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ABSTRACT

A general theory of coupled second-harmonic oscillations of the congruent Darwin ellipsoids is
developed. The class of oscillations studied includes the synchronous oscillations as a special
degenerate case.

Subject headings: hydrodynamics — instabilities — rotation

I. INTRODUCTION

In the preceding paper, Monique Tassoul (1975) has correctly pointed out an error in the author’s treatment of
the problem of the synchronous oscillations of the congruent Darwin ellipsoids which he had formulated
(Chandrasekhar 1969a; this book will be referred to hereafter as E.F.E.; see also Chandrasekhar 19695). The
present paper, which may be considered as a postscript to M. Tassoul’s paper, has two objectives: first, to generalize
the notions underlying synchronous oscillations and provide a basis for a comprehensive discussion of an entire
class of second-harmonic oscillations (which includes synchronous oscillations as a special degenerate case); and
second, to make some cognate observations concerning the attitude one may have toward Darwin’s problem as
currently formulated and treated.

II. THE EQUATIONS GOVERNING THE SECOND-HARMONIC OSCILLATIONS
OF THE CONGRUENT DARWIN ELLIPSOIDS

Under the usual assumptions (E.F.E., pp. 225-228; see also § III below) the congruent Darwin ellipsoids, in
equilibrium, consist of two identical ellipsoids (of equal density, mass, and principal axes) facing each other and
rotating in circular orbits about their common center of mass with a constant angular velocity Q. In considering
small oscillations about equilibrium, we shall consider the associated Lagrangian displacements in the same frame
in which they were originally in equilibrium, namely, in a frame rotating with the same angular velocity Q as in
equilibrium ; and we shall further consider the motions of the fluid elements in each of the two ellipsoids in Cartesian
frames [x,?, x,®, x;®; i = 1, 2] located at the centers of the respective equilibrium figures, the x;-axis of one
pointing to the (equilibrium) center of the other. And we shall distinguish the quantities pertaining to the two
ellipsoids by superscripts (i) = (1) and (2) referring to the “primary” and the *“secondary,” respectively.

We shall suppose that the two ellipsoids are simultaneously subjected to deformations, in general different,
which are described by Lagrangian displacements of the form (E.F.E., § 63, eq. [144])

£ =L@ + L., %%® + L, 9x,®
£9 = Lo;o¥ + Loyn¥x,P + Ly x®x,,
£,9 = Ly sPxs® (i=12)), 6))

where a time-dependent factor e in the coefficients L;.,» has been suppressed. Displacements of this form will
preserve the ellipsoidal figures of the components; but their centers will be displaced from their equilibrium
positions by the amounts (cf. E.F.E., § 63, egs. [148]-[152])

L0, V0,00 (=1, @

(in their respective Cartesian frames); their principal axes will be altered in the ratios

Sa® 5 Y.® )
_a-j,—=m# i=12; 3
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and the ellipsoids, themselves, will be rotated about their xz-axes by the angles

soo = > V1" g9 )
Ma, a,

In the foregoing equations, ¥V, and V,,* are the first and the second order ““virials” as defined in E.F.E. (It will
be noticed that we have not distinguished the a,’s by superscripts since they are the same for both ellipsoids; this
convention will be adopted in the rest of this paper.)

The equations governing the motions of the fluid elements in the two ellipsoids, in their respective. frames, can
be written as

duj(i) ap(f)
Par = axw*”a

5 {89 + B(x,°, x2°, %59) — $R%, Q% + FQ(x, V) + (O]} + 2pQepeu®,  (5)

where Q denotes the constant angular velocity of the orbital rotation to be specified (see eq. [17] below) and ¥’ is
the tidal potential due to the other displaced reoriented ellipsoid of altered principal axes. The expression for the
tidal potential B’ will be expanded in a Taylor series about the equilibrium center (P) of the ellipsoid that is being
considered; and in Darwin’s problem the series is truncated by fiat (see § III below) at the quadratic terms:

oD’ 1{ %0
B (x,P, x,0, %,P) = B'(P) + (6 (i)) x® + 3 (W)ija)ka . )

It remains to determine the coefficients in this expansion.

a) The Expansion for the Tidal Potential

We shall obtain an expansion for O’ that will be sufficient to allow for reorientations and displacements of the
ellipsoids (retaining their ellipsoidal figures) consistent with the Lagrangian displacements assumed in equation (1).
Precisely, the geometry of the situation that is being contemplated is illustrated in Figure 1. To be specific, we shall
consider the tidal potential of the secondary, “2,” on the primary, “1.” Then, in the notation of Figure 1,

S0P = 569 + 184 0

X,

Q

Fi1G. 1.—The geometry of the system. The system is considered, both when it is in equilibrium and when it is perturbed, in a frame
of reference rotating with the uniform constant angular velocity appropriate for equilibrium. The section illustrated is through the
orbital plane. In equilibrium, the primary and the secondary, at relative rest, are at P and at S, respectively; their common center
of mass is at C, and the distance between them is R. Lagrangian displacements of the kind considered will displace the centers of
the primary and the secondary to positions such as P’ and S”, while rotating them about their vertical axes by certain amounts.
Thus, in terms of the displacement considered (eq. [1]) Sa = L1 o® and S’a = L;;,®; and the secondary has been rotated by the
angle 86, It is also clear from the illustration that sR® = —L;;,® and $0® = 562 4 184, where 6¢® = 2L,,,?[R.
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where
L. (2) V(2)
(2) _ 2:0 — 2 .
#h=2 RM @®

Accordingly, in view of equation (4),

1 V@ V.@
3®<2>=H(50121_2a22 + = ) ©)
Also, it is apparent from Figure 1 that
V1(2)

SR?® = —L, @ = —

(10)

Now, the various derivatives of the potential of a homogeneous ellipsoid, with principal axes a;, at an external
point P = (R cos 60, — R sin 80) to the first order in 8 ©, in the (X;, X,)-principal plane of the ellipsoid, are given
by (E.F.E., § 63, egs. [154]-[158])

(a%) — _2,R; (ﬂ) — 20,R50 ;
P P

X, X,
%y’ 02’ 020’
(5}?)? = 2(“2 + “3) s (3_X2§)P = —2&2 ’ (W)P - —2a3 s
and
%0’ 4a,a,a;R30
(m)P = _(Rz T+ a? — alzl)sz/,z(aRz T a? — a2 = —B12R30 (say). (€8))

But these formulae do not apply to the situation exhibited in Figure 1. Before we can use them, we must incorporate
two distinguishing features. They arise from the following circumstances: first, the principal axes a; and the distance
R differ from their equilibrium values by amounts specified in equations (3) and (10); and second, the orientation
of the axes to which equations (11) refer (namely, S’ X; and S’X5) is different from that to which equation (6) refers
(namely, PS and PQ).

Allowance for the first feature requires that we replace the expressions given in equations (11) by

(% ) = —20,R — 2(8¢,”R + a,8R®) ;
P

oX,
o’ o0y’
=~ - @ . o )Y @ .
(3X2)P 20,R30P ; (3X19X2)p B12REOD ;
?i?i = 2(ag + ag) + 2(8s® + 80z®) ;
aXlz P 2 3 2 3 ’
o’ o’
o) - _ — @ . o8\ _ _ _ @
( 3 Xzz) . 205 — 208052 ; and ( 3 st) . 205 — 2805@ . (12)

The expressions appropriate for d«;? readily follow from the equation (cf. egs. [3] and [10])

3. bo oo 5 &1 Oa 1 Oa
@) — et | (2) et (2) — - @ _ T y@ .
8a; k; 7 82, + 72 8R M 2, 7. 7a Vie® = 3158 Vi® 5 (13)

and inserting for the partial derivatives of «; their values, we find:

30‘1(2) = 2%4 [5(Q11 V11(2) - 0‘121722(2) - “13V33(2)) + 2Q1RV1(2)] s
80 y® = %‘4 [5(Q21 Vii® — 3a55V30® — ag3V3:®) + 2q2RV1(2)] s

day® = %l [5(Q31V1:1® — a3aV32® — 3033V35®) + 2¢3RV,®], (14)

where Q,; and g; have the same meanings as in E.F.E., § 63, equation (186).
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Turning to the second feature arising from the different orientations of the axes (S’'X;, S'X;) and (PS, PQ), we
must consider the transformation

X; = —(x® — R)cos 86 — x, sin 86@,
and
X, = +(x;® — R)sin 86® — x,P cos §6 , (15)
In view of this transformation, the required Taylor expansion for ¥’ can be written as
0B’ oV’
! 1) (1) (1)) — ’ —_— @) WS§H2D] - | (1)
o, 3y, 5, %) = TP) = (5) 1 + m0a0%] - ()
1 82%, 1)2 M)y (VLFH2) 1 62%’ (1))2 1)y (D§H2)
+3 (G [ + 20009 + 5 (55) 166 = 25,0 0800)
1 6295’ (1))2 62%' M)y (1)
5(3_X3§)p(x3 )? + TX.0xX,) L X (16)

where for the various partial derivatives of ¥’ we must insert the expressions given in equations (12).
With the definitions

Q2 = 4oy, B = 2Q20; + @2 + ), B2z = 2(20; — @j), Bss = —2ag; a7
86, = 2(8¢,®R + ,8R®),
882 = 2R(, 86 — ,809),

BBuu® = 2080 + 8us®),  8a® = —2e,P,  8es® = —2a®,

and
8B12® = 2205 + @3)80® — B,RIODP (18)

we find that the required expression for 8’ can be written in the form
%’(xl(l)’ xz(l)’ xs(l)) — %’(P) + 331(2))‘1(1) + 832(2)x2(1)

3
+ % z [Brx + Brx®1(xD)? + 815, Vx,D 19
k=1

With this expression for the tidal potential, the equation of motion governing the fluid elements of the component
“1” takes the form

du>  p® d
.~ ox® Tr 0%,

{%(1) + 8B, @x,® + §B,Px,®

3
+2 3 Bu + BuPImD) + aﬁm<2>x1ﬂ>x2u>} + 2pQeneti® . (20)
k=1

The equation of motion governing the fluid elements of the component “2” can be obtained by simply inter-
changing the superscripts (1) and (2) in equation (20).

When the conditions are stationary, all the 88’s in equation (20) [and in the equation in which the superscripts
(1) and (2) are interchanged] vanish; and we shall be led to the same equilibrium figures as are described in E.F.E.,

§62

b) The System of Virial Equations Governing the Oscillations
Belonging to the Second Harmonic

From equation (20), the virial equations that govern oscillations of the kind we are presently considering (with
a time-dependence e**) can be readily derived in the usual manner. They are in the notation of E.F.E.

3AV3s® = 8Bz + BagVas™ + B3 Pls + SNV,
IRVLD — 20QV,,P = 8B, + B V@ + 881,PL; + NIV,
1INV @ 4 20OV, D = 8By0® + BoaVas® + @Iy + SO,
V10 — AQVpP = —(2B1; — B1)V1a® + 8B15%Ls,
NV3u® + AQV,D = —(2B15 — Baa)V1® + 881.%1 (21)
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and
,\2V1(1) _ 2AQV2(1) —_ 831(2) + BllVl(l) ,

/\2V2<1> + 2AQV1(1) — 332(2) + 1322;/2(1) . (22)

The 8TI?’s occurring in equations (21) can be eliminated by standard methods, and we shall be left with (cf.
E.F.E., egs. [176]-[178])

(3)2 + 3By; — Big — Bi)Viu™® + (=322 — 3By, + Byg + Bag)Vas®
+ (Big — Byg)Vas® — 881:PL; + 8825l = 0,
(322 + 3By, + By, — 2By5 + 207 — BV, @
+ (322 4+ 3By, + By — 2Byg + 2Q2 — Bya) Vo™
+ (=A% — 6By5 + Bys + Byg + 2B33)Vas™®

Q 2Q
+ 2(B11 — Bzz)x Vig® — Y (I11 — I9)3B1®

- 3311(2)111 - 3322(2)122 + 23333(2)133 =0,
and
AQVD — AQV 5™ + (A2 + 4By — By — Ba2)Vie™ — 8B12%(I11 + Ip) = 0. (23)

Equations (22) and (23) must be supplemented by the solenoidal condition

3 (1)
> Lo~ 0. 24)
k=1 k

Equations (22)—(24), together with the equations obtained from them by interchanging the superscripts (1) and
(2), provide a complete set of 12 homogeneous equations for the 12 virials V1%, V,®, Vii®, Voo®, Vas®, and V,,®
(i = 1 and 2); and the determinant of this set of equations will provide the characteristic equation for determining
all the characteristic frequencies belonging to the modes of oscillation of the type considered.

By setting the ¥;’s and the Vs pertaining to the two components as equal, we shall obtain from equations
(22)=(24) two identical uncoupled sets of equations, six each; and the determinant of either set will provide the
characteristic frequencies belonging to the *synchronous” modes of oscillation. I have verified by direct numerical
calculation that the characteristic frequencies of the synchronous modes of oscillations so obtained are in agreement
with those determined by M. Tassoul (1975).

Similarly, by setting the ¥;’s and the V;’s pertaining to the two components as equal in magnitude but opposite
in sign, we shall again obtain two identical, uncoupled sets of equations, six each; and the determinant of either
set will determine the characteristic frequencies of oscillation during which the two components are exactly out
of phase. The enumeration of the characteristic frequencies belonging to these out-of-phase oscillations, as well
as those belonging to the general coupled system of all 12 equations, may bear on the following problem considered
in another—albeit erroneous—context (Chandrasekhar 1970).

Suppose that we perturb one of the components of the binary, keeping the other initially rigid. Then the com-
ponent that is perturbed may be assumed to be set in one of the “natural” modes of oscillation determined in an
earlier paper (Chandrasekhar 1964). The tidal potential of this oscillating component will vary periodically over
the other. As a result, the other component will be set into forced oscillation. Since the natural frequencies of oscilla-
tion of the two components, being congruent, are equal, it is clear that, under the circumstances envisaged, we shall
have a case of resonant forced oscillations. The amplitudes of such resonant forced oscillations will, in the first
instance, increase linearly with time. The energy in the oscillation of the first component will thus begin to be
drained to the second; and this transfer of energy may entail the excitation of one of the general coupled modes of
oscillation considered in this paper—presumably, the out-of-phase oscillations.?

1 The problem of such resonant forced oscillations has been considered (Chandrasekhar 1970). It may be of interest to revise
the analysis of that paper in accordance with the equations derived in this paper. The formal solution given in that paper (egs. [15]-
[18]) is valid; but the expression for the forcing term (given in eq. [12]) may need revision.
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III. SOME COGNATE OBSERVATIONS

Finally, some remarks concerning the attitude one may adopt toward Darwin’s problem may be appropriate.?

If one wishes to consider, in a mathematically and a physically consistent manner, the effect of the mutual tidal
distortions of the components of a binary system on their orbital motion and on their figures, then the assumption
of exact ellipsoidal figures cannot be made since it breaks down already beyond their first order departures from
sphericity. The reason is that in the expansion of the tidal potential in powers of a,/R, the terms inclusive of order
(a,/R)® do not depend even on the lowest order departures from sphericity of the tidally distorting body.® And the
allowance for the terms of orders (a,/R)* and (a,/R)®, which have angular dependences given by spherical harmonics
of orders 3 and 4, distort the figures by amounts which are of orders lower than the departures of exact ellipsoidal
figures from sphericity. The importance of including the terms in spherical harmonics of orders 3 and 4 has been
emphasized in some early investigations in which the development of “furrows” on the boundaries of distorted
polytropes has been described (cf. Chandrasekhar 19335, Figs. 1 and 2). It would appear then that the chief
interest in the Darwin ellipsoids arises from the fact that by truncating, by fiat, the Taylor expansion of the tidal
potential after the quadratic terms, we have an exactly soluble problem in the mathematical theory of the ellipsoidal
figures of equilibrium.

I am grateful to Dr. Monique Tassoul for sending me a copy of her paper in advance of publication. I am also
grateful to Professor Norman R. Lebovitz for many clarifying discussions.

The research reported in this paper has in part been supported by the National Science Foundation under
grant MPS 74-17456 with the University of Chicago.

2 With respect to the understandings of Darwin and Jeans regarding the problem of the stability of the Roche and the Darwin
ellipsoids, the reader may care to read their views quoted in some of the author’s earlier papers: Chandrasekhar 1963 (p. 1182, § I);
1964 (p. 599, n. 2; p. 601, in the last paragraph of § II, and p. 618, § ¢). Their views, particularly-on the stability of the Roche
ellipsoid, may be contrasted with what is presently known (E.F.E., § 59).

3 This is a well-known fact; it is quoted, for example, in Chandrasekhar (1933q, egs. [1]-[5]).
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