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SUMMARY

The present paper is devoted to a study of slowly rotating homogeneous
masses in which the energy density € is a constant. The structure of such
configurations is determined with the aid of equations derived by Hartle in
the exact framework of general relativity. These configurations have a natural
limit in that the static, non-rotating, configurations must have radii (R)
exceeding 9/8 times the Schwarzschild radius (Rs). The derived structures, for
varying R/Rg, are illustrated by a series of graphs. A result of particular
interest which emerges is that the ellipticity of the configuration, for varying
radius but constant mass and angular momentum, exhibits a very pronounced
maximum at R/Rg ~ 2-4.

I. INTRODUCTION

The equations which govern equilibrium configurations in slow uniform
rotation, in the framework of general relativity, have been derived by Hartle*
(1967); they have been used by Hartle & Thorne (1968) for constructing models
for slowly rotating neutron stars. In this paper, we shall use Hartle’s equations
to delineate the structure of slowly rotating masses in which the energy density
e is a constant. Apart from the fact that the case € = constant provides the simplest
illustration of the effects of slow rotation in general relativity, it will enable us to
study these effects under conditions which are more ‘ extreme ’ than any that one
encounters with more normal equations of state. Thus, in the case of ‘ realistic’
neutron-star models, the requirements of stability with respect to radial pulsations
(¢f. Chandrasekhar 1964) restrict the models to radii that exceed 2:5 times the
Schwarzschild radius; at these radii, while the effects of general relativity are
substantial they are by no means ‘overwhelming’. In contrast, homogeneous
models can occur stably (for y, the ‘ ratio of the specific heats ’, tending to infinity)
down to ¢/8 of the Schwarzschild radius; and at this radius, the effects of general
relativity are as strong as they can ever become under conditions of static hydro-
static equilibrium. As we shall see the results which emerge from the study of these
homogeneous models are qualitatively different from those that have, hitherto,
been deduced.

* The following misprints in Hartle’s paper have been noted.

In equation (36) the exponent of the expression for #¢f in square brackets should be — 4.
In equation (117), on the right-hand side, replace (a— M) by (a—2M).

In equation (124), replace 1/R in the third, fourth and fifth terms by 1/R2.

In equation (130), on the right-hand side, replace —4/3 by +2/3.

In equation (138), on the right-hand side, replace 16 by 8.
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2. HARTLE’S EQUATIONS

In this section, we shall assemble Hartle’s equations in a form that will be
convenient.

The starting point is a consideration of the metric that will describe a fluid
configuration which is slowly rotating with a uniform angular velocity Q and relate
it to the metric which will describe the same configuration in the non-rotating
state.

‘The metric that is most suitable for describing spherically symmetric static
configurations is the standard Schwarzschild form*

ds? = —e20 dt?+e2ho dr2 +r2(df2+sin2 6 dg?), (1)
where
o — T — - -
e2%o T M = M(r) 477]0 eor2 dr,
dvo I I

and

dpo _ _ dvo

o (€0+po) P (3)

In the foregoing equations, the subscript ‘o’ distinguishes that the quantities
refer to the non-rotating configuration.

When the configuration is set into slow rotation and the isobaric surfaces
become slightly oblate spheroids, the form of the metric that is most suitable
and the one chosen by Hartle is

ds? = —e¥[142ho(r)+ 2ha(r) Py(cos 6)] dt2

+e2% {1+ 22;2 [2mo(r) + 2ma(r) Pa(cos 6)]} dr?
+72[1 +2ks(r) Po(cos 0)1{d62 + [dp — w(r) d£]2 sin2 6 dgp2}, (4)

where Ps(cos ) denotes Legendre’s polynomial of order 2 and Ag, kg, mq, ms and kg
are quantities of order Q2 and functions of the radial coordinate 7 only, and w is
a further radial function (describing the so-called dragging of the inertial frame)
which is of order Q.

It will be observed that the chosen metric (4) is consistent with the form,
ds? = —e(dx0)%+ e (dx! — w dx0)2 + e2¢2(dx2)2 + e2#3(dx3)2, (5)

which one generally assumes for stationary axisymmetric systems in general rela-
tivity. Indeed, by making the identifications dx® = dt, dx! = dp, dx? = dr and
dx3 = df, and the substitutions

¢ = &o[1+ho(r)+ ha(r) Pa(cos 0)],
e¥ = rsin O[1+ ka(r) Ps(cos )],

24
etz = elo {1 +e—r—? [mo(r)+mz(r) Pz(COS 9)]},

and
ets = r[14 ka(r) Py(cos 6)], (6)

* We are using units in which ¢ = G = 1.
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(which are correct to the first order in 2) in the equations that have been written
down for the general metric (5) (in Chandrasekhar & Friedman 1972, Section II,
for example) we can obtain the equations governing the field and the fluid approp-
riate for the metric (4). Thus, in the case € = ¢(p), the equation of hydrodynamic
equilibrium

eV
P = (e+P) {log (I_Vg)l/z},a (x=7,0), (7)
where
V = e/ 7(Q— w), (8)
can be integrated to give
v+4%log (1—V?2)+ P = constant, (9)
where
P = IOg (E +p) - 'e_“f‘_ﬁﬁ’ (IO)
or, equivalently,
(e+p) dP = dp. (r1)
Expanding P, appropriately for slow rotation, in the form*
P = Py(r)+ 6Py(r)+ 8Pa(r) Pa(cos 0), (12)
and noting that
V = e(Q— w) 7 sin 6+ O(Q2), (13)
we obtain from equation (9) the pair of equations
ho(r) — 372 e 20w2 4+ 6Py = C = constant of O(Q?) (14)
and
ha(r) + 372 e 2ow2+ 6Py = o, (15)
where we have written
o= Q—w. (16)

Considering next the various field equations appropriate for the metric (5)
and linearizing them about the known spherically symmetric solutions (2) and (3),
we obtain the following equations, where we have indicated, in each case, the
component of the field equation from which it arises.

1d(, do g ol

B dr (" J E) T4, 7 =0 (G1) (17)
L de T L4 (d )2_1‘ 352 Y° 00
5 = 4T (e+p) d 8P0+Izr] o 3 riw? (G09) (18)
do_ _dsp 1d

dio _ _ 4 ¢ !
dr dr P0+3dr

(72 e—2v0,m.2)

= mg eto (E + 87rp0) S 220y 372 (dizz) 2+41rr e2to(e+p) 8Py, (G22) (19)
72 12 dr ’

d _ I_dvo ms 1 dvp 23

gy et he) = e (r ‘d‘r‘)ﬂ’:m (ﬁ;f;)’ (G*) (20)
m 1 (dw\? 1 5 o df? 11_ (733

he r—2M 67 (dr) 3rw ar’ (G11-G%) (21)

* It is awkward that ‘ P2’ occurs in this equation with two different meanings: as P2
and as Pz(cos §). However, since P2 as the Legendre function Pga(cos 8) occurs only in
equations (4), (6), (12) and (72) the awkwardness is not a serious one.

5
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and
2 2M dhz ZM dVo dkg 2ms, dV()
;(‘ )dr+2(1 )(dﬁ )—dr‘“ﬁ( dﬁ)
6hz 4kz__ _ T oo (dm') _ 929
O 4 ga(erp)oPe— 132 () =0, (GB) (22)
where
j = e—(Aotvo), (23)
Letting :
vy = hg+ ks, (24)

and making use of equations (15) and (21), we can reduce equations (20) and (22)
to the forms

dvy _ dvo ( dvo) [I 459 (d'w) 1,52 dj ]

& - T ar hat ar)l6” 7 \ar 3 dr (25)
and

dhg 209

dr  r(r—2M) dvldr
%0 T _41‘4]}
+{ 2 T 2(r—2M) dvojdr [8"(6“’ e
+1 [ dV() I ] (dm')
6" ar sr—ablydvojdr) 0 \ar

— dvo L 2 2 &°
3 [ dr " 2(r—2M) dvo/dr] i (26)

The foregoing equations apply to the interior of the fluid configuration. Outside
the configuration, in the vacuum,

e=p=o0, j=1 and M(r) = My (27)
and the resulting equations can be solved explicitly to give

2J J2

w = Q-2 mo = SM- (28)
oM J2
ho = —r—2M0+r3(r-—2M0)’ (29)
— 72 (_1 EA
hs J (M01’3 )TKQZ (MO I) (30)
and
_ P _2Mo 54 (l — )
= =K e oy 9 a7 (31)

where 6M and K are constants, J is the angular momentum of the configuration,
and Q™ is the associated Legendre function of the second kind for the argument,
(r/[Mo)— 1, specified.
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‘The boundary conditions with respect to which equations (17), (18), (19),
(25) and (26) must be solved are

my, ho, h2 and vp vanish at the origin while = is finite; and at the
boundary of the configuration, all of these functions join con-
tinuously with their exterior solutions (28)—(31). (32)

3. THE EQUATIONS GOVERNING SLOW ROTATION OF HOMOGENEOUS
CONFIGURATIONS

The structure of spherically symmetric static distributions of matter when
e = constant follow from the solutions of equations (2) and (3) appropriate for
this case. These solutions are well known and can be found in any standard text-
book. Measuring the radial coordinate 7 in the unit*

_ (3¢t \12
o = (sﬂGe) , (33)
the required solutions are
! p_y-—n
elo =, eo=1 -y), and £ =< 7=
y 3(3y1-) c = sy (34)
where
P @y gt = 1 RYaR, 63)
and R is the radius of the configuration. Also, corresponding to the solution (34)
. 2y 2M(r) _
= . and T =1—e20 = 1—9y2 6
7= ey , y (36)
It will be observed that the foregoing solutions require that
y1> 4. (37)

This last condition, as may be readily verified, is equivalent to the requirement,

9 _92GM
R> Ry = 0.0, (38)

to which we referred in Section 1.}

The equations governing homogeneous configurations in slow uniform rotation
can now be obtained by substituting the solutions (34)—(36) in the equations of
Section 2. In writing the resulting equations, it is convenient to use

%= 1-y = 1= (1= (39)
as the independent variable. We find that equations (17), (18), (19), (25) and (26)

* Strictly, we should write & = (3/87¢€)1/2 since we have already adopted units in which
c=G=1.
t Quite generally, it may be noted that according to equation (36) R/Rs = (1 —y12)~1.
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can be reduced to the forms
faw+ (2= ¥= 28] ST+ [sic (3-50) ¥~ 48] W2 gt ) w = 0, (40)

dmo <:~—x)x3/2(2 e () St =],

dx (e+ x)2 dx 3(K + x)
d o ktU op 24 (et D)(1—x)—3(1—-a)%
T 8Py = T —x)(x+x) 0 (k + x)(1 — x)2 x3/2(2 — x)3/2

3(k+x)2 w s dx " 3(1—x)(r+x)? \dx

81—(k+ 1)(1—x)

8x(2 — x) @, x%(2 — x)2 (dw)

3' ( K+ x)3 ’ (42)
oz _ _ 22
dx ~ k+x
2x2(2 — x)2 _ e [( ) 4(x+1) 2]
+_—3(K+x)3 [1+(c+1)(1—x)—2(1 — x)?] +x(fc+x)(2 ) w
(43)
and
dhy _ (=P (et )(i—2)—2, _ 2(c+a)
dx x(2 — x)(k + x) ? x2(2 —x)2 o2
5 5 g7 %(2—%) (dm')
+1 [zx (2—x)2—(rk+x)?] (et ) \dx
2
+‘—3*(x+x)[zx2(z—x>2+<~+x)2] et (44)
where we have measured
w in the unit @, the value of @ at the centre, mg in the unit a3we2
and
8Py, 8P3, ha, ke and vy in the unit aw,?2; (45)
and we have also written
€= -t (46)

Equations (40)-(44) must be supplemented by equations (14), (15) and (21) which,
in the present context, take the forms

‘;9(6(2 9)2 w2+ 8Py = y = constant, (47)
hs +";’(‘(2+ ’)2 w?+8P; = o, (48)
and
mo _ 2x32—x)3 [ (da\2 | 4(x+1) w?
ha+ (1— x)2 x1/2(2 — x)l/z 3(re+ x)2 [(E) +m] (49)
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Besides, we have equations (28)—(31) which determine the functions outside the
configuration; these equations now take the forms

2J
@ =N (50)
J?2 mo
7?10 = 8M—‘73:, ho = -;——(T——WZ’ (51)
_ 2 1] J2 9
b= [t | o K0 )
and
L (1+y12)3/2
ve = —5+K ri72[r — (1 —y12) 372172 Q2! (3)
where
Q is measured in the unit we,
J is measured in the unit a3we,
and

8M is measured in the unit a3we?; (54)

and the argument of the associated Legendre functions is [27/(1 —y12)3/%] — 1.
At the boundary of the configuration, where the solutions of equations (40)-
(44) must match those given by equations (50)(53), we must have

o= Q- (I_;——{-Zjﬁ—,—?, (s5)
100 = M= o= 9
(v2)1 = _G%?+K - ;flz Q2! (i fﬁ;), (58)

where the subscript ‘ 1’ distinguishes the value of function at the boundary where
X =X1=I—Y1.

Returning to equations (40)—(44), we observe that equation (40) for = does not
involve any of the other quantities; accordingly, it can be integrated, for any
assigned value of y; = 3(1+«), independently of the others. Near the origin
(x = o) it has the behaviour

w =1 +ﬂ'(_’<:5_:’|€-_1) X+ O(xz), (59)

remembering that we are measuring @ in the unit we, its value at the centre. The
solution of equation (40), with the behaviour (59) at ¥ = o, when integrated out to
the boundary, will, according to equation (55), determine the angular momentum
(in the unit a3w) that is to be associated with an assigned Q (in the unit w¢).

In terms of the solution for w, equations (41) and (42) can be integrated for o
and 8Py. Near the origin they have the behaviours

o = 32(k+ ;)\/2 2572+ O(x72)
15K
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and
8Py = 5 x10(x2). (60)
3K

The solution of equations (41) and (42), with these initial behaviours, can be inte-
grated to the boundary. The value of my at the boundary will determine, according
to equation (56), the value of 3M, the increase in M, consequent to the rotation.
Similarly, the solution for 8Py, together with equations (47) and (56), will deter-
mine A and the value of the constant C.

The boundary conditions on A and v require that they vanish at the centre
and further, that they join continuously with the exterior solutions (52) and (53).
On this account, it will be convenient to treat equations (43) and (44) in the
following manner.

Expressing the solutions of equations (43) and (44) as the sum of a particular
integral and a complementary function (distinguished by the superscripts P and C,
respectively) we write

ho = ha® + Ahs(©  and vy = v3® + Avy(O), (61)

where A4 is a constant and the complementary functions are solutions of the homo-
geneous equations

dva® _ 2hy(©
de ~  k+x’ )
and
dhy© _ (1—aP+(kt1)(1=%)=2, o 2xt+x) 6
dx — x(z_x)(K+x) hz m V9 . ( 3)

Near the origin, the solutions of equations (43) and (44) are found to have the
behaviours

ho® = ax+O(x?) and ©2P) = ba2+ O(x3), (64)

where a and b are constants related in the manner
k3b+k2a = 8yy; (65)
while the solutions of the homogeneous equations (62) and (63) have the behaviours
h2© = —kBx+0(x2) and v2(® = Bx2+O(x3) (66)

where B is a constant,

The particular integrals £3®) and v2® can be found by integrating equations
(43) and (44) out from the origin with the initial behaviours specified in equations
(64) and (65) for an arbitrarily assigned value of the constant a. Similarly the
complementary functions h3(® and 22(®) can be found by integrating equations
(62) and (63) with the initial behaviours specified in equations (66) for an arbitrarily
assigned value of the constant B. The constant 4 (in the superposition (61)) and
the constant K (in equations (52) and (53)) can then be determined from the
required continuity of 43 and v with the exterior solutions (52) and (53). With 4
and vs thus determined, the solutions for kg and mg follow from equations (24)
and (49).

(a) The case y1 = %

Even though the pressure distribution in the static non-rotating configuration
has a singularity at r = o when

y1—=>% and k—>o, (67)
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the equations governing the slowly rotating configurations have finite forms in
this limit. But the behaviour of w near the origin, given by equation (59), is
divergent. However, considering the equations for « = o, ab initio, we find that
they allow non-singular solutions. Thus, the equation for w, in this limit, namely,

x2(2— x) +x(3 4) -——4@‘ = o, (68)
allows a solution having the behaviour
w = Ax"+ O(x7t1), (69)
where
V33 _1
n=Y22_° )
PR (70)

and A is a constant*. A similar discussion of the remaining equations yields the
behaviours

my = 8v2 n?+4 2172 4 O(x2nH+1/2),

3 4n—1
5Py = 4(2nP+5n2—6n—9) o, +0(x2n),
3n(4n—1)
P — 32(3113 n?+ 6bn— 3) x2n—1 27
v A@ni—an—3) 06
38— 1312+ 36n—30)
ho®) — 4(14n° 1372 +36m—30) oy L O (y2my
d 2 3(8n?—2n—3) +OE)
an
ho(©) = —1Bxl2+4+O(x%72), 020 = Bxl/240(x3/2), (71)

where B isa constant.} With the foregoing initial behaviours, the relevant equations
can be integrated and the solution completed in the manner already described.

(b) The equation for the isobaric surfaces
Writing the equation for the isobaric surfaces in the form,

r(p) = ro+ &o(ro)+ &2(ro) Pa(cos ), (72)

where 7¢ is the radius of the spherical surface in the non-rotating configuration
on which the pressure is p, we conclude from the definitions (11) and (12) that

- (2 - (1P
0Py = (€ +p d ) fo(i’o) and 6P; (E-I-P dr)o 52(1‘0). (73)
Alternatively, by making use of equation (3), we can also write
d d
8Py = Z0 £o(r) and 8Py = =0 &), (74)

where we have not distinguished between 7 and 7¢ as the distinction is no longer
meaningful.

* A solution with n = —o-25— 4/33/4 is also possible; but we ignore this possibility as
inadmissible.

+ The units in which the various quantities are now measured are those specified in
equation (45) with ¢ replaced by the constant A4 in the solution (69).
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In the present context, equations (74) give

& = ECIUZ(?___(_K;)_% 8Py and & = ST%Z&‘%S%SP (75)

Making use of equation (48), we can rewrite the foregoing expression for &3 in the
form

_ _(=%)(c+2) [ 4x(2 — x) 2]
£ = x12(z — x)1/2 ha+ 3Gc+a2 | (76)
The ellipticity of the isobaric surfaces is given by (¢f. Thorne 1971)
) = =3 |2 s o) )| (77)
or, according to equation (76)

G [NELC B .
) = N (14 C | Soa—) (79)

In particular, the ellipticity of the bounding surface is given by

- 3t oyt ) 2}_3 -

) = 205 o+ 122 @, 2] S -l (o)

where we have substituted for = its value given in equation (55). (Note that we
have measured £y and £z in the unit a3we? and € in the unit o2w,2.)

4. NUMERICAL RESULTS AND ILLUSTRATIONS

The equations derived in Section 3 were integrated for various initially assigned
values of R/Rs = (1—y12)71, where Rg(=2GM|c%) denotes the Schwarzschild
radius. The integrations were carried out using the method of Nordsieck (1962).

In Table I, we list some of the deduced integral properties of the models as
well as quantities that characterize the bounding surface. The principal results of
the integrations are further illustrated in Figs. 1-8.

Both in the table and in the figures, dimensionless variables are used and the
units in which the various quantities are expressed are given at the bottom of
Table I and in the caption to each of the figures. One may obtain the physical
parameters appropriate to a configuration of given mass (M), radius (R), and
angular velocity (Q), from the information provided in the table and in the figures,
as follows. (i) Calculate the Schwarzschild radius Rs = 2GM/c? from the known
mass and express the radius R in the unit Rg; R/Rg is the principal argument that
is used. (ii) From Fig. 2 or from Table I, obtain (by reading or by interpolation)
the value of I appropriate to R/Rs. The angular momentum J of the configuration
in CGS units is then given by I(Rs3¢2/G) Q. (iii) With the deduced value of J
and the known value of Rg, evaluate (in CGS units) the units (listed at the bottom
of Table I) in which the various quantities are expressed. (iv) From the table or
from the graphs, the value of any desired quantity, in the units in which they are
expressed, can be inferred; and with the values of the units known, the inferred
values can be converted into CGS units.

While adequate descriptions accompany the figures, we may draw attention
to the following specific features.
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0 1 2 3 4 5
F1c. 1. The angular velocity w = (Q— w) relative to the local inertial frame: w|Q is

plotted aginst r/Rs for several values of R/Rs. The curves are labelled by the values of
R|Rg to which they belong.

It will be observed from Fig. 2 that I/MR2 (where I = J[Q defines the relati-
vistic generalization, for slowly rotating systems, of the Newtonian concept of the
moment of inertia) tends to the Newtonian limit o-4 as R/Rg— oo, while it takes
the value ~o-8 for R/Rg = 9/8.

Figs 3, 4, 5 and 6 illustrate the behaviour of the functions £y(R)/R,— é2(R)/R
and e(R) which describe the deformation of the bounding surface caused by the
rotation (¢f. equations (72) and (77)), for constant mass and angular momentum.

1/MR2
1.01

0.-8-

0.6+

0.4

0.2

[ R/Rsg
0 4 8 12 16 20

F1G. 2. The moment of inertia: I|MR? is plotted against R[Rs.
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£o/R

R/Rs

F1G. 3. The | = o deformation of the boundary: £ofR is plotted against R|Rs; &o/R is
measured in the unit G2J2[Rg%c2.

These functions are not monotonic in R/Rg and have maxima at R/Rg ~ 33, 27
and 2-4, respectively.

The variation of the ellipticity of the isobaric surfaces through the configuration
is illustrated in Fig. 8. In the Newtonian limit ¢(R) is, of course, constant through
the configuration. Note that in the limit R/Rgs— 9/8 the ellipticity of the isobaric
surfaces close to the centre tends to zero.

In many ways, the most interesting phenomenon disclosed by this study is the
reversal in the behaviour of the ellipticity as the object contracts keeping its mass
and angular momentum fixed. The underlying cause for this behaviour would

8
-, /R
6..
|
41 |
‘1 |
|
, , R/Rg |
0 1 2 3 4 5

Fi1c. 4. Thel = 2 deformation of the boundary: — £3/R is plotted against R/[Rgs; £2/R is
measured in the unit G2J2/Rg%c2.
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€
124
8-
4
' . _ . R/Rs
0 10 20 30 40

F1c. 5. The ellipticity of the boundary: € is plotted against R|Rs; € is measured in the unit
G2J2/Rgc2.

appear to be the following. In general relativity, the primary quantity that deter-
mines the magnitude of the centrifugal effects of rotation is not Q but w = Q— w.
During contraction, w (the angular velocity relative to the inertial frame) first
increases but this trend reverses when R/Rs ~ 1+4; thus, in Fig. 7, it will be
observed that the curve for R/Rs = 1-3 lies entirely below that for R/Rs = 14
and the curve for R/Rs = 9/8 lies below all the curves for 9/8 < R/Rs < 1-4. Conse-
quently, during the advanced stages of contraction, the contribution to the ellip-
ticity by the second term (= w12) on the right-hand side of equation (79) decreases.

T

0 1 2 3 L

F1G. 6. The ellipticity of the boundary: e is plotted against R|Rs; € is measured in the unit
G2J2|Rg4¢c2.
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0.2 o= 1,.0)
_/ -

0 02 04 06 08 10

F1c. 7. The variation of w (=Q— w) through the configuration: w is plotted against
7[R for several values of R|Rs; w is measured in the unit GJ|Rs3c2. The curves are labelled
by the values of R/Rs to which they belong.

That the maximum in the ellipticity does not occur at R/Rg ~ 1-4, but at
R/Rg ~ 24, is due to the fact that the centrifugal force depends not only on =
but on other factors as well. These other factors are included in the term in A3 (1)
in equation (79) and the contribution to the ellipticity by this term monotonically
decreases as the contraction proceeds. The maximum in the ellipticity occurs
when the rates of change of the two terms which contribute to it just balance.

€
12 20
30
// 5.0
81 13
1125
L -
r/R
0 0.2 0-4 06 08 10

F1c. 8. The variation of the ellipticity of the isobaric surfaces through the configuration:
e(r) is plotted against v[R for values of R/Rs = 1-125, 13, 1'5, 2'0, 30 and §0; € is
measured in the unit G2J2/Rgs%2. The curves are labelled by the values of R|/Rs to which
they belong.
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The value of the quadrupole moment Q = 2-002 for the configuration of
minimum radius, R/Rs = 1'125, is noteworthy for the following reason. It is
known (¢f. Thorne 1971; see remarks following equation (3.70) on page 275)
that the Kerr metric expanded to the first order in J2 (equivalently Q2) corresponds
to O = 2. Consequently, the metric external to a slowly rotating configuration
of minimum radius agrees with the Kerr metric to the requisite order to one part
in a thousand.

A question related to the remarks in the foregoing paragraph concerns whether
an ergosphere can occur external to a rotating configuration. For the models under
consideration, the question is equivalent to asking whether there is a surface outside
the boundary of the configuration on which ggo vanishes. Using the relevant
equations given in the previous sections, we find that the condition for Loo to
vanish outside the configuration is

—(R—1)+(QRS)ZIZ{8M 2 4

i T2 1 T Qein2
c e TRt

~2(R-1) |21 5(0-2) 0ua(aR— )| Pafeos 0

_% [0+ é2P3(cos 0)]} >0, (80)

where R is measured in the unit Rs and the rest of the quantities I, SM/M, Q, &
and &3 have the values listed in Table I. In particular, on the equator the condition
is equivalent to

ORs\2 ,, [6M 2 1
—(R-1)+ (T) I2 {“M TBETR (bo—162)
+(R=1) |14 5(0-2) 0ar-1)|
2
=—(R—1) [1—(%{8) f] >o0. (81)
For the first few models listed in Table I the factor f has the following values:
f = 1046 8:56 6-16 374 245 1-60 (82)
R/Ry = 1'125% I'15 I-2 13 14 15 |

From the foregoing values it would appear that there is just a possibility that the
configuration of minimum radius when rapidly rotating might develop an ergo-
sphere near the equatorial plane.

5. CONCLUDING REMARKS

'The behaviour of adiabatically contracting slowly rotating homogeneous masses,
illustrated in Figs 5 and 6, combined with the known divergence of the solution
for the deformed Maclaurin spheroids for an eccentricity ¢ = 0-985 (Chandrasekhar
1967, 1971) raises the serious question of whether stable disc-like objects are at all
possible in the framework of general relativity. However, before one accepts the
conclusions derived from these considerations pertaining to homogeneous masses,
one must examine if the allowance for compressibility and inhomogeneity will affect
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the qualitative character of the behaviours as distinct from their quantitative aspects.
In any event, it would appear that a study of the slow adiabatic contraction of
rotating objects, in general relativity, may have some surprises in store.
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