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ABSTRACT

The equations in the Newtonian theory, which govern quasi-stationary nonaxisymmetric
deformations of axisymmetric configurations in nonuniform rotation, are derived; and the con-
dition for the existence of such deformations with a #-dependence of the form e'™® (where m is an
integer greater than or equal to 1) is expressed in terms of a variational principle. The condition
for the case m = 2 applies for the occurrence of a Dedekind-like point of bifurcation.

In an appendix the variational principle governing the axisymmetric modes of oscillation of
differentially rotating systems is reformulated in a manner that avoids the solution of a second-
order partial differential equation.

Subject heading: rotation

I. INTRODUCTION

The recent studies of Ostriker and his associates (Bodenheimer and Ostriker 1973;
Ostriker and Bodenheimer 1973; and the references listed in these papers) have shown
that sequences of differentially rotating compressible masses—their *“zero-viscosity”
sequences—exhibit remarkable similarities with the classical Maclaurin sequence of
uniformly rotating incompressible masses. For example, these studies strongly suggest
that sequences of differentially rotating configurations will exhibit points of bifurca-
tion (i.e., points of neutral stability) where |£/%| ~ 0.14, where € denotes the kinetic
energy and 98 the gravitational potential energy of the configuration. Ostriker and
Bodenheimer locate the points of bifurcation along their sequences by determining the
characteristic frequencies of the relevant nonaxisymmetric modes of oscillation in
accordance with the formulae of Ostriker and Tassoul (1969; see also Tassoul and
Ostriker 1968); these formulae were derived from the tensor-virial equations in the
manner of Chandrasekhar and Lebovitz (1962, 1963) in their treatment of uniformly
rotating masses. However, it would appear that the application of the tensor-virial
equations is subject to greater uncertainties in the context of differentially rotating
systems than it is in the context of uniformly rotating systems. In any event, it would
be useful to establish a criterion for the occurrence of a point of neutral stability that is
exact and which is susceptible, at the same time, to an algorism that will locate the
point with increasing precision. But it is important to observe, first, that the definition
of a “neutral point” for rotating systems is subject to an ambiguity: it arises from the
freedom we have in the choice of a coordinate frame in which we wish to specify the
characteristic frequencies belonging to the various normal modes. Thus, in the case
of the Maclaurin sequence, its entire stable part can be considered as a curve of neutral
stability in four different ways corresponding to the four Riemann sequences which
branch off from each point (cf. Chandrasekhar 1969, § 36; this book will be referred
to hereafter as E.F.E.). Nevertheless, in the context of uniformly rotating systems two
frames of reference are naturally distinguished: the frame rotating with the uniform
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angular velocity Q of the configuration, and the inertial frame. Along the Maclaurin
sequence, the neutral points in the two frames occur at exactly the same point; but the
modes to which they belong are different: the neutral mode in the rotating frame
deforms the Maclaurin spheroid into a Jacobi ellipsoid while the neutral mode in the
inertial frame deforms it into a Dedekind ellipsoid (cf. E.F.E., p. 94, the remarks
following eq. [106]). It is also known that the onset of secular instability at the common
point can be by either mode depending on the nature of the dissipative process that
may be operative; thus gravitational radiation-reaction makes the Maclaurin spheroid
unstable by the Dedekind mode while normal viscous dissipation makes it similarly
unstable by the Jacobi mode (cf. Chandrasekhar 1970).

When a configuration is rotating nonuniformly—with Q as a function of = (the
distance from the rotation axis), for example—we cannot distinguish in any un-
ambiguous way a particular rotating frame as unique. But no such ambiguity beclouds
the definition of the inertial frame. Accordingly, the definition of a Dedekind-like
point of bifurcation is not subject to the ambiguity which is inherent in the definition
of a Jacobi-like point of bifurcation.

In view of the foregoing remarks, we shall restrict ourselves in this paper to the
location of a Dedekind-like point of bifurcation along a sequence of differentially
rotating configurations. For this purpose, we shall establish a criterion which will
specify the circumstances under which an initial configuration in equilibrium can be
subjected to a nontrivial quasi-stationary nonaxisymmetric deformation without
violating any of the governing equations. The present paper provides, therefore, the
Newtonian version of the relativistic theory developed in the preceding paper (Chan-
drasekhar and Friedman 1973b; this paper will be referred to hereafter as Paper I).

II. THE EQUATIONS GOVERNING STATIONARY NON-AXISYMMETRIC SYSTEMS

In a system of cylindrical-polar coordinates, (w, z, ¢), the equations of hydro-
dynamics governing a perfect fluid, in a stationary state andin gravitational equilibrium,
are

Dy V2 o8 1dp Dv: o8 1op 1
_d;—;+5; P% and ds———a—z'—;'a—z" (1)

where v7, v?, and V (=w(Q2) are the linear velocities along the three principal directions,
B is the Newtonian gravitational potential, p is the density, p is the pressure, and

D d o | 0
2.;:98_(]5_*—0 —a;;'FU—a"E' (2)

Besides, we have the equation of continuity

0 0 i N
and Poisson’s equation
e 1 028
( ,w),w + (’lD'Q}),zz + 4’ITG’w'p = _;W . (4)

! The ¢-component of the equation is not written out here; its role in the present analysis is
replaced by the Bernoulli integral (see eq. [5] below; also footnote 2).
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And if the entropy of a fluid element is conserved during its motion, we have the
Bernoulli integral

%(%|v|2—%+§+n)=o, ()

where II denotes the thermodynamic internal energy (per unit mass).

a) The Equations Governing Equilibrium

As our initial equilibrium configuration (which we shall presently subject to quasi-
stationary deformations) we shall consider one which is stationary and axisymmetric
and in which only rotational motions (specified by () are present:

V=wQ, " =0v*"=0. 6)
We shall further suppose that
Q= Q). @)
The equations governing the equilibrium of such configurations are
@+ 3V —- %P.a = 3a’Q?, (¢ =w,2), (®)
and
(B 2) w + (D) ,, = —4nGwp . C)

It can be verified that for distributions of pressure and density compatible with
equations (7) and (8)

5((:;’, 2 =0 or p=plp). (10)

(This result is indeed obvious; but it seems to have been explicitly stated first by
Wavre 1932.)

III. THE EQUATIONS GOVERNING INFINITESIMAL NONAXISYMMETRIC DEFORMATIONS

We shall suppose that a configuration initially axisymmetric, stationary, and
governed by equations (6)-(9) is subjected to an infinitesimal nonaxisymmetric
deformation in a quasi-stationary manner (i.e., infinitely slowly). We shall describe
such a deformation in terms of a Lagrangian displacement ¢*(w, z; ¢) related to the
velocity v* (strictly, the Eulerian change 8v* in the velocity) by

= Q¢ ,; (11)
and further suppose that
£(w, z; 4) = §4(w, 2)e™?, (12)

where m is an integer greater than or equal to 1.
As usual, we shall distinguish between an Eulerian and a Lagrangian change that a
quantity experiences by virtue of the deformation. These changes can be expressed
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as the result of an Eulerian (8) or a Lagrangian (A) operator acting on it; and the
relation between the two operators is

A=+l (13)

The equations governing the deformation can be obtained by linearizing equations
(1)~(5) about the equilibrium solution. Thus, the linearization of the Bernoulli
integral (5) gives

VAV—AQHZ:’;AP:o, (14)
where use has been made of the relations
Ap Ap (1)
—_ = _ and Al-) = '-'Al_[ 3 15
2 =7 PALS 15)

which ensure that each element of the fluid conserves its entropy during its motion.
In equation (15), y denotes the adiabatic exponent as commonly defined. Alternative
forms of equation (14) which will be found useful are

Vsy = _;1)- §p + 8B — 267w — LEmm2Q2 (16)
and
14 _ 2 AP AT o Q-,‘ur fm
2 i e 17
where
g = velocity of sound 1 (yp\¥2 (18)
~ transverse linear velocity ¥V \ p

Similarly, the linearization of the equation of continuity (3) gives

ApV) = —pVE o5 19
or, alternatively
Ap 8V " £ e Qo
———_V——‘f,a_'; f—Q-' (20)

Solving equations (17) and (20) for Ap/p and 8¥/V, we obtain

A 1 AD
-;)B=B—2_—1(—V—z+§“,a) (21)
and
8V o wlw  §7_ 1 (AT o ).
7+f—g—+w— ﬁz_l(Vz'*‘Bg,a) (22)
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We may conclude from equation (21) that

% +£&,=0 when B=1, (23)

i.e., when the transverse linear velocity becomes sonic. That the sonic line should
appear explicitly in this manner in the present analysis has a clear physical origin; but
it requires a more careful consideration than we shall attempt at this time.

Turning next to the hydrodynamical equations (1), we obtain their linearized
versions

8v2 Sp 1

M = S 80 + G P = 2 (24)

and
20)2 3p 1 2
—mez—S%’z-}- 2pz"';8p,z' (25)

By making use of equations (8) and (15), we can bring the foregoing equations to the
form

A
~mtpge =~ (Lap) 4 oA + 1P+ Lps

— p(QAQ) , — pwtTQ2, . (26)

We observe the remarkable similarity of equation (26) to the standard form of the
pulsation equation governing the axisymmetric oscillations of these same configura-
tions; and it plays the same role in the present context.

And finally, we have the linearized version of Poisson’s equation:

2
(@D ) o + (@8D) ., + 4nGwdp = % 5 . 27)

Equations (26) and (27) provide three dynamical equations for the problem while
equations (15), (17), and (20) are to be considered as providing initial-value equations.
These equations must be supplemented by the boundary conditions

& and 88 are everywhere finite ,
Ap =0 and n*8B 4|t = —4aGpn,é”,
on the boundary where p =0,

and
8B < r-3 as F—> 00, (28)
where n, is the unit outward normal to the boundary. The equations and boundary

condition which we have enumerated constitute a characteristic value problem for
m?. We should not, of course, expect that for an arbitrary initial configuration an

2 In addition to equations (24) and (25), we might also have written an equation governing the
Lagrangian displacement £° in the ¢-direction. In the present treatment, equation (17), derived
from the Bernoulli integral, replaces that equation to which, in fact, it can be shown to be equivalent.
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allowed characteristic value for m will be an integer (=1). We are, however, interested
precisely in the circumstances which will permit an integral characteristic value (greater
than 1). In particular, if m = 2 is an allowed characteristic value, we should conclude
that the initial configuration is susceptible to a Dedekind-like point of bifurcation.

1IV. THE VARIATIONAL PRINCIPLE

First, we define a trial displacement £ and a trial change 83 by the sole requirement
that they satisfy the same boundary conditions as are demanded of the proper solu-
tions of the characteristic-value problem; and we determine the associated barred
variations Ap, 8V, etc., in terms of the chosen £% and 0¥ with the aid of the initial-
value equations (15), (17), and (20). _

We next multiply the pulsation equation (26) by w£®, sum over « (i.e., = and z),
and integrate over all = and z (i.e., over 0 < w < o0 and —o0 < z < +00). After a
sequence of reductions involving several integrations by parts and substitutions from
the initial-value equations (which the barred and the unbarred quantities must satisfy)
and the dynamical equations (27)® governing 83, we obtain

- 1 —
2 2¢a o
m ff (p'arQ &g ywre S%BQ)dde

-{][o»

— po(dV + wi"Q )V + wE"Q4) — pw?Q? LEvE"

ApDp = z ( Ap - Ap)
+ — €% ,EPp 5 — ol £ — + & —
P2 P gp,af P.s wp, f P f P

— 2pwQ(¢78V + E78V) — w(8B8p + §BSp)

+ 1o (80,250 5 + 8%'25%,z)]dwdz

+f [naé°nsé®|grad p| — png(£%8B + £28V))ds , 29)
S

where n, is a unit vector normal to the boundary of the configuration on which p
vanishes and the integral over s is a line integral extended over a meridional section
(for w = 0) of the boundary. (If p should vanish on the boundary, the line integral
makes no contribution since in this case grad p will also vanish on the boundary.)
It should also be noted that in equation (29), the integration over the terms in &3
must be extended over the entire admissible ranges of w and z; but the integrations
over the remaining terms need be extended only over the regions occupied by the
fluid since these terms include p or p as a factor.

We observe that equation (29) is manifestly symmetric in the barred and unbarred
quantities. It can be shown that on this account, equation (29) provides the basis for a
variational determination of m?2 in the following sense.

bWe Sformally identify the barred and the unbarred quantities in equation (29) to
obtain

3 1t cannot be assumed that 5O satisfies this equation.
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2 2 2)2 8%2
m? porP[(§7)* + (6)°] — = (dwdz

_ 7P AP)2 T o s Ap
- YE(2RY 4 Ty 8, 2 2P gey 2w8d
”{Pwp (P S £t — 27— £ — 2w8Tdp

— psz(S—;/q— fw 2 ) — 4p Vzguré_lf_ 2 V2(§’”)2

+ 4,% (83 ,=)* + (3%,z)2]}dwdz + J [(n£%)?|grad p| — 2p8Tn,¢°]ds
(30)

where we have replaced m by # to emphasize that we are presently requiring not that
i be an integer but only that it be a characteristic value of the problem which we have
formulated.

We now consider equation (30) as a formula for 7?2 in which £* and 693 are a trial
displacement and a trial change (in the sense we have defined these quantities) and
Ap and 8V have the values given by the initial-value equations (in terms of £* and
8V). Suppose we now evaluate 72 successively with the aid of two sets of trial func-
tions (€%, 8F) and (&% + 18¢%, 6B + 182F). The effect (6/%), on m? given by equation
(30), of (arbitrary) increments (18£%, $620) in the selected trial functions can be written
down directly from equation (30) by subjecting it to the desired variation. If we now
demand that 8§72 vanish identically for an arbitrarily selected §£* and 80 (consistent
only with the boundary conditions of the problem), then it can be shown (by essentially
retracing the steps that led to eq. [29] starting from the pulsation equation) that the
chosen &% and 89 satisfy the dynamical equations (26) and (27).

By making use of equations (21) and (22), we can reduce equation (30) to the more
convenient form

dll {pwm[(fwf + (& - Si}d dz

AD " i &

= [[{rer=m G + ) = (- 2)')
2 2 Qo T s, (B

+ 2pwQ(§7)?( 2 + ronll B ;fp,af P8

+ 2w8BE%p 4 + e [(8B )2 + (8 ,)?] tdwdz
’ 4G ’ ’
+f [(n,é%)?|grad p| — 2pdBn,£*1ds . (31)
N
a) An Alternative Form of Equation (31)

In equation (31), the terms in 8B require to be integrated over the infinite ranges of
w and z. We shall now describe a procedure which will partially eliminate the need for

the evaluation of such infinite integrals.
Let &(w, z; ¢) be a three-dimensional displacement with the components

& = &7 cosme, & = ¢ cosmg, and £ = ¢ sinmg (32)
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where {7 and €% have the same meanings that they have had hitherto. The definition
of ¢ thus “enlarges’ our earlier definition of £* to include a ¢-component as well.

The three-dimensional displacement ¢ will generate a density-like function
8p(w, z; ¢) given by

8p = —div (pf), (33)
or
8p = 6p(w, z) cos m¢ , (34)
where
5 = —= (wpt)w — (p£7),, — 22 (35)

The displacement & will also generate a 83 given by

8B = 8B cos mé, (36)
where 83 is determined as a solution of the equation
L (@8B.0).0 + (50) .. — T 60 = —4nGop, 37)
@ w
satisfying the condition
1,8 4| E = —4nGpn, - . (38)

With 80 defined in the foregoing manner, it can be readily verified that

ﬁ f j: f: (53 0)° + (53_,)\duwrdz

+ oo
J f w835 dwdz — f ——dwdz + f 8T t5ds . (39)

Inserting this last result in equation (31), we obtain

2 j f Q& dudz + (7 — 4) f f pli(eydmdz + T j f 2 iz

S e )

+ 2pV(£7)? %ﬂ’ + %’ £p o &p , + 2w8BEp o + wS%Sﬁ}dwdz

+ f [(n£%|grad p| — p8%m,Elds , (40)

where it will be observed that no infinite integrals occur on the right-hand side of the
equation.

One cautionary remark concerning the use of equation (40) as a variational basis for
evaluating 72 should be noted: it concerns the apparent singularity of the integrand
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(on the right-hand side) at B8 = 1. As we have noted earlier, we should require of a
true proper solution that it satisfies the condition expressed in equation (23). If a
selected trial function does not satisfy equation (23), we may include as a part of the
variational assumption that the singularity at 8 = 1 is to be avoided by taking the
principal value of the integral.

V. AN ILLUSTRATIVE EXAMPLE

It is known that along the Maclaurin sequence, the Dedekind bifurcation occurs by
the displacement

& = xt, £2 = —x2, and £=0. 41)
In the notation of § IVa, this displacement corresponds to
T =, =0, and §=-w. (42)
The variations 84 and 83 induced by this displacement are
A 9p __._®
8p = —w 5 and B =—w el (43)

where 9 is the solution of the equation
(@9 z)w + (@D,,),. = —4nGpw® . (a4)*
The corresponding Lagrangian change in Q8 is given by
AB = (B — 9) . (45)

Inserting from equations (43) and (45) in equation (40) we obtain the following
approximate criterion—approximate since it is derived from an assumed trial dis-
placement—for the occurrence of a Dedekind-like point of bifurcation along a
sequence of differentially rotating configurations:

wV? [ o 2 Q-
({5l oo ] oo

w3 3 Op 09 _
+ —;)—p,,,p’w - w %%}dwdz =0, (46)

where we have not included the line integral over the meridional section of the
boundary on the assumption that p vanishes on the boundary.

It can be verified that the condition (46) (including the line integral) is identically
satisfied at the known point of bifurcation along the Maclaurin sequence.®

4 The solution for. 83 follows from the equation

8%':_(6_@1—6@2)’

ox?! ax®

where 9, is the Newtonian potential induced by the ““ density distribution” px' (cf. E.F.E., pp. 24
and 107). For axisymmetric distributions we are presently considering ®; = x'® where D is
defined by equation (44).

5 In fact, at the point of bifurcation AV + V2 = 0.
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VI. CONCLUDING REMARKS

The present paper exploits in the Newtonian framework the correspondence
between time-dependent axisymmetric systems and time-independent nonaxisym-
metric systems that was noticed in Paper I in the framework of general relativity.
The correspondence is manifest in general relativity when one compares the metrics

ds? = —e?(dt)> + e®V(dp — godx® — qedx® — wdt)?® + e®2(dx?)? + e2s(dx®)?,

(47)
and
ds? = —e®(dt — q2dx? — qadx® — wdp)? + *P(dd)? + e2#a(dx?)® + e2s(dx3)?,
(48)

which are appropriate for the two cases; and it is exemplified by the analogous roles
played by the equations expressing the conservation of angular momentum per
baryon, (¢ + p)u;/N, and the conservation of “energy” per baryon, (¢ + p)u,/N, in
the two cases. As we have seen, in the Newtonian theory, the analogous roles are
played by the angular momentum integral and the Bernoulli integral: a fact which
one might not have suspected. The reason why the correspondence, which is so mani-
fest in general relativity, is obscured in the Newtonian theory is that the terms which
vanish in the Newtonian limit in the axisymmetric case are the dominant ones in the
stationary case. Nevertheless, the correspondence which “really exists” also in the
Newtonian theory remains to be analyzed and exploited.

In the more immediate context of this paper, while the methods developed are
capable of wide generalizations, the most pressing practical problem is to test the
accuracy of the Ostriker-Tassoul criterion by making use of the variational principle
derived in this paper.

The research reported in this paper has in part been supported by the National
Science Foundation under grants GP-34721X (for S. C.) and GP-22584 (for N. R. L.)
with the University of Chicago.

APPENDIX

In formulating a variational principle for the characteristic frequencies of axisym-
metric oscillations of rotating systems in general relativity, it was found (Chan-
drasekhar and Friedman 1972, 1973q) that its use, at no stage, required the solution
of a second-order partial differential equation: the most that is required is the solution
of a quasi-linear differential equation. This is contrary to one’s experience in the
Newtonian treatment of this same problem (Lynden-Bell and Ostriker 1967; Lebovitz
1970): in this treatment one is required to solve an equation of Poisson’s type as an
initial-value equation. We shall now show how by a slight reformulation of the prob-
lem the latter requirement can be avoided in the Newtonian theory as well.

The basic equations that govern the axisymmetric modes of oscillation of a
differentially rotating configuration, with Q = Q(w), can be written in the forms
(Lebovitz 1970, eqgs. [20], [30], and [35]-[37])

. . . dp P -
—prt7 = [ Lt + @00+ L = Bt ot + 30

= (pQ8)” + pdB,« (say) (A1)
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and
8
—Pozfz = |:__P_ (wfa),ajl + (fap,a),z + —'pp,z + PS%,z
4 2 P
= (pQ8)* + pd3;, (A2)
where 89 is to be determined as a solution of the equation,

VD = L (@88 )0 + (50) e = 22 (purt),. in ¥
=0 in V°, (A3)
which satisfies the boundary condition
nedB 4| = —4nGpn,é* on IV, (Ad)

where V denotes the region occupied by the fluid, V° the complementary region
exterior to the fluid, and @V the boundary of ¥ (on which p and Ap vanish); also n, is
the unit outward-normal to oV.

With the definition of the inner product

En) = f pEniarduds (A5)

it can be shown by the methods of Lynden-Bell and Ostriker and of Lebovitz, that
the operator Q defined in equations (A1) and (A2) is self-adjoint:

(n, Q&) = (. §). (A6)

It is this symmetry of Q that enables a variational formulation of the characteristic-

value problem underlying equations (A1) and (A2). But in that formulation equation

(A3) is considered as an initial-value equation for 68 and, as such, requiring solution.

The necessity to solve equation (A3) can be avoided by the following reformulation.
Consider the formula

~PEE) = 60D — g | | w0V + (60w

+2 f f P8 ardwdz . (A7)
v

It can be verified that the effect (80%) on o2, given by equation (A7), of an arbitrary
variation 8¢% in ¢ and 820 in 8T (compatible only with the boundary conditions on
these quantities) is given by

2 — _g_ a?
— 8o = s {08, 0% + grad 89 + o)

1 1
23| —— V2 —— o
+ J; f 8 %[4"6 V263 (pwé ),a]wdm'dz

&*B 2 2 (1 1
-+ Jch -4-;7-—G' V28Vwdwdz + J\ov 3 %[pnaf + 4:7—6' naS%,a

o)

(A8)
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From this equation it follows that if we demand that 602 vanishes identically for all
arbitrary variations 8¢£* and 82, then the original equations (Al1)-(A4) follow
directly. Accordingly, formula (A7) provides a variational basis for determining o*
which avoids the solution of the second-order equation (A3).
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