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ABSTRACT

The effects of general relativity, in the post-Newtonian approximation, on the Dedekind figures of equilibrium
of homogeneous masses are determined. It is shown how the post-Newtonian figures can be obtained by first
altering the velocity field in the Dedekind ellipsoid, appropriately, and then subjecting it to a suitable Lagrangian
displacement cubic in the coordinates. The solution exhibits a singularity at a point where the axes of the
Dedekind ellipsoid are in the ratios 1:0.6158:0.4412. However, in contrast to what happens along the Jacobian
sequence, the occurrence of the singularity along the Dedekind sequence is not associated with the onset of any
instability at that point by a strict Newtonian-like dynamic perturbation.

Subject headings: hydrodynamics — relativity — rotation

I. INTRODUCTION

In earlier papers, the post-Newtonian effects of general relativity on the figures of equilibrium of the classical
Maclaurin spheroids (Chandrasekhar 1965, 19674, 1971a; also Bardeen 1971) and Jacobi ellipsoids (Chandrasekhar
1967b, 1971b) were considered. The principal result of these studies is the disclosure that in an exact relativistic
theory, equilibrium sequences of rotating masses may exhibit features which are qualitatively different from those
in the Newtonian theory: already, in the post-Newtonian approximation the solution for the equilibrium figures
diverges when, on the Newtonian theory, the configurations are unstable to certain specific fourth-harmonic
deformations. Moreover, it has since appeared that the occurrence of a Dedekind-like point of bifurcation along
an axisymmetric sequence may, in fact, play a central role in the evolution of collapsing rotating masses in the
framework of general relativity, since it is by a Dedekind mode of deformation that gravitational radiation-reaction
induces secular instability (Chandrasekhar 1970). Since a triaxial stationary Jacobi-like object is strictly impossible
in general relativity, a Dedekind-like object is the only remaining alternative for the stationary existence of a
nonaxisymmetric state: besides axisymmetric objects, Dedekind-like objects are the only kinds that can exist in a
stationary nonradiating state. For these reasons, it has seemed worthwhile to include a consideration of the
Dedekind ellipsoids in the framework of the post-Newtonian equations of hydrodynamics (Chandrasekhar 1965).

It will appear that while the treatment of the deformed figures of the Dedekind ellipsoids in the post-Newtonian
approximation is closely related to that of the Jacobian ellipsoids (Chandrasekhar 1967b, 1971b; these papers will
be referred to hereafter as Papers 1II and VI, respectively) in some respects, there are yet essential differences
in other respects; and these differences illuminate certain characteristic aspects of general relativity.

II. THE NEWTONIAN FIGURES

It was Dedekind’s discovery in 1858 that a sequence of ellipsoids, congruent to the Jacobi ellipsoids, exists;
and that this sequence bifurcates from the Maclaurin sequence at the same point that the Jacobian sequence does,
but by a different mode of deformation: the Jacobi mode is neutral at the point of bifurcation in a frame of
reference rotating with the angular velocity of the Maclaurin spheroid while the Dedekind mode is neutral at the
same point in the inertial frame (for an account of all these matters, see Chandrasekhar 1969, §§ 5, 36, 44, and 45;
this book will be referred to hereafter as E.F.E.).

The Dedekind ellipsoids, unlike the Jacobi ellipsoids, are stationary in the inertial frame; they maintain their
ellipsoidal figures by virtue of internal motions with a uniform vorticity { (about the x;-axis, say) derived from the

motions
v, = Q1X,, vy = QoXy, and v =0, @
where
0= — % 1 and Q=+ % 1 )
re a12 + 022 2= a12 + a22 ?

and a;, a,, and a3 denote the semiaxes of the ellipsoid. The ellipsoid with a vorticity { has semiaxes determined
by the equations (E.F.E., § 44)

a,%a?
—0:10; = ("11_2%_—222)2 {? = 2nGpB,, and a,%a;’A;, = as’4;, ©))
where A4,, A9, Big, €tc., are the “index symbols’’ defined in E.F.E., § 21.
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It may be noted here‘that Q; and Q,, as defined in equations (2), satisfy the relations

0,%a,? _ 05%a,?
=2 =27

a a® = - Q1 Qz = 277GP312 s

and
010 + Q2a0,> = 0. @
[I. THE POST-NEWTONIAN EQUATIONS GOVERNING EQUILIBRIUM
The post-Newtonian equations governing a stationary fluid mass with internal motions are (cf. Paper III, egs.

(115D

0
@(ﬂva)=0, ®
v, @ 2U U 4 oUy 4 o .. . 2 [ 3U a0\ _

avﬁa—xﬁ + 8—5 |:(1 + c—z)p] - pa—x‘;{ + _c—zpv"a—x,, + ?pv,g %, .U — Uy = p((f) o, + 8x,,,) =0, ©)
where

1 P

o=p+-c—2pvz+2U+H+,—),
and
b=+ U+m+32, )
2 2p

and U, and @ are defined as solutions of the equations
ViU, = —4xGpv, and V20 = —4aGpé . ®)

An alternative form of equation (6) which we shall find useful is

ov, 0 D ou 1 9 2 l p\?
pvﬁgx—ﬂ'i-pa;(n-l-;)—pa—)%'t—czp-a—x;l:Z(D-l-sz'i‘Z H+P

1 ov? oy, o oU oU, _ aU,\] _
+ ?P[ZU'a_x; + vﬁa; (U + 4U) + 4Uavﬁ axB + 41)3(8—x‘z axﬂ)] = 0 . (9)

In the rest of this paper, we shall be concerned with a configuration in which the energy-density € = pc? + pll
is a constant. This assumption that e is a constant is formally equivalent to the assumption

p = constant and Inm=o0, (10)

and the assignment to p the meaning €/c2. On this understanding, equation (9) can be rewritten in the form

2
T NN

ox.p— ox T Pow ~ s g,
1 ov? 2 v, ou oUu, oU,
- = [ZUE + @ + 4U)UB'8?; + 4vavﬂa—xﬂ + 4vﬁ(axa o, )| 11

The equations describing the Dedekind figures, given in § II, represent a solution of equations (5) and (11) in
the Newtonian approximation, i.e., in an approximation in which the terms in equations (5) and (11) which occur
with the factor 1/c? are ignored. We now seek a solution of these same equations when the post-Newtonian terms
are retained.

First we make the following observations concerning equations (5) and (11).

i) In the terms which occur explicitly with the factor 1/c?, we may insert expressions which are valid in the
Newtonian approximation.

ii) The velocity-field specified in equation (1) is not consistent with the equation of continuity (5) to the required
order: it must, therefore, be modified appropriately.

iii) The terms on the right-hand side of equation (11) must be expressible as the gradient of a scalar function.

We shall now turn to a consideration of these matters.
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a) The Terms in Equation (11) Which are Explicitly of Post-Newtonian Order
The expressions for the gravitational potential U and the pressure distribution p/p in the Newtonian approxima-
tion are given by
U I (e + Agx® + Agx?) (12)
7TG o 141 242 343
and
1 p_ X2 X% x35%\ .
‘TFP o = dag A3(1 (112 (122 (132 N (13)
and using these expressions we can write
P = 022 + 0% +1—2Ax 3024 f"— 14)
7TGP 1" X2 2 uXu 203" A3 & b

where here, and in the sequel, Q; and Q, are measured in the unit (#Gp)*/2,
The solutions for U;, U,, and ® can now be written in the forms

U, _ U

(G2 Ql 2 172 — onl > (15)
(=Gp (#Gp)'”?
and
@ 2 2 3 ag® 5 2 3 a;?
=Gp = (I + 3a,°43)U + | Q% — 4; — 2a2 5 A3 |911 — 343933 + | 01° — 42 — 22 — A3 )92, (16)

where ®; and 9;; are the Newtonian potentials appropriate to the distributions px; and px;x;. Inserting the known
expressions for ®; and 9;; (given in E.F.E., § 22) we can readily write down the explicit expressions for U;, U,,
and Q.

Turning next to the post-Newtonian terms on the right-hand side of equation (11) which are not expressed as
gradients and inserting for the various quantities, we find, apart from a factor (7Gp)?/c?,

—x:1[402(01 + QI + 8a?B1y(4; + A)]
+ x:°[44:0:(01 + Q2) — 0:02° + 8a,®B15(341; + A;9)]
+ x1%:%[44205(01 + Q2) — 01205 + 8a5°B15(342s + Ai12) + 80:1(410;1 + A205)]

+ x1%5%[44502(01 + Q2) + 8a®B1y(A15 + Ags)] (e=1), (17)
and

— X2[40:(Q1 + 02)] + 8a,2B;5(4; + A5)]

+ x5°[4420:(01 + Q2) — 020:® + 8a,2B15(342 + A15)]

+ x9x1%[44,:01(01 + Q) — 02°0:1 + 8a:2B15(3411 + A1s) + 802(4:0; + 4:0,)]

+ x5%3%[44501(Q1 + Qo) + 8a:1%B1o(Aas + Ai3)] (=2). (18)

We observe that the coefficient of x;x,2 in the expression (17) is not equal to the coefficient of x,x;2 in the
expression (18); these terms cannot, therefore, be expressed as the gradient of a scalar function. But equation
(11) requires that when these terms are combined with those derived from v,0v,/0x,, they must be so expressible.

b) The Post-Newtonian Velocity-Field

As we have already remarked, the Newtonian velocity-field, specified in equations (1) and (2), is not consistent
with the post-Newtonian equation of continuity (5) to the requisite order. To rectify this situation, we let

Vs 7G

nGp nGp
+ = dv, and @ Gp)“2 = Qgx; + —5 dv,, (19)

v
GG = O

where 8v, and 8v, are quantities that are to be determined consistently with equation (5). With Q, and Q, defined
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as in equation (2), equation (5) is satisfied in zero order (as we should indeed expect); in the next higher order
we obtain

0

0 0 _ 1 9 9 2 P\ .
5?1 dv; + %, dvy = =Gp (Q1X2 o, + Qa1 3_362) (U +2U + P) 4 (20)

or, inserting for v%, U, and p/p their Newtonian values (as we may for determining the post-Newtonian terms
év, and 6évy), we obtain

0 0 az? az?
a—xl 801 + 5‘;; 81)2 = —2[Q1(Q22 — 2A1 - a—izAg;) + Qg(le - 2A2 - a_:2A3)]x1x2 . (21)
A particular solution of equation (21) is given by
dv; = q1x,%x, and 8vy = gaxa?xy , (22
provided
2 as’ 2 as’
g1+ 4q:= —|0:| Q2 —2A1—'a—12Aa + Q2 01 _2A2_a_22A3 . (23)

We make this particular solution determinate as follows.
For the velocity field (19) with 8v, and dv, given by equations (22), we find that

W—UGB—PZ—Z = 0:10sx; + 777GP [(Q19: + 2¢:0)x1%52 + Qaqix:°] 4
and

vg Ovy 7Gp . .

7Gp oxy 0102%; + —5- [(Qotr + 20:02)x0%:® + 01g2%5°]. 25)

The Newtonian terms on the right-hand sides of equations (24) and (25) are clearly expressible as the gradient of
3010:(x:® + x.%). We now require that when the terms (17) and (18) are combined with the terms in (24) and
(25) (in accordance with eq. [11]), they are also expressible as the gradient of a scalar function. This latter
requirement can be met if

4420:(01 + Q) — 01°Q: + 8a5°B15(3453 + Ai12) + 801(4:0; + A4205)
— [44:0:(Q1 + Q2) — 02°0: + 8a,2B15(3411 + Ai12) + 804(4:0; + 4:05)]

= 01(q2 + 2q1) — Q2(q1 + 295). (26)
qu)lation (26), together with equation (23), will determine g; and g, and make determinate the particular solution
22).

We now proceed to write down the general solution of equation (21). It will appear that in the post-Newtonian
Dedekind configuration, the velocity field can, at most, be a cubic polynomial in the coordinates. Consistent
with this requirement we shall write the general solution in the form

8oy = (g1 + @)xaX:® + r1X2® + 1,X0%53
and
dvg = (g2 — @Ix1X2% + rax:® + tax1x52, 27

where g, ry, ry, 11, and ¢, are constants, unspecified for the present. By virtue of equation (23), equation (21) is
identically satisfied by the solution (27); the constants in the solution (27) are, therefore, not restricted in any
manner by equation (21).

The additional terms in the solution (27) contribute to the right-hand sides of equations (24) and (25) the further
post-Newtonian terms

(Q1r2 + Q2@)x:® + (Quts + Qat)x1x5% + (31102 + gQ1)x1x52 (28)
and

(Q2r1 — Q19)x5° + (Qutz + Qat)Xaxs? + (3raQ1 — qQ2)xax:2, (29)
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respectively. To satisfy the requirement that the right-hand side of equation (11) continues to be the gradient of a
scalar function, we impose the condition

3r1Qs +qQ1 = 3r.0; — 90,
or

q(Q1 + Q2) = 3(r:01 — 105, (30)

which maintains the equality of the coefficients of x;x,% and x,x,2.
With the reductions that have until now been effected, we can write the integral of equation (11) in the form

3 2
1r_ a32A3(1 -> ’25) +8U
p=1%

nGp p
7Gp 2 1 (p\2
+?{2(D+2U U+§(—p)
+ 36,444, 0:(Q1 + Q2) — 0:105° + 8a52B15(3A411 + Ayz) — Qaqy — (Qura + 0s9)]
+ 3x,*[4420:(01 + Q) — 0:0:® + 8a,°B5(342, + A12) — 0195 — (Qary — 0:19)]

[44205(01 + Q2) — 01°Q2 + 8a52B15(3452 + A1) + 80:(4:01 + A4:0))]

— 0192 — 2¢:01 — (Q19 + 3r1Q5)
+ 3x,.%x,2 | or

44:04(01 + Q2) — 05201 + 8a;2B15(3411 + A1s) + 805(4,0; + 4,0,)
i = Q241 — 29202 + (Qog — 3201
+ 3x:2x5%[4A4304(0;1 + Qs) + 8ay2B1o(A1s + Agg) — (Q1ts + Ooty)]

+ 4x.2x3%[44301(01 + Q2) + 8a,%B5(A1s + Ass) — (Quts + Qath)]

— 3x:2[405(Q1 + Q) + 8a,?Bi5(4; + 4J)]

— 3%:%[40:1(01 + Qo) + 8a,®Byo(4; + Az)]} ) @31

where 8U is the change in the Newtonian gravitational potential of the deformed post-Newtonian configuration.
For the sake of brevity, we shall rewrite equation (31) in the form

1 p g ( 2 x,[")
—— = = az’45|1 — =) + 8U
nGp p e uz1au2

+ ﬂ—csz {Otlxlz + 062x22 + 063x:32 + 06333(«'34
+ 13 — 2(Qira + Qa)Ixi* + [0 — $(Qar1 — 019))x5*
+ [0 — 3(Qat2 + Qat)]xi®x5% + [093 — $(Q1tz + Qaty)]xo2x52
+ [e12 — 3019 + 3r1Q2) or +3(Q2q — 3raQ1)]x:%x,%}, (32
where «;, a5, o9, €tc., are quantities which can be read off by comparison with equation (31).

IV. THE NATURE OF THE POST-NEWTONIAN DEFORMATION AND THE CHANGE
IN THE GRAVITATIONAL POTENTIAL CAUSED BY IT

We shall suppose that the post-Newtonian figure is obtained by a deformation of the Newtonian figure by the
application of a suitable Lagrangian displacement at each point of its interior and the boundary. It is clear that
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<. the nature of the deformation considered in Paper III, § IV, in the context of the Jacobian figures will suffice equally
N in the present context of the Dedekind figures. We shall suppose, then, that (cf. Paper III, eqs. [47], [48], and [56])

- 7TGP‘11 z SED (33)

where
g(l) = (xls 0, _xB) ’ E(2) = (0’ Xa, —xa) ’ g(a) = _i_i (?xlas —x12X2, 0) ’
9= L0, —xtn),  and  E9 = L (<, 0, 3. (34
1 1

The deformation of the Dedekind ellipsoid by the displacement (33) will change the gravitational potential U
by the amount

2 5
SU = ’ﬁ:;‘i > SsU®, (35)
i=1

where expressions for 8U are given in Paper III, equations (70)-(73); and as in Paper III, we can write

2 2 3
8U = (Lgﬁ)— {alz > Si[uo“) + Z uu“)x,,z]
i=1 n=1

5 3 3 12,23,31
+ z Si[uo(“ + z u,Ox,2 + Z U, Ox,t + Z uuvo)xuzxvz]} . (36)
i=3 i=1 p=1 D)

V. THE DETERMINATION OF THE POST-NEWTONIAN FIGURE

Returning to equation (32), we shall now rewrite it in the form

3 3 .
+ - [Z Px2+ D Puxt+ waﬁxvz] , (37
where
3 5
P, =a + Z Siaizuu(i) + Z S, ,
i=1 i=5
5
Py =y — H(Qirs + Q29) + Z Siuy @,
1=3
5
Poa = a3 — 3(Qar1 — Q19) + Z Sittos®
i=3
5
P33 = o33 + z Siugs?
i=3
5
Py = aj3 — H(Q1g + 3r1Q2) + Z Siu2?
i=3

5
Pig = 15 — 3(Quts + Qota) + Z Sitt1s?
i=8

5
Pyg = agg — H(Qily + Qst1) + Z Sitas® . (38)
i=s
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It remains to apply the proper boundary conditions to the solutions which we have found for the velocity field
(egs. [19] and [27]) and the pressure distribution (eq. [38]) and determine the ten constants g, ry, 7o, t1, ts, S;, S,
Ss, S4, and Ss.

3The boundary conditions that have to be applied on the bounding surface,

227G, X532 X2 x5?
S(x) = Z__ - cp[Sll(a_l‘z‘_a_ZE)'l'Sz%z(a_zz—a—})
x12x22 4 _ x22x32 x32x12 _
+ S3(3a a,? ) S4(3a 2 ag? + S 3a 3a,2 a2 =0, (9

of the deformed ellipsoid, are that the normal component of the velocity and the pressure vanish on it identically.
The requirement that the normal component of the velocity vanishes on the surface defined by equation (39) is

oS

Uué-x—u=0. (40)

For the velocity field specified by equation (19), equation (40) gives
G oS G oS
o 5] o= i) B

For Q, and Q, related as in equation (2), equation (41) is automatically satisfied in the Newtonian approximation;
in the post-Newtonian approximation, the equation gives

4S8,
_x1x2(2S1Q1 + 2SzQ2 ) + x xz[ % (1 +9) + ar_:2 - 3032 0, + 2 Qz]

4S8,

1 S. S
+x23x1[a_22(q2 q)+a2 3a22 o + 22 3Q1]+x1x2x3 [( 2+ )+2 5

254 Qz] 0. @

Accordingly, we must require that the coefficient of each of the terms in equation (42) vanishes separately. By
virtue of the relation (cf. eq. [4]),

0, = —ngi;’ @3)

the vanishing of the coefficient of x;x, in equation (42) requires
Sl = S2 . (44)

And from the vanishing of the remaining coefficients, we obtain

[012 g1—+_Q2 — (a® - ‘122)]q = [3‘12 0: — 2a,%(Q: + 25)1Ss + 30,2058, — (a%qs + a’q1), 45)

30,
o= BL180,5: — 20:85 + (4 — a0, (46)
= 3 [8a°0: - 26098, — (¢ + aa], @)

and

In obtaining the solutions (45), (46), and (47) for g, r,, and r, we have made use of the relations (30).

We observe that the constants ¢, r;, and r, are expressed in terms of S3, S,, and S5; but the constants ¢, and
t, are not so separately expressed. Accordingly, by virtue of equations (45), (46), and (47), only P,5 and P,; among
the coefficients listed in equations (38) are not solely expressed in terms of S; (=S5), Ss, Sy, and Ss.

Turning next to the boundary condition which requires the vanishing of the pressure p on the bounding surface
defined by equation (39), we observe that in view of the formal identity of equation (37) and equation (76) of
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Paper III, the discussion of the boundary condition in Paper III, § VII (egs. [76]-[87]) applies unchanged. Therefore,
with the definitions (cf. Paper III, eq. [81])

Q1 = Py — 2a3°4,S,, (81 =S,)
— a2

Qo =P, — 2a32a_:2S2’

Os =P; + 2a,%45(S; + S2)

2a32A 3 2a32A 3

S3s

Qi1 = Py — 34,2 Ss; Q12 = Pip + a2
2a324
Q22=P22—§3a_223s4§ Qs = Pa3 + 24,8,
2a524
and Q33 = P33 — 34555 ; Qs = Py, + a312 2 Ss (49)
the boundary condition yields the equations
a,* Q11 + a2* Q0 — a,%a,%Q15, =0, (50)
as* Qo + a3* Qa3 — a2%03°Q23 = 0, (5D
a3*Qss + a,*011 — a5°a,%Q3, = 0, (52)
a;*Qu1 — a,*Qsp + 0,20, — 4,0, =0, (53)
and a3* Q33 — a,* 011 + 4303 — 0,20, = 0. (549

Equations (50), (53), and (54), by virtue of equations (45)-(47), provide three linear equations for S; (=.S,),
S3, S, and S;. Equations (51) and (52) involve in addition the quantity (Q:%, + Q.#;) which occurs in the
definitions of P,3 and Py3; but we can eliminate its occurrence by combining equations (51) and (52) in the manner

a%ay* Qas — a1%*a® Q11 + a3*(ay® — a,%) Q55 — 012‘122‘132(Q23 - Q13) =0. (55

Equations (50) and (53)-(55) now provide four linear equations for the four constants S,, S, S,, and S;; they
can accordingly be determined. With S; (=), S5, Ss, and S determined in this fashion, the constants g, 7,, and
ry follow from equations (45)—(47). Finally, equation (48), together with equation (51) or (52) will determine ¢,
and 7, thus completing the solution of the problem.

VI. THE BINDING ENERGY

The binding energy E of the post-Newtonian Dedekind configuration can be obtained by integrating the
““conserved energy” (cf. Paper VI, eq. [23])

@ = —%—p(vz il U) + é p(%v4 + %sz - %UZ + 02% —_ 2le1 - 21)2U2) b (56)

over the volume of the fluid. Inserting for the various quantities their known values, we obtain
€ = 3p(Q1%x5% + Qo%x,% — U)

(wGp)®

+p o2

{Q1x22[(‘11 + @)x:% + rix® 4+ 6x3%] + Qaxi%[(g2 — g)x22 + rax? + taxs?]

3 2 3
+ 8@t + 0 — (1 - 3 Ain?) + 3@t + 01 3 4w
u=1 u=1
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3 2
+ as®A44(04%x5% + szxlz)(l - Z ?‘Cu—z)
u=1 a

Mo

3
— 20,%a’x;*(4s — Z Agux,®) — 2Q5%a:%x,* (A1 -
a=1

Aluxuz)}
1

= 3p(Q:% + 0P — U) + 5 € (say). 7

u

The required binding energy can therefore be expressed in the form

E=1 f (0172 + Qgx® — U)dx + L Cod , (58)
2 post N. 4

Dedekind

where the first integral on the right-hand side must be evaluated, correctly to O(c~2), over the deformed figure of
the post-Newtonian configuration, while it will suffice to evaluate the second integral over the undeformed Dedekind
ellipsoid.

The contribution to E by the first integral on the right-hand side of equation (58) can be reduced in the manner

1
2 P(Q12x22 + Q22x12 - U)dx = (%lelzz + %szln + W)pedexina + ~%lesz + %szVu + 8B . (59

post N.

The first term on the right-hand side of equation (59) represents the binding energy of the Newtonian Dedekind
ellipsoid having the same density and coordinate volume as the post-Newtonian configuration; and the remaining
terms represent the contribution arising from the fact that the moments of inertia and the potential energy of the
post-Newtonian configuration differ from the Newtonian configuration by the amounts 8I;; (= V3y), 8155 (= Va0),
and 6. We may accordingly write

E= EO + (AE)coord. vol. » (60)

where

Ey, = (%lelzz + %szlu + sZB)Dedekmd
= ({5ma,a,a3p)mGp[Bio(a,® + a,?) — 2I] (61)*
and
1
(AE)coord. vol. = %Q12V22 + %szVll + W + ? @'de . (62)
Dedekind

It can be verified by using the appropriate formulae in E.F.E. (eq. [148] on page 60, Lemma 7 on page 54, and
eq. [132] on page 125) that

3B = 7GpBya(V11 + Vo) . (63)

We can, accordingly, write

1
(AE)coora. vo. = 7Gp[(3Q2% + B1a)V11 + (30Q1% + Bio)Vas] + = €ydx . (64)

Dedekind

Expressions for V3, and V,, are given in Paper III, equation (64); we have

=@,
Vi = (1—4§7ra1a2a3p)c—2p 2(7a,*S: + a,*Ss — a,%a5%S5)
and

Vas = (Ysma,a5a3p) ZTC_GZB 2(7a,%a5%S, + a3*Sy — a,%a,%Ss) . (65)

1 We observe that this binding energy is the same as that of the congruent Jacobi ellipsoid.
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The integration of &, over the volume of the ellipsoid is readily effected. In this manner we finally obtain

1
(AE)coora. vor. = 2 (’”GP)z(%ﬂ'alazaaP)

a2
x {%‘114[%Q24 + Q22(2012A11 - a‘%Aa - %Al) — 34,2 + erz]

2
+ %‘124[%Q14 + Q12(2¢122A22 - ZizAa - %Az) — 34.% + Q1"1] - %‘1341432
2
2
+ %‘112022[% 12022 + Q12(2¢122A12 - %As - %Al) — 54,4,
1

2
+ Q22(2012A12 - %Aa - %Az) + Qi(g: + ) + Qa(q2 — ‘Z)]

1a,2a:*[0:%(2a,2 A5 — 3.54;5) — 54,45 + Qats]
1a,2a52[0:2(2a,2Ags — 3.54;5) — 54,45 + Q1t4]

as?[0:2GI + as?As — 2a,2A4,) + 514,]

a:?[Q.2GI + az?4; — 2a,24,) + 5IA4;] + 5a52I4; — 12,513
23022 + Bio)(7a,*S: + a,%S; — a;%as?Ss)

+ + 4+ + + +

%(30:% + Byy)(7a,%a,%S, + a*Ss — 0120225'3)} .

a) Adjustment to Equal Baryon Number

(66)

It is clear that by the choice of the divergence-free Lagrangian displacement (33), we have arranged that the
coordinate volumes of the Newtonian and the post-Newtonian configurations are the same. But their proper

TABLE 1
THE CONSTANTS OF THE POST-NEWTONIAN DEDEKIND CONFIGURATIONS
azla; a9 92 S1 (=82) Ss S Ss

085........ +1.1623 —1.3095 —0.426 +0.0559 —0.2690 —1.245
0.80........ +1.1214 —1.3214 —0.444 +0.0797 —0.3872 —2.264
075........ +1.0742 —1.3283 —0.489 +0.1150 —0.5256 —4.146
0.70........ +1.0202 —1.3293 —0.602 +0.1887 —0.6970 —8.40
0.66. .. . +0.9717 —1.3248 —0.898 +0.3722 —0.903 —18.86
0.65... +0.9589 —1.3230 —1.084 +0.4874 —0.988 —25.30
0.64. .. +0.9458 —1.3207 —1.424 +0.7004 —-1.120 —37.08
0.63... +0.9323 —1.3181 —2.246 +1.217 —1.394 —65.4
0.62. .. +0.9185 —1.3151 —17.034 +4.234 —2.845 —230.2
0.618.. +0.9157 —1.3145 —13.30 +8.187 —-4.710 —446.0
0.616. . +0.9129 —1.3138 —173.8 +109.38 —52.30 —5966.4
0.614. . +0.9101 —1.3131 +15.11 —9.732 +3.703 +531.5
0.612.. +0.9073 —1.3125 +7.104 —4.684 +1.3226 +256.1
0.61... +0.9044 —1.3118 +4.584 —3.0951 +0.5692 +169.4
0.60. . +0.8900 —1.3080 +1.533 —1.1742 —0.3664 +64.34
0.59.. +0.8753 —1.3038 +0.8430 —0.7428 —0.6018 +40.54
0.58.. +0.8603 —1.2992 +0.5391 —0.5548 —0.7226 +30.01
0.57.. +0.8449 —1.2942 +0.3681 —0.4509 —0.8038 +24.04
0.56. . +0.8292 —1.2886 +0.2586 —0.3861 —0.8663 +20.18
0.55.. +0.8132 —1.2827 +0.1824 —0.3427 —-0.9183 +17.47
0.50........ +0.7285 —1.2452 -0.0004 —0.2543 —1.105 +10.60
045........ +0.6361 —1.1934 —0.0730 —0.2400 —1.217 +7.270
0.40........ +0.5370 —1.1252 —0.1107 —0.2464 —1.240 +4.723
035........ +0.4328 —1.0382 —0.1301 —0.2541 —1.145 +2.259
0.32........ +0.3688 —0.9761 —0.1344 —0.2538 —1.021 +0.7264
0.30........ +0.3260 —0.9303 —0.1344 —0.2502 -0.910 —0.3194
0.28........ +0.2835 —0.8809 —0.132 —0.243 -0.777 —1.38
0.25........ +0.2210 —0.7998 —0.124 —0.226 —0.541 -2.97
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2 volumes (in their respective approximations) are different. The adjustment to equal proper volumes or, equivalently,
E: equal baryon numbers, can be made by subjecting the post-Newtonian configuration to the uniform expansion
af 2
o EO — '”Gc+al Sox (67
where (cf. Paper VI, eqs. [17] and [18])
-;era1 1 J‘
38  p—— $0:%x,% + 2x,2 + 3U)dx . 68
( 0) (‘g_ﬂalazaap)cz Dedekind (2 Ql 2 %Q2 1 ) ( )
Equation (68) gives
1
So = 3.2 [f5(a220:% + Q5% + *21]. (69)

By this adjustment to equal baryon numbers, the binding energy is altered in the manner (cf. Paper VI, eq. [30])
(AE)proper vol. = (AE)coord. vol. —

7Gp)?
T%"’alazasp ( zp)

3[Bia(ar® + as?) — 2IN[3(a? Q% + a:2Q,%) + 12I1. (70)

VII. NUMERICAL RESULTS AND CONCLUDING REMARKS

In table 1, the various constants which determine the deformed figures of the Dedekind ellipsoids are listed.
The table also includes the binding energy, (AE)yroper vor» and the expansion factor, Sp, required to equalize the
baryon numbers of the Newtonian and the post-Newtonian configurations (for equal values of Q; and Q,).

It will be observed that the solution of the post-Newtonian equations diverges at

az/al = 0 61583 and as/al = 044119 (71)2

2 It is important to observe that the location of this point does not depend on the choice of the comparison Newtonian-configura-
tion. In the text, the comparison is made with a Newtonian configuration having the same values of Q, and Q.. If, instead, we
make the comparison with a Newtonian configuration appropriate for Q; + (7Gp/c?)6Q; and Q2 + (7Gp/c?)8Q2, then equation

(44) will be replaced by
1 (80 SQz)
Si Sa = 20 (1112 + a? )’

while none of the other equations are affected. Therefore, by replacing S, and S by S1 + € and S; — ¢, we shall obtain the same
equations for the various constants of integration as those considered in the paper, except that the inhomogeneous terms will now
contain terms in e as well. The occurrence of the singularity at as/a; = 0.6158 is related to the vanishing of the determinant of
the linear system; and this will not be affected by the terms in ¢ among the inhomogeneous terms.

With the freedom thus available, in the choice of the comparison Newtonian-configuration, one can eliminate, if one so desires,
the singularity in the binding energy (AE)uroper vol. at azfa; = 0.6158.

TABLE 1—Continued

r re q t t2 So (AE)srop. vor.
—0.3372 +0.1098 —1.448 —2.39 +1.15 —0.9419 —0.558
—0.3869 +0.0749 —1.440 —3.88 +1.185 —0.8828 —0.4992
—0.4289 +0.0316 —1.438 —6.73 +1.118 —0.8227 —0.4429
—0.4263 —0.0414 —1.472 —13.40 +0.799 —0.7618 —0.3932
—0.2565 —0.1956 —1.634 —30.11 -0.151 —-0.7125 —0.3658
—0.1180 —0.2874 —1.752 —40.48 —0.755 —0.7001 —0.3648
+0.1564 —0.4541 —1.982 —59.45 —1.864 —0.6877 —0.3718
+0.8549 —0.8534 —2.557 —105.2 —4.544 —0.6752 —0.4030
+5.0444 —3.167 —5.984 —371.2 —20.12 —0.6627 —0.6247

+10.56 —6.195 —10.49 —719.6 —40.52 —0.6602 —0.9369

+151.9 —83.68 —-125.9 —9634. —562.7 —0.6577 —8.97

—14.47 +7.524 +9.957 +858.8 +51.90 —0.6552 +0.490
—7.428 +3.658 +4.201 +414.0 +25.86 —0.6527 +0.0908
—5.214 +2.441 +2.391 +274.0 +17.66 —0.6502 —0.0336
—2.555 +0.9659 +0.2156 +104.5 +7.722 —0.6377 —0.1874
—1.977 +0.6315 —0.2604 +66.08 +5.466 —0.6251 —0.2100
—1.738 +0.4834 —0.4584 +49.10 +4.461 —-0.6125 —0.2159
—1.617 +0.3995 —0.5597 +39.49 +3.886 —0.5999 —0.2154
—1.551 +0.3455 —0.6158 +33.29 +3.509 —0.5873 —-0.2119
—1.514 +0.3077 —0.6468 +28.93 +3.236 —0.5747 —0.2069
—1.506 +0.2151 —0.6457 +17.89 +2.473 —0.5113 —0.1743
—1.582 +0.1757 —0.5440 +12.34 +1.980 —0.4478 —0.1401
—1.642 +0.1494 —0.4048 +7.69 +1.509 —0.3845 —0.1080
—1.632 +0.1249 —0.2563 +2.64 +1.021 —0.3218 —0.0792
—-1.571 +0.1090 —0.1734 —0.816 +0.732 —0.2848 —0.0637
—1.503 +0.0978 —0.1237 —3.31 +0.548 —0.2604 —0.0541
—1.413 +0.0861 —0.080 —5.98 +0.377 —0.2363 —0.0452
—1.238 +0.0684 —0.029 —10.23 +0.152 —0.2010 —0.0335
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This divergence occurs much earlier along the Dedekind sequence than the corresponding point (a,/a; = 0.2971)
where a similar divergence occurs along the Jacobian sequence (cf. Paper VI, table 3). But there is an even more
important difference. While along the Jacobian sequence, the point, where the solution of the post-Newtonian
equations diverges, is associated with the occurrence, at the same point, of a fourth-harmonic neutral mode of
deformation of the Newtonian ellipsoid, there is no such association along the Dedekind sequence. Indeed, as
we show in the Appendix, the Dedekind ellipsoid does not admit, along its entire sequence, a nontrivial fourth-
harmonic neutral mode of deformation.® The occurrence, nevertheless, of a divergence in the solution of the
post-Newtonian equation (which, in effect, subjects the Newtonian ellipsoid to a fourth-harmonic deformation)
must be traced to the circumstance that, unlike the post-Newtonian Jacobian configuration, the Dedekind con-
figuration cannot be considered as the result of a strict Newtonian-like dynamic perturbation of the Newtonian
ellipsoid. In other words (as Bardeen has emphasized in some private discussions), the relativistic singularity at
azla; = 0.6158 must result from the existence of a Newtonian sequence bifurcating at this same point, but one
to which a transition from the Dedekind sequence cannot be accomplished by any allowed hydrodynamical
motion consistent with the Newtonian equations of motion. The impossibility of such a transition could arise
from the fact that the internal motions along the bifurcating sequence are not of uniform vorticity and include
terms which are cubic in the coordinates.

The divergence at a,/a; = 0.6158 exhibited by the solution of the post-Newtonian equations is earlier than the
point (ag/a; = 0.4413) where the Dedekind ellipsoid becomes unstable (for the first time) by a third-harmonic
deformation (cf. E.F.E., page 217). On this account, the occurrence of the divergence along the Dedekind sequence
is much more meaningful than the occurrence of similar divergences along the Maclaurin and the Jacobian se-
quences. Also, the occurrence of the divergence itself, in the post-Newtonian approximation, must mean that in
the exact framework of general relativity, the sequence of Dedekind-like configurations, starting from the point
of bifurcation along an axisymmetric sequence, and the sequence, starting from the opposite prolate end, do not
join—and this fact must be significant for the last stages of evolution of rotating masses in general relativity.

We are indebted to Norman Lebovitz, James Bardeen, and John Friedman for several discussions that clarified
various aspects of the problem studied in this paper.

The research reported in this paper has in part been supported by the National Science Foundation under grant
GP-34721X1 to the University of Chicago.

APPENDIX

THE CONDITIONS FOR THE OCCURRENCE OF A NEUTRAL POINT, BELONGING TO
THE FOURTH HARMONICS, ALONG THE DEDEKIND SEQUENCE

The question, whether the Dedekind ellipsoid, along its sequence, allows a nontrivial neutral mode of deforma-
tion belonging to the fourth harmonics, can be answered by availing ourselves of the first variations of the relevant
virial equations of the fourth order derived in an earlier paper (Chandrasekhar 1968; this paper will be referred
to as V.E.). As in the analogous considerations relating to the Jacobi ellipsoids, it will suffice, in our present
context, to restrict ourselves to the six “even’ equations* (V.E., eq. [33])

20y + Wiy — (40BWyysy + 28Wy50 + 20Wyz; + 8BWyp) + 68Ty — 6(28% 15y + 8S54) = 0.
[no summation over repeated indices; i # j and (i, j) an ordered pair] . (Al)
In V.E. (Appendix, eq. [Al]) an explicit expression, for the particular combinations of 8%, and 8,

which occur in equation (A1), is given in terms of the symmetrized virials

0
Vi = j pém Tx Cesxjxpx;)dx
14 m

Il

Visa + Viaga + Ve + Ve »
and

0
Vi = [ ptn (ronhds = Vig + V. Co)
v m

3 But as we remark in the Appendix, the absence of a neutral point, as strictly defined, does not foreclose the possibility of a
zero-frequency mode occurring along the Dedekind sequence.

¢ The displacements (34) leading to the post-Newtonian deformation belong to the class comprising these equations.
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It remains to express

28% 50 = S‘f pUU XX, dx
Vv
- f P A, + udu)xxdx + f pugt(Ex, + £ . (A3)
Vv 4

We are presently interested only in the case in which the velocity field is a linear function of the coordinates
and is of the form

U = Qix;, (A4

where Q,; represents a constant matrix. (In eq. [A4] and in the equations following, the summation convention is
restored.) In this special case, equation (A2) becomes

Zagij;kl = QjmJ’ PAuixkxlxmdx + QimfPAujxkxlxmdx + Qiman(Vk:lmn + Vl;kmn) . (AS)
14 v

The integrals over Ay; and Aw; in equation (AS5) can also be expressed in terms of the virials with the aid of the
formula

dI;i;jkl = L pAu;x;xxdx + L pé(uixix; + wexix; + wxx)dx (A6)

which under stationary conditions and for the assumed form of the velocity field gives
J‘ pAuxexide = —(QimVisam + QiemVistm + QimVijkem) - (A7)
14

Inserting this relation in equation (AS5), we find after some rearrangements
2[8% 0o = — Qi Visan — Qun®Vien + Qim @in(Visimn + Vigiemn)
- Qjm(anVi:lmn + an Vt:kmn) - Qim(anVJ‘;lmn + anVj;kmn) s (AS)

where 82, has been enclosed in brackets with a distinguishing subscript “0” to emphasize that the expression
is valid only for quasi-stationary deformations.
For the particular case of the Dedekind ellipsoid

0 Ql 0 Qle 0 0
0=10, 0 0 and Q=] 0 0,0, 0> (A9)
0O 0 O 0 0 0

and we find from equation (AS8)
[66%11:11]0 = —6(Q1Q2V1:11 + 01®Vii120)
[6032:20]0 = —6(Q1Q2V 2002 + Q2®Vai011) 5
[66%35.55]o = O,
[26€ 10100 + 8%20.11]0 = — 0102(4Vai011 + Viiias) — 012Vain02 »
[26€15:12 + 8Z11:02]0 = — 01024V 11122 + Vaior1) — Q22Via11 s
[28€ 95,05 + 8Ca3;00]0 = — 010Q2Vs:300 — Q22Vsia11 »
[2015:18 + 8%s5;11l0 = — 0102V 5811 — 01 Vai022 5
[20% 3305 + 8%oga3)o = — 0102(Vaiaza + Vaass)
and [26%13:15 + 8%115a3)0 = — 0102(Vais11 + Visas) - (A10)
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On inserting in equation (A1) for the various potential-energy and kinetic-energy tensors, in accordance with
the equations V.E. (Al) and (A10), we shall obtain a set of six linear homogeneous equations for the nine fourth-
order virials

Vi, Vaioaa » Vaaas Viiea s Vao11 »
Vaioas » Vaisza » Vasi1 » and Viass s (A11)

and the three second-order virials
Vll N V22 P and V33 . (A12)
The six equations provided by equation (A1) must be supplemented by the two second-order equations (cf. E.F.E.,
page 149)
SQB11 - SQB(BB + 2'[agll - 8533]0 = 8%11 - 8%33 - Q1Q2V11 = 0

and
8Wyy — Wsg + 2[6%0; — 8F33]o = Wy — 6Wa3 — 01Q2Vee =0, (A13)
and the four equations (V.E., eqs. [24] and [25])
3
Z ”"" (no summation over i; i = 1,2,3) (Al4)
and
Ve _ 0, (AL5)
k=1 %

which ensure that the displacement considered is divergence-free.

Equations (Al), (A13), (A14), and (A15) provide a set of 12 linear homogeneous equations for the 12 virials
listed in (A11) and (A12). Of these 12 equations, the three equations (A13) and (A15) involve only the second-
order virials (A12). It is known that the determinant of this 3 x 3 system does not vanish anywhere along the
Dedekind sequence (E.F.E., page 125). Hence

Vii = Voo = Vs =03 (A16)
and equation (A14) becomes

3
2 V’"‘" =0 (no summation over i; i = 1,2,3). (Al7)

In view of equation (A16), equations (Al) and (A17) now provide nine linear homogeneous equations for the
nine fourth-order virials (A11). By eliminating V1331, Vagas, and Vggss in favor of V94, Vasss, and Vigiy, equation
(A1) becomes linear and homogeneous in the six virials Vy.100, Vo011, Voiasss Vaiazzs Viiiss, and Va.aiq. It is found
that the resulting six equations break up into a set of four homogeneous equations for Va0, Vaio11, Vasass and
Vi1ss and a set of two equations which involves all six virials. It is found that the determinant of the 4 x 4
system vanishes nowhere along the Dedekind sequence. Accordingly, we must require

V1:122 = V2;211 = Vaoas = Vusa =0. (A18)

The remaining two equations then show that, along the entire sequence, a trivial® neutral deformation is possible
for which

Vaas:Vinss = a2®:a,% . (A19)

We conclude that the Dedekind ellipsoid allows, nowhere along its sequence, a nontrivial neutral deformation belonging
to the fourth harmonics. But this fact does not foreclose the possibility that by seeking solutions with a time
dependence of the form e we may obtain for the parameter A a characteristic value zero somewhere along the
Dedekind sequence. To ascertain whether or not such a possibility occurs, we must discuss the fully time-dependent
virial equations along the following lines.

Using the general time-dependent relation (A6) and considering the variation of V.E., equation (13) (with the
terms in Q2 suppressed), we readily obtain the equation

d?Vy, AV dViam AViiiem
dtiz.Jkl _ Qjm dtkl 2ka ’Hj 'ljk

le

= Z[SQU;M + Bgik;lj + 8%yilo + 81811y + 84011, + 8,811
+ 3(28Byj0 + 20Wiyy + 20BWup + IWjpy + Wiy + 8BWy5),  (A20)
where Q and [8%;.;,,], have the same meanings as in equations (A4) and (AS).

5 Trivial, because it corresponds to a simple rotation of the ellipsoid as a rigid body.
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For the particular case of the Dedekind ellipsoids, when @ has the value given in equation (A9), we obtain from
equation (A20) the following sixteen equations for determining the modes that are even in the index 3:

2y, V.
d Ztlélu - 60, d_"% = 6[6%11:1110 + (2891101 + 8Byyp0) + 38145,
dz2v,. dv,.
% - 60, _V% = 6[0%a5:20]0 + (289,00 + 8Waz00) + 38105y,
d*V;333
e = 6[6%ag;5]0 + (28%Bsq05 + 8Wss;a;5) + 3810,
dazv,. dvy. dav,.
% - 20, ;}222 — 40, ;1}121 = 2[8% 11,00 + 28%15,15]0 + OMIy,
+ 32081500 + 48BWig10 + 0Byrne + 26Wigy)
azv,. av,. av,.
_J:ézi - 20, ;}111 — 40, ;}212 = 2[8%50,11 + 28%21;: ] + Sy,
+ 320011 + 48Ba101 + BWagiryy + 28Way01)
d*Vi135 dv,

arz 20, 7312 = 2[6€ 11,35 + 28C 15,150 + SMlgs + (2091185 + 481313 + 8BWy1;5,3 + 28Wig1g) »

2
%&‘2 - 20, % = 2[8%20:35 + 28%53;03]0 + OIlgg + 1(289Byy.55 + 48Wog;05 + W38 + 26Waz.0.5) 5

dr?
d*Vsis11 dVs310 1 5
~ar: 40, 4 = 2[6%35:11 + 2851510 + OIMy; + 3(28%Waq,y; + 48y + Wiz + 26BWay;3,1) 5

d?Vs,. davs.
% - 4Q2_;;_321 = 2[8%3q:90 + 20%32:32]0 + Mlzp + $(28%Wyg;00 + 40Wgz.50 + W00 + 28%WB30;3:2)

d2v,. dav;. av,.
d;énz — 40, (;;122 - 20, ;'.tul = 2[28% 11,15 + 8Z1941]0 + 28115,

+ 34011515 + 28Wi5;1 + 28BWyanpe + Wiany) s

dazv,. av,. dVs.
thézﬂ - 4Q2_‘% - 20, _7‘21_1‘22_2 = 2[28% 35,01 + 8Fg1;92)0 + 2815,

+ 3(40%By0:01 + 20Wsgi00 + 28Wanion + 8BWyy;00)

a2V, dVs. dVs.
d;séam - 20, _‘%22 - 2Q2%]: = 2[8% 33,12 + 831,50 + 8aza1]o + 811y,
+ 328515 + 265105 + 20Bgn;51 + Waznie + Wayiaie + 0BWagay) »
2y, av.
d dtl,zzzz — 60, % = 6[0€1222]0 + (2081500 + 8BWig,0:0)
d2v,. dv,. ,
% - 6Q1 % = 6[3521:11]0 + (28%21:11 + 8%21;1;1) ’
d2V1;233 dV1:331 1‘
a2 20, 4 2[0% 12,33 + 28%15:05l0 + $(28W1o35 + 4808 + 0BWigieis + 28Wig0a)
ooy _ o0 Wosos _ 556 255 259 453 5 259 (A21
—arz O: - [6€51:83 + azi13lo + 3(28%Ba1;58 + 23;13 + 08ay;as + 28:1:3) - )
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The matrix elements [8%,.;,], which occur in the foregoing equations, not included in the earlier listing (A10),
have the values

[28%11.10]0 = —40105V1:112 + Q12(Vai201 — Visaza) »
[28%20:01]0 = —40105V2021 + Q2®(Vis112 — Vainnd) »
[28%12.:11]0 = — 01Q2(V1112 + Vo) — 20:1% Vo001 5
[286€51:90]0 = — Q102(Vaiza1 + Visa2) — 202 V11125
[286€12:83]0 = — Q1Q2(V1iss2 + Vaisar — 2Va312) »
[28%,5.95]0 = [26Zaz:18l0 = —20102V 3312
and [26%33.12]0 = 0, (A22)

and the required expressions 8%,,,,; and 8%, are given in V.E., equations (21) and (22).
Equations (A20) supplemented by the divergence condition (A15) and the further condition,

3
> Loy, (423)

2
k=1 ay

provide a complete set of equations for determining the characteristic values of A. (Because of the complete
separability of the second-order virial equations from those of the fourth order, we can set Vi, = 0; cf. the
arguments preceding eq. [A16].)

It is now clear that the full equations might very well provide a zero-frequency mode for some particular member
of the Dedekind sequence. The problem here is analogous to the one which we encounter in the context in the
Roche ellipsoids (cf. E.F.E., pp. 205-207, and Lebovitz 1963). (Note that eq. [A1] follows from egs. [A20] when
the state is stationary and the only virials that do not vanish are those even in all three indices 1, 2, and 3.)
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