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ABSTRACT

In this paper, a variational base is derived for locating the point of onset of dynamical in-
stability along a sequence of differentially rotating configurations. The underlying idea is to seek
the conditions for the existence of quasi-stationary, nonaxisymmetric modes of deformation in
frames of reference rotating with various preassigned angular velocities.

Subject headings: hydrodynamics — instabilities — rotation

I. INTRODUCTION

In a recent paper (Chandrasekhar and Lebovitz 1973; this paper will be referred to hereafter as Paper II) a
variational base for locating a Dedekind-like point of bifurcation along a sequence of differentially rotating con-
figurations was derived. The method consists in determining whether a configuration allows, in an inertial frame, a
quasi-stationary, nonaxisymmetric deformation with a dependence on the azimuthal angle ¢ of the form e™,
where m is an integer greater than or equal to 1. It was, however, emphasized that the notion of a neutral point
(where an instability of some sort could set in) for a rotating system is ambiguous: the ambiguity arises from the
freedom we have in the choice of the coordinate frame in which we may seek the neutral mode. On this account,
the possibility of a neutral deformation need not necessarily be a signal that some instability will set in. Accordingly,
it would be useful if a criterion for the onset of dynamical instability can be given, since its onset cannot depend on
the choice of frame. In this paper, we shall show how by a simple generalization of the analysis of Paper II, we
can establish a criterion for the onset of dynamical instability by a nonaxisymmetric mode of overstable oscillations.

II. THE BASIC IDEA
Suppose that in the inertial frame, the configuration allows a nonaxisymmetric mode of oscillation described by
a Lagrangian displacement of the form
fainertia.l(m’ z, ¢’ t) = fa(,w.’ Z)ei(at+md:) (a = w, Z) s (l)

where (@, z, $) define a system of cylindrical polar coordinates, m is an integer greater than or equal to one, and
o is a characteristic frequency. We now inquire* how this deformation will appear to an observer at rest in a frame
rotating with a uniform angular velocity €.

Let ¢, denote the azimuthal angle in the observer’s rotating frame. It is related to the angle ¢ in the inertial
frame by

$o=¢ — Qot. @
Accordingly, the displacement will appear to the observer in the rotating frame as
farotatlng frame = fa(,m., Z) €Xp [l(a + on)t + 1m¢0] . (3)

From equation (3) it follows: so long as o is real and the mode of oscillation is a stable one, there exists an Qg
(= —o/m) such that, for an observer, at rest in a frame rotating uniformly with this angular velocity Q,, the mode
will appear as one associated with a neutral deformation; and the signal for the onset of dynamical instability is when
two such values of Q, coincide to become complex conjugates.

From the foregoing, it is clear that what we have to seek is the condition for the occurrence of a neutral mode
of deformation with a ¢-dependence ¢™? in a frame of reference rotating with some initially specified angular

* The argument which follows is essentially that described in a different context in Chandrasekhar (1969, § 36); this book will
be referred to hereafter as E.F.E.
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velocity Q,. From such determinations of Q, along a sequence of configurations, we can locate the point at which
dynamical instability will set in: it is the point where two allowed values of €, coincide.

III. THE EQUATIONS GOVERNING STATIONARY NONAXISYMMETRIC SYSTEMS IN A ROTATING FRAME

In a frame of reference rotating with a uniform angular velocity Q,, the hydrodynamic equations governing a
perfect fluid in a stationary state, and in gravitational equilibrium are

and

ds oz poz ®)

where v”, 1%, and V (=wQ) are the linear velocities along the three principal directions, O is the Newtonian
gravitational potential, p is the density, p is the pressure, and

D 0 - 0 0
ZS=Q%+U %-l-vza—z- ©6)

Besides, we have the equation of continuity and Poisson’s equation; these have the same forms as in the inertial
frame. But the Bernoulli integral has a different form; we now have

b 2 _ Qg - 10252 + 2 =
PR (%lv] B - 1Q.%w +p+II =0, @)
where II denotes the thermodynamic internal energy (per unit mass).

a) The Equations Governing Equilibrium
As our initial equilibrium configuration (which we shall presently subject to quasi-stationary deformations) we
shall consider one which is stationary and axisymmetric and in which only rotational motions (specified by €2) are
present:
V=wQ, v=0°=0. ®
Q= Q(=). O]

It should be noticed that Q is the angular velocity as viewed in the rotating frame. The angular velocity €, in the
inertial frame, is given by

We shall further suppose that

Ql = Q + Qo . (10)
Corresponding to Q, and Q,, we have the linear velocities
Vo = wQ and Vi=wQ=a(Q+ Q) =V+V,. (11)
From equations (4) and (5), we readily verify that the equation governing equilibrium is
o= 3pe= =8 (= m2); 12)

equation (12) is, in fact, the same as the equation in the inertial frame (cf. Paper I1, eq. [8]). And again, by virtue of
equation (9),

p =p(p). 13)

IV. THE EQUATIONS GOVERNING INFINITESIMAL QUASI-STATIONARY, NONAXISYMMETRIC DEFORMATIONS

We shall suppose that a configuration, initially axisymmetric, stationary, and governed by equations (8), (12),
and (13) is subjected to an infinitesimal nonaxisymmetric deformation in a quasi-stationary manner, in the rotating
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[frame considered. As in Paper I1, we shall describe the deformation in terms of a Lagrangian displacement £%(w, z; ¢)
related to v* by

= Q& 4, (19)
4w, z; ) = §%(w, 2)e™?, (15)

where m is an integer greater than or equal to 1. And again, we shall distinguish between the Eulerian and the
Lagrangian changes defined in terms of the operators 8 and A.
The linearized version of the Bernoulli integral (7) now gives

and further suppose that

VAV — A — Q 2wé™ + Ap =0. (16)

Alternative forms of equation (16), which we shall find useful, are (cf. Paper II, egs. [16] and [17])

VeV = —% 8 + 0B — 2wéTQQ, — w27Q0 5 amn
and
3V 5 Ap £ Q2 — Q2 - Qo
Y= S e (18)
where
_ 2/£ 1/2 _1— .
(2"}
The linearized version of the equation of continuity has the same form as in the inertial frame; we have
ApV) = —pVEs,  of (V) = —(pVE,. (20)
An alternative form of this equation is
Ap = 14 « _ 5 _ ¢w .&’
2o F-e-E-rTE 1)
Combining equations (18) and (21), we obtain (cf. Paper II, eq. [21])
Ap 1 AD " & Q,
7_32—1(V2+§'a+ Q2) (22)

Linearizing the hydrodynamical equations, we obtain, as in Paper II, the pulsation equation,
A
—m2pQ2gt = — (%f—’ Ap) + IA® + 4V + =L o = pr(QDQ) . — QL. (23)
11

This equation is, in fact, identical with the equation in the inertial frame (cf. Paper II, eq. [26]).
And finally, we have the linearized version of Poisson’s equation:

2
(@88 2) o + (@8D) ., + 4nGuwdp = ’f’; 3. 24)

Equations (23) and (24) provide three dynamical equations, while equations (18) and (22) are to be considered
as providing initial-value equations. These equations must be supplemented by the boundary conditions
& and 83 are everywhere finite ,

+

Ap = }% Ap=0 and n*8% ,| = —4wGpn,é”* on the boundary wherep = 0,

and
d/<r3 as r—00, 25

where n® is the unit outward normal to the boundary.
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The equations and boundary conditions which we have enumerated constitute a characteristic-value problem
for m?; and we shall treat it in the same manner as in Paper II.

V. THE VARIATIONAL PRINCIPLE

Defining a trial displacement &* and a trial change 53 as in Paper II (§ 4) and proceeding along identical steps,
we now obtain (in place of Paper II, eq. [29])

m2 Jf (przf"‘E“ - %ﬁ)dmdz

ApA - A = A - -
-] [wyp O + 2 op Fops - wp,a(f“ £ f"‘—:) — b5V + @ QL) + woQ)
— pwTETQ2 5 — 20w Q7Y + ETSV) — w(5DSp + 5Bp)

w - —
+ 477-—G‘ (8%,1,,8%,,, + 8%,28%,2)][1@'612

+ [ InatmsBlgrad pl - pn(e50 + E60)1ds (26)
S

The manifest symmetry of this equation in the barred and the unbarred quantities, clearly implies that we can
formulate a variational base for solving the characteristic-value problem specified by equations (18), (22), (23), (24),
and (25). Instead of Paper I, equation (31), we now have

[ {pwm[(sw)z T (] - %}dwdz

A = 0,2\ 2 a 7\ 2 N wQ o w .,
~ [[{oor|tp (55 + e+ EF) = (50 - £)| + 20072+ Z5) + Zemattn,

+ 2wd8BE% , + ZPwQQof”’(Zf"’ + 2wt , + wé” %u) + Z:—-G [(3V,2)* + (3%,2)2]}(1'13(12

+ L [(ne£%|grad p| — 2p5%n,£%)ds . @7
And again “enlarging”’ the definition of £* to include a ¢-component (as in Paper I1, § IVa), and defining a density
3% = = (wpt™) . — (8, — L g0, 28)
we can reduce equation (27) to the form (cf. Paper II, eq. [40])
i f f pw Q&) dwdz + (7 — 4) f f QA dwdz + ”’24+G’7"2 f f B terdz
= [[{eor| 2 (32 + e + ) - (20 - £) | + 2oerain, + Z epatte,
+ 2w8BE% , + wIBVOP + 4pQQwé™(£” + wg"‘,a)}dwdz

+ f [(n,£%)|grad p| — pdTn,elds , 29)

where it should be remembered that Q = (Q; — Q,) is the angular velocity in the rotating frame.

Equation (29) is more conveniently considered as an equation for Q, for some assigned integral value for 7
rather than as an equation for determining where, along a sequence of configurations, 7 takes an integral value
for some assigned Q.
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VI. AN ILLUSTRATIVE EXAMPLE
For the trial function

& =w, &£ =0, and f=—-w 30)

appropriate for m = 2, considered in Paper II, § V, equation (29) reduces to
V2 Q22
f f {T”-’f_—ﬁz [;; @ -9+ 1+ ﬁ%] + 207°QQ o

w3 Q&
+ 7‘p,wp,w — w50 o9 & + 2pw3Q0[4 + m’——(—’z— dwdz

+f [(n,£%)?|grad p| — pdBn,E*ds =0, (31)
S
where 9 is the solution of the equation

(@9 2) 0 + (©°9 ), = —47Gpw® . 32)

a) Verification of Equation (31) for the Maclaurin Sequence

We shall now verify that equation (31) correctly predicts, for each member of the Maclaurin sequence, the two
values of Q, for which quasi-stationary deformations of the form considered exist; and further that the criterion
for the onset of dynamical instability is when the two values of Q, coincide.

Along the Maclaurin sequence

4 B = 7Gp(I — Ayw? — A3z?) (I = 24,a0,% + Agas?
an
® = nGpa,*(4; — Anw® — 41527, (33)

where the index-symbols 4,, A4;,, B,,, etc., have their standard meanings (cf. E.F.E., § 21).
In the present context, we should require

Q.2
7@ =0+ 1+ 55 =0, (34)

since this quantity is proportional to Ap. By measuring angular velocities in the unit (#Gp)*/?, we obtain from
equation (34) the relation
Q2 + Qoz - 2.311 = 0 B (35)

If Qu., in the same unit, denotes the angular velocity of rotation of the Maclaurin spheroid (in the inertial frame),
equation (35) can be rewritten in the form

Qe — Q)% + Q2 — 2B;; =0, (36)
o Q¢2 — QQue — (Byy — 304 = 0. 37
The surviving part of equation (31) is

f f 8pm QO dwdz + L [(.£%)2|grad p| — p8Bnyeelds = 0 . (38)

The surface integral in equation (38), transformed back into a volume integral, is
~[ [ ol + 300721 + plart=80) Az = Gp [ [ 8p*(Brs — Pz, (39)

where, in the reductions, we have made use of the relation (cf. Paper II, eq. [43])
5T = —'arg—% = 2nGpa Ay . (40)
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Equation (38) accordingly requires
QQy + By; — 30u> =0; 41)

and this condition is clearly equivalent to (37).
Solving equation (37) for Q,, we obtain

Qo = %[QMc + (4B, — QMcz)llz] . (42)

This last expression for Q, is in agreement with the known result (cf. E.F.E., p. 94, eq. [106]). The two values of
Q, given by equation (42) coincide when

Que® = 4By, 43)
and this is indeed the point where dynamical instability sets in along the Maclaurin sequence.

VII. CONCLUDING REMARK

In view of the doubts that have sometimes been expressed concerning the criteria, for the stability of differentially
rotating stars, that have been derived by the method of the tensor virial, it would be useful to have those results
confirmed by making use of the variational principle derived in this paper.

The research reported in this paper has in part been supported by the National Science Foundation under grant
GP-34721X with the University of Chicago.
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