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ABSTRACT

Stationary nonaxisymmetric systems in general relativity are considered. It is shown that the
theory of such systems can be developed along lines which closely parallel the theory of nonstationary
axisymmetric systems. Equations are derived which govern small nonaxisymmetric departures from
equilibrium of axisymmetric configurations of perfect fluid in uniform rotation. In terms of these
equations, the condition that a uniformly rotating configuration will allow a quasi-stationary
nonaxisymmetric deformation with a ¢-dependence of the form e'™® (where m is an integer greater
than or equal to one) is obtained. A variational principle expressing this condition is also derived.

Subject headings: relativity — rotation

I. INTRODUCTION

The best known example in the Newtonian theory of a sequence of nonaxisymmetric
configurations bifurcating from a sequence of axisymmetric configurations is that of
the Jacobian sequence of triaxial ellipsoids from the Maclaurin sequence of uniformly
rotating spheroids. But it is not as well known that at the same point where the
Jacobian sequence bifurcates from the Maclaurin sequence, a second congruent
sequence, the Dedekind sequence, also bifurcates. The Dedekind ellipsoids, in contrast
to the Jacobian ellipsoids, are stationary in an inertial frame and maintain their
ellipsoidal figure by virtue of internal motions of uniform vorticity. Related to this
fact is the circumstance that while the Jacobian sequence bifurcates from the Maclaurin
sequence by a deformation that is quasi-stationary in a frame of reference rotating
with the angular velocity of the Maclaurin spheroid, the Dedekind sequence bifurcates
by a deformation that is quasi-stationary in the inertial frame. (For an account of these
matters see Chandrasekhar 1969, chapters 1, 5, 6, and 7, particularly, §§ 5, 34, 36, 44,
45, and 48b.)

The bifurcation of a sequence, such as the Jacobian or the Dedekind sequence,
signals that at the point of bifurcation secular instability can set in in the parent axi-
symmetric sequence, i.e., an instability that will be manifested only if a suitable dis-
sipative mechanism is operative. Thus, if dissipation by normal viscosity is operative,
then the Maclaurin spheroid is unstable past the point of bifurcation by a mode that
transforms it into a Jacobian ellipsoid (Chandrasekhar 1969, § 37). On the other hand,
if dissipation by gravitational radiation-reaction is operative, by the inclusion in the
equations of motion of the radiation-reaction terms of general-relativistic origin in
the 2}-post-Newtonian approximation (Chandrasekhar and Esposito 1970), then the
Maclaurin spheroid is unstable by the mode which transforms it into a Dedekind
ellipsoid (Chandrasekhar 1970).

The foregoing remarks suggest that in general relativity we need be concerned
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only with quasi-stationary deformations that transform axisymmetric systems into
Dedekind-like nonaxisymmetric systems in an inertial frame. In this general context,
it is important to draw attention to the fact that in the Newtonian theory, the
occurrence of points of bifurcation such as the ones described here, is by no
means restricted to homogeneous masses: the recent studies by Ostriker and his
associates (cf. Ostriker and Bodenheimer 1973 and the references listed in it) have
demonstrated that axisymmetric sequences of differentially rotating compressible
masses exhibit patterns of behavior remarkably similar to the classical sequences of
homogeneous masses described in Ellipsoidal Figures of Equilibrium.

The present paper is devoted to establishing a criterion in the framework of general
relativity for the occurrence of points along axisymmetric sequences where quasi-
stationary nonaxisymmetric deformations may be possible. In this paper, we shall
restrict ourselves to uniformly rotating fluid configurations. Extensions to differentially
rotating systems and to vacuum solutions of Einstein’s equations will be considered in
later papers. In the paper following this one (Chandrasekhar and Lebovitz 1973) the
Newtonian version of the theory applicable to differentially rotating systems is
presented.

The present paper is very closely related, in its methods and its analysis, to the recent
series by the authors on the stability of axisymmetric systems to modes of axisymmetric
oscillations in general relativity (Chandrasekhar and Friedman 19724, b, ¢, 1973;
these papers will be referred to hereafter as Papers I, II, III, and IV, respectively);
accordingly the analysis will be presented only with few details.

II. ON THE METRIC APPROPRIATE FOR DESCRIBING STATIONARY NONAXISYMMETRIC
SYSTEMS; AND THE EQUATIONS THAT FOLLOW

The arguments of Paper I, § II in the context of nonstationary axisymmetric systems
apply in all essentials in the present context of stationary but nonaxisymmetric
systems: only the roles of the indices 0 and 1 need be interchanged. We choose then
for the metric the form (cf. I, eq. [5])

ds? = —e™(dt — wdp — qodx? — q2dx®)? + e2P(dd)?
+ ea(dx?)? + eMa(dx®)? )

where n, p, ua, us, W, qo, and qz are functions of the spatial coordinates x'(=¢), x2,
and x® only and independent of ¢. While the metric involves seven functions, only six
of them are independent since by arguments similar to those in Paper I, § II, it can
be shown that the functions w, q,, and g5 can occur in the field equations only in the
combinations

o — a1, W3 — 3,1, and 92,3 — 93,2 - 2

In considering quasi-stationary nonaxisymmetric deformations, we shall suppose
that the various equations that are appropriate to the metric (1) are linearized about
equations that are appropriate to the metric

ds? = —e®(dt — wdp)? + eP(dp) + e™a(dx?)? + eMa(dx)? 3)

where n, p, w, py, and pg are now independent of ¢ as well. In the framework of the
metric (3) we have the further freedom to impose a coordinate condition on u, and pg
(such as py = pg or e*s = x2%e*2). It should be further noted that for the linearized
problem we have in mind, the notion of ¢ as a cyclic coordinate continues to be a
valid one.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1973ApJ...185....1C

J; DI85l DAt

A,

[mrs

No. 1, 1973 BIFURCATION ALONG AXISYMMETRIC SEQUENCE 3
By letting
dt = —idx*, iw=gq,, Gy=¢qy, g=¢3, and p=p, ()

we can rewrite the metric in the form
3

3 2
ds? = ezn(dx4 - z quxA) + Z e a(dx4)? , %)
A=1

A=1

where the capital Latin letters (as indices) are restricted to the values 1, 2, and 3. By
comparison with I, equation (13), it is clear that in terms of a local tetrad-frame defined
by the one-forms

3
oW = etadx?t (4 =1,2,3) and w® = en (afx‘1 - Z quxA) > (6)
A=1

we can immediately write down the expressions for the tetrad components of the
Riemann and the Einstein tensors by letting A, B, and C in I, equations (16) and (17),
take the values 1, 2, and 3 and further replacing “1”’ by “4”’ and “4”” by n. The explicit
forms of the various required equations follow from them ; but we shall not write them
out.

a) The Equations Governing the Fluid

As in Paper I, we shall be concerned with a perfect fluid described by the standard
form of the energy-momentum tensor and an equation of state relating the energy-
density € with the pressure p and the baryon number N that is conserved.

Since the chosen form of the metric is different from that in Paper I, we shall write
down the equations governing the fluid explicitly.

With the definitions

dp dx* _
-d-t—Q, gt—'——l] (06-—2,3),
D = eP-nQ @ — eta =Ny

1 — wQ — q0° l—wQ—qav“’

and
V2 = [P + 2P + [bOF, ()

we readily find that the contravariant and covariant components of the four-velocity
are

e—n
i (o L (s M I (8)
and
eh v'eP + wen P @eky F q,e"
N (e (G A (e

The corresponding tetrad components of the four-velocity are

1 @ v® @ v
O (= o - 10

u® (DL

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1973ApJ...185....1C

J: T 1850 AC!

A,

[mrs

4 S. CHANDRASEKHAR AND JOHN L. FRIEDMAN Vol. 185

The hydrodynamic equations now follow from the relation (I, eq. [32])

Wiy = — j_ F (4 + wup; (A4=1,2,3). (11)

We find

du,
u 0

dt — 3(u 0)2[_( e?") + 2Q i (we2") + Q%= a 7o (€% — w?e)

+ (02)2 (ezu2 — dq 2e2n) + (03)2 0 (62”3 — qs ze2n)

o 6 2n 4 9 — 2n
+ 20 55 (9,67 + 200% 75 (= qowe™)

0 1 op dp
2,,3 _ omy | — 0 ,
+ 2U [ axA( qoqs€ )] c + ) (axA +u Uy dt) (12)
where we have introduced the operator
d_gf0 L w2 . (13)

at o ox*®
The equation ensuring the conservation of baryon number now takes the form
%(Nu"\/ —8)+ N(Q; + v )/ —8g=0. (14)

Since the metric coefficients are independent of ¢, we also have an equation that
expresses the conservation of the “energy’ u, per baryon:

d (e+p _dle+p en _
dt( N ”°>‘Et[ N (1—V2)1’2]_0' (15)

1III. THE EQUATIONS GOVERNING EQUILIBRIUM

The stationary axisymmetric system we consider is one in which there are no
motions in the x2- and the x3-directions and only rotational motions (specified by Q)
prevail. Under these same circumstances we can set q, and q; equal to zero; and we
also have the freedom to relate u, and pg by any coordinate condition that we may
find convenient.

By a comparison of the forms of the metric chosen in Paper I (eq. [10]) and in the
present paper (eq. [3]) to describe a stationary axisymmetric system, we infer that the
functions introduced in the two forms are related in the manner

ep+n = eW+V — eB ,

2 2 2,29 2 g2y
en::ev—we ep=—————,

s 22 — @le2V
and

2y
we
W= —— . 16
2 — wie?V (16)
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The components of the four-velocity appropriate under the present stationary
conditions are

p-n
v‘1’=V=£_—m%, Vv =0v® =0,
u = e’ ut = Qu° u* =0
T I -VHP1 - wQ)’ I -
e" e’V + e'w
U= —qopmme = gopym k=0
0) 1 (1) — V d (@) — 0 17
u = (1—-:——1/2)1—/5 > u = (—ITVE—)W ’ an u = . ( )
We shall find the following relations among the foregoing quantities useful:
Q e Py

Wi = Wil = G oy T = 7B~ 1=

and

Q(l + Quoul) - —uluo . (18)

The relevant field-equations can now be written down by making the following
replacements in I, equations (68)-(78):

1
Yp—>n, v—>p, w—> —w, V—>——I7,
u — —iut, ut — i, Uy —> iUy , and U, — —ig . (19)

And when Q = constant, the equation of hydrodynamic equilibrium is as before
(, eq. [81])

P« = (¢ + p)log u°),, . (20)

a) The Asymptotic Forms of the Potentials
In view of the known asymptotic behavior (I, eq. [109])

w—>’-2';3] (r — 0), 2D

we may conclude from the relations (16) that
en=¢e + 0(r %, e’ =¢ev + O(r-9),
and

2J sin? 6
r

+ O(r~?), (22)

where the asymptotic forms are expressed in a frame in which (cf. I, eq. [82])

eb = re"ttsin 6, e'a = e ¢, and  ets =re"" ¢, (23)
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6 S. CHANDRASEKHAR AND JOHN L. FRIEDMAN Vol. 185

The asymptotic behaviors of n(~v), », and { are therefore the same as given in Paper I,
equations (101) and (102).

IV. THE EQUATIONS GOVERNING INFINITESIMAL
NONAXISYMMETRIC DEFORMATIONS

We shall suppose that a configuration initially axisymmetric, stationary, and uni-
formly rotating with an angular velocity Q is subjected to an infinitesimal non-
axisymmetric deformation executed in a quasi-stationary manner (i.e., infinitely
slowly). We wish to ascertain whether such a quasi-stationary deformation is possible
consistently with the various equations and constraints that govern the problem. For
this purpose, it is convenient to describe the deformation in terms of a Lagrangian
displacement £*(¢, x*) which is the spatial displacement that an element of the fluid
suffers relative to its location in the undeformed axisymmetric state.

Since the initial configuration is assumed to be axisymmetric and uniformly rotating,
it is clear that the components £* suffice to describe the deformed configuration
provided we formally associate with £* a ““velocity” given by (cf. eq. [13])

0 = Q= £, (24)

In this manner of description, the dependence of the displacement on ¢ is considered
in formally the same way as the dependence on time was considered in Papers I-111.
Indeed, we may separate ¢ from the remaining space-variables x* by seeking solutions
whose dependence on ¢ is given by

emo (25)

where, in contrast to the time-dependent case, we must now require that m is an integer
greater than or equal to 1.

We are naturally most interested in obtaining a condition that a deformation
belonging to m = 2 is possible: the existence of such a deformation will, according
to our earlier remarks, signal the onset of secular instability.

With the deformation described in terms of a Lagrangian displacement, we can
distinguish between the Eulerian and the Lagrangian changes in a quantity that ensue
as a result of the deformation. These changes can in turn be expressed as the result
of the action of an Eulerian (8) and a Lagrangian (A) operator which are related to

A=s+e (26)

Turning next to the equations that the deformations must satisfy, we first observe
that since the q,’s vanish in the initial state, their appearance in the metric which
describes the deformed state may be thought of as being caused by the deformation.
The q,’s, like the v*’s, are therefore quantities of the first order of smallness. An im-
portant consequence of both v* and q, being quantities of the first order of smallness
is that ¥ and v¥ as defined in equation (7) differ from each other and from the expres-
sion for V in the undeformed state by quantities of the second order of smallness; they
can therefore be ignored in a linearized theory such as the present. The relations given
in equations (17), namely,

ep—1n

= =_%
V=v o)

27

continues to hold formally in the deformed state as well—but only formally, since
n, p, Q, and w are all subject to first order changes.
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A further consequence of the formal applicability of the definition (27) to the
deformed state is that the remaining expressions for u°, u*, ug, u;, v, and u® given
in equations (17) also continue to be applicable.

To emphasize that q,, like v, is nonvanishing only in the deformed state, we shall
write

4,1 in place of g, (28)
in all developments dealing with nonaxisymmetric deformations of systems that are
initially axisymmetric.

a) The Equation Ensuring the Conservation of Baryon Number
From equation (14) it follows that (cf. I, eq. [127])
AN 8V 1 Lea
AL () 8(n + pa + pg) m(u £ — 8).a- (29)

In terms of AN, the corresponding Lagrangian changes in the pressure (p) and in the
energy density (e) are given by

Ap AN Ac AN
> VN and el (30)

b) The Equation Ensuring the Conservation of Energy
From equation (15) it follows that

A(G;puo) —0. G1)
On further simplification this equation gives (cf. I, eq. [133])
Vev yp_ AN

T = s o £ellog uo)... (32)

With 8V determined by equation (32), the redistribution of Q that results from the
deformation can be deduced from the relation (27). We find

3Q = — Q2w + Q(1 — wQ)F—;—/— 8(p — n)] , (33)
or, alternatively
S(wQ) 14 _ _

Finally, we may note the following two identities which can be derived from the
foregoing relations:

8[(e + pyituoy/ — gl = —I(e + p)utugé*/ — gl
and

e + PV = gl = =|Be + (e P30+ pa o) + (6 4 ) iy |V — 8-

(35)
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c¢) The *“ Pulsation” Equation

The pulsation equation is no more than equation (12) linearized about the equi-
librium equation (20). The required equation is obtained by applying the Lagrangian
operator A to equation (12). We obtain

. A(e + p) Aul| op
(¢ + PO a8 13 ~ gy, =[ cTp Tiw e

9 AN 1 0}2 9 1 2 0 0
_EF(VP_N_) — (e + p)(°) a—-xaA 5 —-(€+p)uula—xaAQ,, (36)
where we have made use of the relation

Uy = ulezu“‘fa,l — UgGq,1 (37)

which follows from equations (9) and the expression (24) for v* in terms of &2,
On further simplification, in which use is made of equations (30), (33), and (34), we
find that equation (36) can be brought to the form

—mie + PP — gt =~y — g (B 5Y)

ox* \ut N
o Aut AN op
TPV —EguTr vV - ey g
utu, 0
+(€+P)\/—gWWAQ
+(€+p)u1u0\/-—gqa,11, (38)

there we have inserted the ¢-dependence of £* in accordance with the assumption
25).

d) The Linearized Versions of the (1, «)- and the (0, «)-
Components of the Field Equations

As in Paper I, § XI, the (1, a)- and the (0, «)-components of the field equations
directly integrate to provide initial-value equations. Thus, the (1, @)-components give

—ePTN T2 "Madn 5 + (n — p) 281 + Spg o — (p — ta), 28 — (N + ) 28us]
2
+ 4w 4Q = 8n(e + p)y/ — gl—_V—Iﬁ £, (39)
— €PN THalOn g + (N — p) 58N + Bug s — (P — po) adus — (n + #2),30u]

2

— 4w,Q = 8n(e + p)y/ — g £, (40)

1 — p2
where
Q = e¥MFTPHaThy(qy 5 — q5,) . (41)
Again, it will be convenient to define the variables
S =48(ua + pa)  and 87 = $8(ue — py). 42)
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No. 1, 1973 BIFURCATION ALONG AXISYMMETRIC SEQUENCE 9
In terms of these variables, equations (39) and (40) become
(51 + 8u)0 — P.o(8n + ) + ny(5n — 8p)

! ) a
= 62”2[—877(5 + p) T v £ + 2\/m’_3

— V2 g] —_ 87’2 -_ (2#3 + n-— p),23‘r N

and

(3n + 8u),s — pa(dn + du) + ng(on — op)

2/ —g

Considering next the (0, «)-components of the field equations, we obtain

2
= el —8n(c 4 p) L © = gt | Bt Q= p)abr. (@

Sw 5 — qg 11 = 16m(e + puluge?d ~2n+24xL2
— w 5(38n — 8p + Sug — Bug) + eTENTPHUTUQ o
dw g — qg11 = 16m(e + putu,e?P—2n+2u5L3
— w (38N — 8p + Suy — Sug) — e IMFPHATHQ , . (44)
These are initial-value equations for 8w ,; and their integrability condition, namely,
(e=9n+P+ug=haQ ) , 4 (= 3N+PHus=haQ g) o — e3P HhathaQ
= [0,5(38n — 8p + Sug — Spg)ls — [w,5(38n — Sp + Suy — dpg)l,
— 167{[(e + plutue?~2n+242£2] o — [(e + plutuge?®~2n+213£%] 1 (45)
provides a dynamical equation for Q.

e) The Linearized Versions of the Remaining Field Equations

The linearized versions of the remaining field equations can be obtained from the
equations of Paper I, § XI, by making the replacements (19) and noting that, if in
analogy with I, equations (156), we now define

G =e H(Qws— Qgw,) and D= —e HQw s+ Qaw,), (46)
then in rewriting I, equations (157)-(169),* we must also let
S— -8 and D— —-9; CY))
and it is also clear that
0% — —m?. (48)

The problem whose solution we now seek can be formulated precisely as follows.
The pulsation equation (38) and the linearized versions of the (2, 2)- and the (3, 3)-
components of the field equations? together with equations (29), (30), (32), (43), and

1 There is a misprint in I, eq. (169), which is noted in Paper IV (p. 495).

2 Instead of the (2, 2)- and the (3, 3)-components of the field equations, we may choose any two
of the field equations that remain after the elimination of the (1, 1)-, (0, 1)-, (1, «)-, and (0, a)-
components (cf. the remarks in Paper II following eq. [18]).
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(44) (as initial-value equations) and boundary conditions (that require that the £*’s
vanish at the origin, Ap vanishes on the boundary of the configuration, and the
remaining field variables, such as dp, én, etc., are all “well-behaved” at the origin and
at infinity) provide a characteristic-value problem for m?. We should not, of course,
expect that for an arbitrary initial configuration an allowed characteristic value for m
will be an integer. We are, however, interested precisely in the circumstances that will
permit an integral characteristic value (> 1) for m. In particular, if m = 2 is an
allowed characteristic value, we should conclude that the initial configuration is
susceptible to a Dedekind-like point of bifurcation and secular instability.

V. A FORMULA FOR m?

As we have explained in § IV, we shall consider m? as a characteristic value param-
eter that is to be determined consistently with the dynamical equations, the initial-
value equations, and the boundary conditions that govern the problem. Then defining
a trial displacement £“ and the associated barred variations compatible only with the
initial-value equations and boundary conditions, and proceeding exactly as in Paper II
§ ITI, we can derive a formula for m?. The formula in question can in fact be directly
written down by making the replacements (19), (47), and (48) in II, equation (25).
We thus obtain

= [ [[{v = g + oy 5 et

- % e‘3"‘P+”z+”sQ§}dx2dx3d¢
T

1 ANAN 1, -
fffﬂ:«/—g{ 7p(1+ V2€+p) e —€+p§p,afﬁe,5
+ (A—N e+ 5F f)[ — 7% (log uo),a]

e+ p
V2

&*(log uo),af_ B(log uo),4

1 s = e+ p.o .=

— 16n(e + p)? (1_'/——2755 Z e e ge
— [(e + p)dndn + 2(e — p)(Sndu + Sndu) + Sedn + Sedn — 4pdudp]
+ 2(e + putuo[dnw , + Snéw

+ 8r(fw 5, — Ew 5) + §7(£w 5 — Ew ;)]

- (€ + p)uluoe‘a““‘”[e“z"‘3(529,3 + 525,3) — eus—uz(é?se’z + 535’2)]}
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- 4_1-17—1 eM-PX(Sndn + L8787) + 2—1—71 (B — 1e®r-PP)(Snd7 + Sndr)

+ 517—7 Udrér + 4%,, eP(e*s#28n ,8n 5 + e*27#adn 38n ;)

1 —
" 4 e?{[(e*s™ 28z 5) o + (€*2#38uy 3) 510N

+ [(e*e~#28pg,5) 5 + (€27 #s8pg 5] 518N}
b o (B aBsn + (B + 2us) B lbr

+ [B28us,z + (B + 2pug) 28n 5]87}eks 4
- 4% e*{[B.sSpas + (B + 2ug) 301 5107

+ [B.adpa,s + (B + 2us) s8n 5]87}er2 ks
- 8% (&5n + &én + 987 + Ds7)

1 _ -
o e‘3"+P(e”a‘”2Q,2Q,2 + eﬂz-ﬂsQ’3Q’3)J]dx2dx3d¢

167

— §17_T ff d¢dx2[l:eu2—u3+ S[8(n + p) ad(n + pg) — 28n8us 5
— 2(B + 2u5),50700 + 2B,58(n — 7)5pu,]

+ Qw ,8(n + 7) — %e“’““’*“z‘”aQﬁ,a}]

[x3]
—_ g%ff d¢dx3[[e”3— i+ B[S(n + p)’zg(n -+ ”3) — 28“5#3‘2
+ 2(B + 2u3),2078n + 2B,8(n + )8,

— Qw 38(n — 7) — e dn+Prug- “295,2]] (49)
[x2]
where the symbol

[+ Jeea

in the integrands of the surface integrals has the following meaning. For a fixed
x* (B # «) let the appropriate limits of x¢ be x#(1) and x%(2) and x%2) > x%(1); the
symbol then stands for the difference in the values of the quantity enclosed by the
double brackets at x%(2) and x%(1). Further abbreviations used in equation (49) are

X = e's7r2(w 5)* 4 e*27 3(w 5)?, P = e's H2(w 5)? — ef24a(w g)?,

U = efles~#2(B opg n + P on ) + e’274s(B sug 5 + Pang)],
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12 S. CHANDRASEKHAR AND JOHN L. FRIEDMAN Vol. 185

and
B = ePle*s™#2(B gugz,p + PoM ) — €*27"3(B us 3 + P 31 3)] . (50)

In the system of spherical polar coordinates (r, 0, ¢) used in Paper I, § VII and
Paper I1, § ITIIb the first of the two surface integrals in equation (49) simplifies con-
siderably. Thus, from equations (39) and (40), we conclude that at the limits of
x%(=0), namely, 0, and =,

Q=0 at =0 and 0=
and

(e"),s(8n + 8pp) =0  or  Sn= —38u,  at =0 and =m.(51)

By making use of these relations, it can be verified that the surface integral over ¢
and x? reduces to the following manifestly symmetric form:

%7 f f dpdx[et="Fs+(eP) dndn]T . (52)

By considering the asymptotic behavior of the perturbed potentials at infinity, we
shall show in § a) below that the second surface integral (over ¢ and x®) in equation
(49) does not survive.

a) The Asymptotic Behavior of the Perturbed Potentials
Letting (cf. Paper I, eq. [8] and Paper 11, § Vb)

eP = re"isin @, ef2 =" 70" and  efe = peltitor (53)

we find that the linearized versions of the relevant equations in the vacuum, outside
the fluid configuration, are

on + grad én-grad (n + { + n) + grad n-grad 8(yp + { + n)
2
+ 287’{n’22 + ;n,z + 1o+ L+ 1),

1
2 [nas+ngcot + ng(n+ {+ “),3]}

+ 2(‘(1’287"2 —_ ";2“’387"3)

282" -2+

1 1 (&)
= W {Igrad UL)|28TI + i |:(tD,T)2 — ’3 (w_9)2]87-} + -;‘ (SROO) , (54)
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2 30 1 02 2coth 2
(-61'_2+;3—r+;—25§+ — a6)‘6(77+Z+n)+2grad(n+€—l—n)grad‘6(17+€+n)

#2{oraf st ] = bl + L g + ot )

30 18  2cotfd 2
+237{(az+ TR ae)(””*")“““

L+ AP =l L T

_ 2mPe %
= g 0 — L+ ) (3G* + 8G%), (59)

8(’7+C+")22+4[("l+§)2+ ]5‘:2+2n23(“—7}+§)2

— 8 + L + n),2[2(11 — Dot %]

— (800 + 4+ gq + 410y + D.g + cot O16L,
+ 20580 — m + 0,5 — 201 — ),58(n + { + 1)q}

- 437{[(7, L, + ][(n ~Da+t 1] - [(n + a0+ }]n,z

# 7l L W+ ot 8y = Dy + [lr + 0+ cot o)

22N =2 +0) 9 1 9 )
T [‘“’ L) ]8“ ty
e2'ﬂ 2(n+0) 2m2e-—4C
= m |grad w]287 — m or (8G22 - 8G33) ’ (56)

341 = D= [0+ D+ 1o+ 0= D+ mada = 9+ D

Qw 5
= 2r%sin 0

e~mHAM _ 5o [(,7 +n—30),+ -:-]87 (3R™2), (57)

(n+n—05—1[(n+ s+ cotbld(n +n — 0 + nzd(n —n + 0

Qw ,

=~y el e Y 4 S 4 [( + n = 30)5 — cot 087 (BRY), (58)
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and

_l_(e—3n+n+z;,.2@ ).a + ———s (€73 F1HQ , sin §) 5 — _m e-3n+n-8t

re 22 7 r2sin 6 -8 ® " r2sin® 6

1
= emd {[w,o(38n — 8y — 8L + 287)] 3 — [w s(38n — &y — 8 — 287)] 5}, (59)
where
e—-(ﬂ+c+n) d S e—(n+t+ n
©=smo Qo= Q) and 9=~ @ + Q). (60)

For determining the asymptotic behaviors of én, 87, and 8{ as r — oo, we substitute
in the foregoing equations the following known asymptotic forms of the equilibrium
quantities:

M
r

n— —f-‘r—l + 00, n=2400, (=0¢?,

and

w = 2"Smg+0(-2) as  r—>o. (61)

Retaining only the dominant terms, we find that equations (54)~(58) reduce to?

2

V%‘n—%—e&t:o, (62)
(;;+§-§;+;1§§(;+-2—§52’t—98)8(n+§+n)

b 2ar, 2 L B st = D), (63)

—%87—-2(%%—9—(’%—08—69)8(n+n—§)=~r228i%87, (64)

(an+8n—sc+87),2—%(an+sn—sg—af)+2rifan=o, (65)

and

(Bn + 8y — 8 — 87) g — (Bn + &y — 8L — S7)cot 6 = 0. (66)

3 In deriving equations (62)—(66), it has further been assumed that decreases more rapidly than
Qr3. This is the case for the particular solution (76) we shall find. The solutions we shall find form
a consistent set; and it would appear that these are the solutions relevant for the problem on hand.
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From equation (62), we may conclude that
s = pITE ), 67

where D is a constant; and from equation (66) it follows that

n + & — 8¢ = o7. (68)
Equation (65) now gives
S, = —f—f sn MDP'—(,ij—e) : (69)
or
MD PI(cos 6
ot = ) lr1+2 ) (70)
Next, adding equations (63) and (64) and making use of the relation (68), we find
2 20 P (cos 6
(ar2 + = )S(n +n+0)=2(I+1)MD —‘(TM—) . (71)
The required solution of this equation is
2M D Pj*(cos 6)
5n+8"/)+8C=l+2 lrl+2 ’ (72)
Combining the results of equations (67), (68), (70), and (72), we finally obtain
DP(cos 6) MD P}*cos 6§
n= 2D er= s,
MD Pp(cos 6) _ DP(cos 0) 3MD Pj(cos 0)
o = 20+ 2) ri*2 and by = — P e 20+2) rv2 (73)

The case of greatest interest is m = / when
P'(cos 8) = sin* 6. 74
In this case equation (59) gives

20 1 0 cotl o /2
(6r2 ty +rzaez+72—5rm)9

JD sin' 6 cos 6

and the required solution of this equation is

4JD sin! 6 cos 8
o= ~HDdfcn?. a9

It can now be verified that with the asymptotic forms of the unperturbed and the
perturbed potentials given by equations (61), (73), and (75), the second surface-integral
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which occurs in equation (49) makes no contribution as r — c0; and it also makes no
contribution for » — 0 in view of the regularity conditions here. Hence it vanishes
identically.

VI. THE VARIATIONAL PRINCIPLE

Formally identifying £* and £* and the barred and the unbarred quantities in equa-
tions (49) and (52), we obtain

-t [[[[v - e + e 3 ey
1

-2
+ %;f [(Bu)? + 26ndp — (3.,.)2]} - Te—an—p+u3+u3Q2 dgdx2dx?

167

L= ol B8 -y e

AN ,, €+ N
+ 257 & po — 2 Gog 0| — S (6008 ).

- _...2— €+_p 2 2 & 2 7\2
=75 28V + g B0 — 16 + ) s 3 (e

+ 4(e + putup[onéw , + S7(w 5, — £w 4)]
— [(e + p)(®N)? + 4(e — p)ondu + 28¢5n — 4p(8p)2]}

~ 20 €I + 360 + 1@ — en-rg)onsr

+ zi,,,- UB7)2 + % ef[e*s~#2(3n 5)® + e*2~#3(8n 5)?]
- 5177 e’{(e"s ™28z 5),5 + (€427 4381y 3), 5}0n

1
+ 2—778”{6”3_”2[,3,28!&3,2 + (B + 2u3),28n 5]
— e"2 43[R 38y 3 + (B + 2u3),30n 3]}07
— 2 (e + p)utuge NP (e*274af2Q 5 — ehaTHaf3Q L)/ — g

- 4—1; (©5n + 987) — %r eI+ P[gha-is(Q) ) + e"s“‘z(Q,a)z]]]d¢dx2dx3

+ %Tf f didrlera =43+ "(eP) 5(3n)?] . amn

By arguments exactly analogous to those used in Paper II, § IV, and Paper 1V,
§ V, it can be shown that the foregoing equation provides a variational base for
determining m? in the sense that if we assign £, =, and Q compatible only with the
boundary conditions, determine AN, Ap, Ae, 8V, 8n, and 8u with the aid of the initial-
value equations (29), (30), (32), and (43), and require that the first variation Sm?

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1973ApJ...185....1C

J; DI85l DAt

A,

[mrs

No. 1, 1973 BIFURCATION ALONG AXISYMMETRIC SEQUENCE 17

vanishes for all arbitrary variations in %, 7, and Q consistent only with the initial-value
equations and boundary conditions, then all the dynamical equations of the problem
will be satisfied and the chosen functions £%, 7, and Q will be proper solutions and m?
as determined by equations (72) will be a true characteristic value.

It will be observed that AN and 8V as given by equations (9) and (32) require a
knowledge of 8n and 8u. It remains to show how the initial-value equations (43) suffice
to determine them. For this latter purpose we first rewrite equations (43) in the forms

ePle™P(8n + du)] o + no(dn — du) = 3.,
e’[eP(dn + du)] s + ns(dn — o) = Fs, (78)
where

& Q
Fo = ez“z[-—Sw(e + p)1 — s £+ 2\/“’;3 g] — 875 — (2ug + 1 — p),907,

ou & Qw ,
s = e "8"7(€+P)1 — V2§ —2\/—g + 875 + (2puy + n — ) g07. (79)

By the variational hypothesis, §; and &3 may be considered as known functions.
Accordingly, equations (78) provide standard quasi-linear differential equations for
én and du; we can accordingly solve for them. We find (cf. Paper 1V, eq. [60])

(Sn + 8:U')along n=constant — epf e“P(%deZ + %3dx3) ’ (80)

n=constant

where the line integral on the right-hand side is taken over curves of constant n. With
dn + 8u determined in this fashion, én — &u follows from either of the two equations
(73).

VII. CONCLUDING REMARKS

The present paper executes for the theory of nonaxisymmetric quasi-stationary
deformations of uniformly rotating configurations what Papers I, II, and IV accom-
plished for the theory of axisymmetric oscillations. The two theories are remarkably
similar. The present theory is, in fact, simpler since gravitational radiation is
absent in view of the quasi-stationary conditions that have been assumed to prevail.

The extension of the theory developed in this paper to differentially rotating systems
is particularly important since in its terms the question of the stable existence of disk-
like objects in general relativity can be decided. The extension is presently being
considered.

The specialization of the criterion derived in this paper, for the occurrence of a
Dedekind-like point of bifurcation along a sequence of axisymmetric systems, to the
vacuum solutions of Einstein’s equations (such as the Kerr metric) in the manner of
Paper III, while it is straightforward at a formal level, nevertheless, requires that
certain delicate conceptual problems be first resolved. On this account the subject is
postponed to a later paper.

The work presented in this paper was begun and largely completed while the authors
were visiting members of the Department of Astrophysics, Oxford University (England)
during 1972 January-June; and we are grateful for the excellent facilities provided
to us by Professor D. E. Blackwell and Dr. D. W. Sciama; and S. C. is also indebted
to All Souls College, Oxford, for a Visiting Fellowship during the same period.
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