangian displacement at each point of its interior and the boundary. It is clear that
the nature of the deformation considered in Paper III, § IV, in the context of the Jacobian figures will suffice equally
in the present context of the Dedekind figures. We shall suppose, then, that (cf. Paper I11, eqs. [47], [48], and [56])

2 5
g =T000 S sgo @1
i=1
where
1
ED = (x1,0, —x3), @ = (0, x5, —X3) , @ = ;1? (3x3, —x,%x,,0),
B0 = a0 —xtx),  and B9 = b (—xtn, 0,45, @)
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The deformation of the Dedekind ellipsoid by the displacement (33) will change the gravitational potential U
by the amount

9 5
SU = "_G_c’;ll_ z SSU® (43)
i=1

where expressions for U are given in Paper III, equations (70)-(73); and as in Paper III, we can write

U=-(1g;;)2{ ZS[uo“’+ z u,“x, ]

u=1

5 12,23,31

Z [uo“) + z u,P%,2 + z u,,Ox,t + Z uuv(uxuzxvz]}_ (44)
i=3 u=1 u,v

V. THE DETERMINATION OF THE POST-NEWTONIAN FIGURE
Returning to equation (40), we shall now rewrite it in the form

1 p 3 u wGp 12,23,31
7Gp p = Aa(l pi=1@ 2 i x * z Puuxu * b,y Py ak “3)
where
2 5
P, =q + z Sia;%u,® + Z Su,?
=1 i=5
5
Py = ey — Y (Oirs + 029) + Z Sy,
=3
5
Pyy = 053 — H(Qory — Q19) + Z Sizs®
1=3
5
Pgs = agz + Z Siugs®
=%
5
Py = a3 — 3(Q1g + 3r1Q5) + Z Sy ®
=3
5 5
Pig = a3 + z Siy3® and Py = az3 + Z Sittas® . (46)
=3 =%

It remains to apply the proper boundary conditions to the solutions which we have found for the velocity field
(egs. [20] and [29]) and the pressure distribution (eq. [46]) and determine the 10 constants g, r, rs, t4, 3, Sy,
Sy, S3, S4, and S

The boundary conditions that have to be applied on the bounding surface,

3 2 272G 2 2
S(x)= ZLZ_I ZP[Sll(‘aTz_x)'!‘Sgal(az—x—s)

as® as®

_ﬁ _ X:Px5? xg* _ X574 Xt x2x:%\ | _
+ S3(3a12 a,? ) S*( 3a,? ag? + 5 3a52 2 =0, “47)

of the deformed ellipsoid, are that the normal component of the velocity and the pressure vanish on it identically.
The requirement that the normal component of the velocity vanishes on the surface defined by equation (47) is

oS

v, —5)—6-; =0 on Sx)=0 (48)

For the velocity field specified by equation (20), equation (48) gives

G N G oS wGp. oS
(lez+"”zs)a (Q21+"P8)3x "c,j’asaa 0 on SE=0 (49)
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. For 0, and Q, related as in equation (2), equation (49) is automatically satisfied in the Newtonian approximation;
in the post-Newtonian approximation, equation (49) gives

—2(S; — S0, + xlz:%é 4 +q) + a’—:z - % L+ 2%5 2]
+ x5? _aLzz g — 9 + ;112 ;5:2 2 2aS_232 Ql]
+ xﬁﬂ(% +on+ ‘13) Q1 +22% Q2] - (50)
on ’%+222+72=1. (51)

The condition, that the expression on the left-hand side of equation (50) vanishes on the surface of the undistorted
ellipsoid, is that the coefficients of x,2, x,2, and x,2 in the expression are, respectively, equal to

A5 - 9%, a5 9L, and As -9 (52)
1 as as
These conditions lead to the equations
[a12 “Q—I%IQ} - (a® - 022)]‘1 = 2(a,® + a.?)(S, — S2) — (a.%q2 + as’q)
+ [$a.20; — 2a,%(Q: + 02)1S5 + 34,05, , (53)
2
r= z—:z [20:(S; — S2) + $0:8: — 20:S53 + (¢ — 92)], (549
rp =—; [2022Q1(Sl — Sp) + (3a,°0; — 2a,%Q2)S; — a.’(q + q1)] (55
and
t t q 2 S.
fé+a_:2'+a_:§=;35Q1(S1_S2)_2 Ql“ a—:g'Qz- (56)

In obtaining the solutions (53), (54), and (55) for g, r,, and r,, we have made use of the relations (32).

We observe that the constants g, ry, and r, are expressed in terms of the S°s. Accordingly, all of the expressions
listed in equations (46) are expressible in terms of the S’s.

Turning next to the boundary condition which requires the vanishing of the pressure p on the bounding surface
defined by equation (47), we observe that in view of the formal identity of equation (45) and equation (76) of
Paper 111, the discussion of the boundary condition in Paper IIL, § VII (eqs. [76]-[87]), applies unchanged. There-
fore, with the definitions (cf. Paper 111, eq. [81])

2 —
0, = Py — 20’455, , Q; = P, — 2a;® % A3S,, 03 = P; + 2a,°45(S: + S2),

2a324 2a3%4
Q11=P11— 32235'3, Q22=P22 gzza&u Q33=P33—%A355,
2a,%4 2a,%2A
Quo=Pu + =328, Qu=Pu+246Ss, Qu=Put=pr’Ss, (57)

the boundary condition yields the equations

a,* Q11 + a:° Q02 — a,%0,°0,, =0, a5 Qop + a3* Q33 — 45303 = 0,
a3t Qa3 + a,* 011 — a3%a,%°Q5, = 0,
a,*011 — 4,° 030 + 4,205 — 4,20, =0, and a5*Qss — a,%0y1 + 45205 — 0,20, = 0. (58)
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By virtue of equations (53)—(56), the foregoing equations provide five linear equations for S;, Sy, S3, Sy, and Ss;
and they will, accordingly, suffice to determine them. With the S’s thus determined, equations (53)-(56) will
determine g, r,, and r,; and equations (37) and (56) will determine #, and ¢,; and the solution of the problem
will be completed.

Section VI (The Binding Energy) has no corrections. Delete § VII (including Table 1) and replace by the following
new § VII:

VII. NUMERICAL RESULTS

In Table 1 the various constants which determine the deformed figure of the Dedekind ellipsoid are listed. The
table also includes (AE)roper vor-
It will be observed that the solution of the post-Newtonian equations diverges at

azlal = 0.3370 and aa/al = 0.2850;

this point is much further along the sequence than the erroneous calculations had indicated. Some further remarks
concerning this point of divergence are made in Part II.
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VIII. THE EVEN MODES OF OSCILLATION OF THE DEDEKIND ELLIPSOID BELONGING
TO THE FOURTH HARMONICS

We have emphasized, in the context of the deformed post-Newtonian figures of the Maclaurin spheroids and
the Jacobi ellipsoids, the crucial importance of the relationship between the points where the solution to the post-
Newtonian equations diverge and where the Newtonian configuration becomes unstable (secularly or dynamically)
by a mode of oscillation belonging to an appropriate harmonic. Along the Maclaurin and the Jacobi sequences the
two points coincide. Thus, the Jacobi ellipsoid allows a nontrivial neutral mode of deformation belonging to the
fourth harmonic at precisely the same point where the solution to the post-Newtonian equations diverge (cf. Paper
III). In contrast, as we have shown in loc. cit. (Appendix), the Dedekind ellipsoid allows, nowhere along its sequence,
a nontrivial neutral mode of deformation belonging to the fourth harmonics (though it does allow a “trivial”’ neutral
deformation along its entire sequence). But the question whether the Dedekind ellipsoid allows a nontrivial
dynamical neutral mode of deformation was left open. To answer this question, one must treat the full set of
dynamical equations which govern small time-dependent perturbations about equilibrium. We have now carried
out such a treatment with results that we shall now describe.

In the Appendix to the earlier paper (loc. cit.) we have written out in full the complete set of the fourth-order
virial-equations which will enable us to determine the characteristic frequencies of the relevant fourth-harmonic
oscillations of the Dedekind ellipsoid. Thus, by setting the dependence on time of all the quantities governing
the perturbation as e, we shall obtain from the 16 equations included in loc. cit., equation (A21), a set of 12
equations after the elimination of 8Il,,, 8II,,, 8Il55, and 8II,,. These 12 equations supplemented by the four
divergence-conditions which follow from Joc. cit. (eqs. [Al17] and [A23] with V;, set equal to zero) will
provide us with a homogeneous system of 16 linear equations for the 16 fourth-order virials which are even in the
index 3. The vanishing of the determinant of this system will give us the required characteristic equation for A.
By suitably combining the rows and columns of the characteristic determinant of order 16, we can reduce it to
one of order 6 in which A occurs either as A% or A% A sample of the determinant obtained for the case a,/a; =0.31
is given below.

We supplied several such reduced determinants to P. S. Marcus and W. H. Press, who kindly programmed them
for evaluating the roots. In Table 2 we list the squares of the characteristic frequencies (o) for some values of a,/a;
along the Dedekind sequence.

We observe that the characteristic equation allows 11 roots for o? including one double root and one zero root;
and further that it becomes dynamically unstable along the sequence by a mode of oscillation belonging to this
group. In Table 3 we compare the points of onset of the third and the fourth harmonic instabilities along the
Jacobi and the Dedekind sequences.
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+0.5716879A* +1.10329852*  +0.3296352A*
+3.6982788A%  42.7322378)2 —9.0661380A%  +3.9825714A% +2.0617310A% —0.8173564)2
+2.6558027 +2.4164324 —41.4159200 —1.5803540 —0.2082314
—0.0549392* —0.7736632A*  +3.4301273A* —0.3296352A*
—0.5938072A%2  +0.004756002  —25.9573668A%  +2.6356764A% +0.32574030* —0.7776569*
—0.2137989 +0.0042063 —49.7534386 —2.5888895 —0.9657067
—0.2142358x* —0.3185932x* —0.0216130A* —0.68911622* +0.20786412* +0.12497651*
—0.58406800* —0.5684864A% +1.4000537A*  —0.2659677A%2 +0.1997145X% +0.0130613A%
—-0.2980414 —0.2535775 —1.0740158 —0.1447172 —0.0649373
—0.5455527x* —2.2344812)*  —18.4414895)* +32.4615837A* —3.8838134A* —7.0481481x*
+2.7911903)2 —4.640656202 —191.80108400% —14.7837560A2 —6.4421870A% +1.0011837A%
—2.4117127 —2.3564776 —29.5369760 —5.1755040 +0.8506658

—0.0405966A* —0.0039013A*  +0.3296352)*
+0.0250508A*  +0.0083538A2 +0.0699097A2  —0.0078246A2 —0.0386890A% +0.3141873A%
+0.0135801 +0.0073882 +1.4260702 +0.0973182 +0.0251057

+3.8525682A*  +3.4301273X* +0.0405966X* —0.3296352A*
+0.0924928)% +0.0869280A2  +15.5445262)%  +2.9522350A* +0.1837705A%* —0.0558117A%
+0.1413118 +0.0768804 +14.8394397 +1.0126760 +0.2612455



http://adsabs.harvard.edu/abs/1978ApJ...220..303C

+ 312 CHANDRASEKHAR AND ELBERT Vol. 220

TABLE 2

SQUARES OF THE CHARACTERISTIC FREQUENCIES ¢2 (in the unit #Gp) OF THE
EvVEN FOURTH-HARMONIC OSCILLATIONS OF THE DEDEKIND ELLIPSOID

a2/a1 = 0.615 az/a]_ = 0.55 a2/a1 = 0.32 az/al = 0.31 ag/al = 0.30
7.15328 6.75468 4.76401 +4.68674 +4.61511
8.99693 8.88237 8.15461 +8.10758 +8.05896
3.70620 3.70794 3.38475 +3.32826 +3.26378
1.60133 1.51047 1.14494 +1.14970 +1.15778
1.36249 1.29913 0.90860 +0.88441 +0.85954
1.36249 1.29912 0.90861 +0.88442 +0.85955
0.87897 0.85261 0.88275 +0.86562 +0.84515
0.66716 0.69244 0.53503 +0.52015 - +0.50484
0.28510 0.23780 0.061462 +0.058864 +0.056562
0.06%227 0.06(?673 0.005(;3232 - 0.0%1 5608 - 0.0(())89902

IX. CONCLUDING REMARKS

We return to the question of the relationship between the point where the solution to the post-Newtonian
figures of the Dedekind ellipsoid diverges and where the Dedekind ellipsoid becomes secularly or dynamically
unstable. We have already seen in Joc. cit. that the Dedekind ellipsoid, nowhere along its sequence, allows a
nontrivial neutral mode of secular instability; and we have now found that the point of onset of dynamical
instability is different from the point where the post-Newtonian solution diverges: a,/a, = 0.3121 as against
as/a, = 0.3370. We now ask whether we should indeed have expected any relationship between the two points.

Let us recall that we replaced the assumption of constant energy-density e(=pc? + II) by the equivalent assump-
tion p = constant and II = 0. On the latter assumption, we can consider the post-Newtonian terms in the
equations of hydrodynamic equilibrium as inducing a deformation of the Newtonian ellipsoid by divergence-free
Lagrangian displacements; and indeed by displacements which are ““congruent modulo the ellipsoid”’ (in the sense
defined in Chandrasekhar 1969, p. 108).! At the same time, the post-Newtonian equation of continuity (loc. cit.,
eq. [5]) requires that the increment in the Newtonian velocity field is not divergence-free as is manifest from
equation (22). Indeed, it is this non-solenoidal character of the velocity increments that required us to introduce
the terms in g, r;, rs, t;, and ¢, in the post-Newtonian velocity field given by equations (29). In contrast, the
solenoidal character of the velocity field (as necessarily required by the assumption of uniform density) underlies
all Newtonian perturbations. This fact is reflected in the circumstance that the operator which is inverted in the
solution of the post-Newtonian equations is in a space of 10 dimensions in contrast to the corresponding Newtonian
operator which is in a space of five dimensions. On these accounts, one should perhaps not be surprised that the
solution for the post-Newtonian figures of the Dedekind ellipsoid diverges at a point not related in any way with
Newtonian instabilities. And these facts once again emphasize the importance of constructing Dedekind-like figures
in the exact framework of general relativity on the basis of more physically reasonable equations of state. We should
then discover how fully relativistic Dedekind-sequences may terminate.

We wish to express our profound gratitude to Dr. Monique Tassoul for discovering the errors in the earlier paper.
We are also indebted to P. S. Marcus and W. H. Press for their assistance in solving for the characteristic frequencies
of oscillation of the Dedekind ellipsoids listed in Table 2.

The research reported in this paper has in part been supported by the National Science Foundation under grant
PHY 76-81102 to the University of Chicago.

1 1t should perhaps be emphasized that the fact that the deformed figure of the post-Newtonian ellipsoid can be derived by a
Lagrangian displacement, modulo the ellipsoid, and of O(c~2), is used only in the context of determining the change 8U, of O(c~2),
in the Newtonian gravitational potential.

TABLE 3

PoOINTS OF ONSET OF THIRD AND FOURTH HARMONIC INSTABILITIES
ALONG THE JACOBI AND THE DEDEKIND SEQUENCES

Jacosi DEDEKIND
HARMONIC azlay asla; az/a, as/a,
K ¢« PO 0.4322 0.3451 0.4413 0.3504
4th................ 0.2972 0.2575 0.3121 0.2680
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