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ABSTRACT
The theory developed in Paper I is applied to solve two problems in general relativity: to obtain a
criterion for the onset of instability in a uniformly rotating configuration via a neutral mode of axisym-
metric oscillation; and to obtain an exact and an explicit formula for the square of the frequency of the
fundamental axisymmetric mode of oscillation of a configuration rotating uniformly but slowly.

I. INTRODUCTION

In this paper, we shall be concerned with establishing a criterion for the onset of
instability in uniformly rotating configurations in general relativity. It is not difficult
to envisage the form such a criterion will take in the case of slow rotation. We know that
in the absence of rotation the onset of instability, in general relativity and in the New-
tonian theory, is via a neutral mode of radial oscillation; and the criterion for the
instability is a condition on a suitably averaged value of the adiabatic exponent v. On
the Newtonian theory, the effect of a slow rotation is to modify the condition on vy by
terms of order Q2 where Q denotes the angular velocity of rotation; and the radial mode
of oscillation in the nonrotating case is replaced by an axisymmetric mode of oscillation
in the rotating case. But in general relativity, a feature that is absent in the Newtonian
theory and which can have a decisive effect is the emission of gravitational radiation by
rotating objects when they become nonstationary. However, since the effects derived
from gravitational radiation depend both on the distortion of the object from sphericity
and on the amplitude of the oscillation, it would appear that these effects can be ignored
in the limit of slow rotation. Accordingly, we may expect that, in the case of slow rota-
tion, the onset of instability in general relativity will also be via a neutral mode of
axisymmetric oscillation. If such neutral modes exist for slow rotation, then their
persistence for increasing rotation may also be expected, at least for a while. In any
event, it would appear useful to establish a criterion for the occurrence of a neutral
mode of axisymmetric oscillation. It is the object of this paper to establish such a
criterion.

A by-product of the investigation is an explicit and an exact formula for the square
of the frequency of oscillation of a slowly rotating configuration which depends (as in
the Newtonian theory) only on a knowledge of the Lagrangian displacement associated
with the fundamental radial mode of oscillation of the nonrotating configuration and of
the uniform (/ = 0)-deformation caused by the rotation.

The mathematical theory developed in an earlier paper (Chandrasekhar and
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Friedman 1972; this paper will be referred to hereafter as Paper I) for dealing with the
evolution of axisymmetric perturbations of rotating masses does not exclude the pos-
sibility of gravitational radiation. Why then, it may be asked, is it necessary to concern
oneself with quasi-stationary deformations and neutral modes in order just to avoid the
effects derived from gravitational radiation? The answer is that the solution to the
general problem requires the resolution of a number of subtle questions and it con-
tributes to one’s understanding to resolve these same questions, first, in the simpler
contexts. The general problem, allowing for gravitational radiation, is considered in the
fourth paper of this series (now nearing completion).

II. THE BASIC EQUATIONS
The metric appropriate to a stafionary axisymmetric configuration has the form

ds? = _e2v(dt)2 + ez¢(d¢ — wdt)2 + e2p2<dx2)2 + e2"a(dx3)2 , (1)

where », ¥, w, ps, and u; are functions only of #? and x*; and we have the freedom to
impose a coordinate condition on us and us. Also, in the stationary case, there can be no
motions in the #2- and the x3-directions: only rotational motions specified by @ = d¢/dt,
in the ¢-direction can prevail; and we are presently interested in the case @ = constant.
When such a system is perturbed, motions represented by »* (@ = 2, 3) will ensue in the
#%- and the x3-directions. Simultaneously, the distribution of € (whether initially con-
stant or not) and all the other functions describing the field and the fluid will be subject
to changes. In addition, the coordinate condition imposed on 2 and us will be violated;
and, finally, even the form of the metric will be altered by the emergence of further
nondiagonal components. Indeed, as we have seen in detail in Paper I (§ II), the metric
in the nonstationary case must be of the form

ds? = —e(dt)? + ¥(dp — Quoda® — gs.oda® — wdl)? + ea(da?)? + ews(da®)?,  (2)

where ¢a,0, like 2%, is a quantity of the first order of smallness and is a direct result of the
perturbation.

The equations that govern the evolution of perturbed configurations have been
written down in Paper I (Part III). We do not strictly need the full generality of these
equations for ascertaining the conditions when a uniformly rotating configuration, of a
given mass M and angular momentum J and described in terms of a metric of the form
(1), can be subject to a quasi-stationary deformation, without violating any of the
conditions of equilibrium,! so that it continues to be described by a metric of the same
form (1). Nevertheless, it will be convenient, both for our present and later purposes,
to establish certain basic relations of general validity; and the analysis in this and in
the following two sections is not restricted to quasi-stationary deformations.

We shall now assemble the equations of the problem. The notation will be the same
as in Paper I; the various symbols will have the same meanings and no attempt will be
made to redefine them.

Among the equations which govern the departures from equilibrium of a system that
is initially static or stationary, we distinguish two classes: initial-value equations and
dynamical equations. Initial-value equations are those that are first order in the time
derivatives. Dynamical equations are those that are second order in the time derivatives.
Initial-value equations can be directly integrated with respect to the time when they
are expressed in terms of a Lagrangian displacement. In contrast, dynamical equations
lead to the characteristic-value problems that determine the normal modes of oscillation
of the system.

For the problem we are presently considering, the initial-value equations are (1)

1Tn § V, we shall formulate precisely what we mean by the phrase “without violating any of the
conditions of equilibrium.”
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the equation expressing the conservation of baryon number (I, eq. [127]),

AN
v uo\/ Z (84 —g) .o — d[log (u'+/—g)]
Vé V
== u"\/——g (U —g) .« — - — 0 + p2 + ) ; (3)
(2) the adiabatic condition (I eq. [128)])
A*p (e + P) .
7 T P N2 ; (4)
(3) the equation expressing the conservation of angular momentum (I, eq. [133])
oV AN
= — X80 5y — t=(log wr).e (3)

VA=V  e+p N

and finally (4) the (0, 2)- and the (0, 3)-components of the linearized field equations
(I, egs. [144] and [145])

81/ —¢ 1= e P2 g = et (P3Y) 2 — (€°) 20ps + Pops,s — 26 209
+ eﬁ(‘ﬁ + #3).23(#3 — u2)] + 2Q‘*’,3 ’ (6)
and
8w/ — 871 : + P S8 = e* 4 (eP0y) 3 — (€P) s0uz + €Pduz,s — 2eby 30y
+ AW + u2)30(ue — m3)] — 3Qw,2, (7
where
Q = Vtrriis(gy s — g3,9) (8)

Alternative forrﬁs of equations (6) and (7) are (cf. eq. [147] and [148])
(¢ + du)s — v2(8¢ + ou) + ¢ (8¢ — ou)

= ¥ (8 L £ — 9 w,a) — 12— Qus + ¢ — v) 207 9)

1— 72 2/ —g
and
(& + ou) s — v,5(8¢ + du) + ¥,5(8¢ — ou)
- (8 i + 17 ¢ wg )+ ors+ (Qus + ¢ — v) 567, (10)
TV
where
_ Ou= 50(us + p) and Or = 3 0(us — po) . (11)
Since the equation .
3{ertH[GO® — §rTOO]} = ( (12)

can be derived from equations (6) and (7) (cf. I, eq. [167]), we may regard the (0, 0)-
component of the field equation, also, as an initial value equation.
The (1, 2)- and the (1, 3)-components of the linearized field-equations play a double
role in this theory: they provide initial-value equations for dw . while their integrability
condition leads to a dynamical equation for Q. Thus (I, egs. [151]—[153])

5(.0'2 — J2,00 = 161!'(6 + P)u0u16_2¢+2y+2”’£2
— w2(30¢ — v — dus + dus) — eI 4 (13)
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and
660,3 — 3,00 = 161!'(6 + p)u“ule—z"“”"'?”as‘*

— w3(30¢ — & + Sup — dus) + e TTETQ s (14)
and the elimination of dw from these equations gives

(e—3¢+1'—# atu aQ '2) 2 + (3—3!0"'1""#2—# sQ ,3) 3

_ —3'//-—v+n2+u3Q'm
— [wo(30¢ — dv — dug + dus)l s + [w,3(30¢ — &v + dus — Ous)] 2
 16n{[(e + puume ¥y — [( + P rtrmg] L (15)

We next turn to the remaining dynamical equations. In writing these equations, we
shall separate the time and the space variables and seek solutions which have a depen-
dence on time given by

et , ( 16)

where o is a characteristic-value parameter to be determined. This time dependence
will occur as a factor in all the equations. We shall suppose that this common factor has
been removed and that all quantities (such as £, AN, etc.) which appear in the equations
from now on represent the space-dependent amplitude-functions; thus it will be assumed,
for example, that the chosen Lagrangian displacement is of the form

g (a2, a¥)eiet . (17)
The pulsation equation (I, eq. [139]) is a dynamical equation. It is given by

AN
— e+ ) —ge o = — 0/ gaxa("{,f 5

9 Aud AN 8p AL 8.
TV G g TVTE g — PV g(axa aﬁ)
IT IT1 v

(18)

Besides this pulsation equation, we must include, at most, two of the linearized field-
equations given in Paper I, § XII; “at most two,” since equations (6), (7), (13), and (14)
already account for four equatlons and there can be no more than six linearly inde-
pendent field-equations. As the remaining dynamical field-equations, we may take the
(1, 1)- and the [(2, 2) + (3, 3)]-components of the field equations.

Our problem then is to solve equation (18), consistently with the initial-value equa-
tions (3)-(7), equations (13) and (14), the remaining dynamical equations, and the
appropriate boundary conditions. The boundary conditions are that £ vanishes at the

origin and remains bounded and continuous over its domain; that Ap vanishes on the
boundary, and that all the remaining field-variables (such as 8¢, 6», etc.) vanish suffi-
ciently rapidly at infinity. While it is not strictly necessary, we shall assume that e .
(in addition to p) vanishes on the boundary of the stationary configuration: a conse-
quence of this assumption is that ép will also vanish on the boundary—a fact which
enables us to avoid some formal (unessential) complications.

The problem to which we are thus led is a characteristic-value problem for o2
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III. A FORMULA FOR ¢?

First we define a trial displacement £* as one which satisfies the same boundary
conditions as are demanded of a proper £ but is arbitrary otherwise. And we also define
associated barred variations, AN, 6y, etc., and require that they satisfy the same bound-
ary conditions as are demanded of the proper unbarred variations and are consistent
with the initial-value equations (3)-(7) and equations (13) and (14) as initial-value
equations for dw 4.

We shall return in Paper IV (1n preparation) to the question of the extent to which
the requirements on the barred variations suffice to specify them uniquely. For the pres-
ent, we shall only assume that such variations can be defined consistently with the
initial-value equations for any chosen trial displacement.

We now multiply the pulsation equation (18) by a trial displacement £, sum over «,
and integrate over all 3-space. The left-hand side of the equations gives

= S S S e+ p) () —g2a *tFdx . (19)

This expression is manifestly symmetric in the barred and the unbarred quantities.
Our object is to bring the result of the integration (over x!, #2, and x°) and summation
(over a = 2, 3) of the terms on the right-hand side of the pulsation equation to a similar
manifestly symmetric form. In order to achieve this symmetry numerous integrations
by parts and substitutions from the field equations (satisfied only by the unbarred
variations) and the initial-value equations (satisfied by both the barred and the un-
barred variations) are required. These reductions are far too long even to attempt
giving some details. We shall have to be content with essentially writing down the
results of the reductions, but two general observations should be made. First, in view
of the possibility of gravitational radiation, some of the volume integrals may not
converge when extended to infinity. On this account, the integrations will be confined,
in the first instance, to a sphere of a sufficiently large radius R. We shall let R — « if
all the integrals converge as will be the case for quasi-stationary deformations considered
in § V; but the discussion of the convergence in the general case is postponed to Paper
IV. Second, the integrated parts which result from the various integrations by parts
(with respect to x? and x*) require careful scrutiny for their survival and their conver-
gence. In most instances, they vanish by virtue of the regularity conditions at the poles,
the conditions € = p = Ae = Ap = §p = 0 that we have imposed on the boundary
of the configuration, and on the vanishing of the other variations (barred and unbarred)
sufficiently rapid as R — «. Nevertheless, the surface integrals that survive on R will
be retained and exhibited. Also, care is needed when the integrations by parts are with
respect to the polar angle § when using a system of spherical polar coordinates.

Considering first the terms I, II, and III in equation (18), we find after some integra-
tions by parts and making use only of equations (3) and (4) (both with respect to the
barred and the unbarred quantities),

ANAN
I+ II + III: fff\/—g[—vp 2 6+P£"pa£ee

T e+ ——sa) b — (e + p)Eiv .

— spillog w0/ —g) + (e + PE (7 )a]d"'
(20)
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It is found that the integrated parts which arise during the course of these reductions all
vanish.

The reduction of the term IV in equation (18) requires the use of equations (5), (13),
and (14) for the unbarred variations. We find

IV: fff\/ gg —161l'(6 - p) (1 'V2)2 2ﬂa£aga
+ 2(e + p)u"ul[&://g“w,a + 58w, — Bw3)d(us — ps)]

+ (et D) g BB — 9 — (et P @ — @) & | B

»Qt

+ (e Putne Wl mBQs — ormBQ )} dx (21)

and the integrated parts which arise during the course of these reductions also vanish.

Next, we combine the results (20) and (21), simplify, and rearrange, making use of
the initial-value equation (5) (both with respect to the barred and the unbarred quanti-
ties). We find

I+IM4+ 1T+ 1IV:

2\ ANAN 1 .
SIS [v=g§=m (1 + BV - e e

+ (5 e+ A ) (9.0 — v V208 w).0] — 15 63V + 3paV)
— 167(c + )" Ty WPXM%Q (e + 2) V" (log w1) o (log w1) 6
+ (e + p) Viowbu}

+ V=g = (e + DI + 1+ ) — BB — 35 + s + )

+ 2(e + p)u"ul[&gl«f“w,a + 3Bz — Bws)o(us — u2))

+ L g — ).}

+ V=g {le + Putme (o — e mifQ)} dx (22)

It will be observed that the terms included in the first braces in the integrand are
manifestly symmetric in the barred and the unbarred quantities.? To bring the remaining

2 The symmetry of the term £ap o8¢ g follows from the fact that by virtue of the equation (I, eq. [81])

pa= (e + p)(log u).a,

the surfaces of constant p, constant ¢, and constant #° all coincide and that therefore p = p(«°) and
e = e(u?). Consequently,
dp de

a 8 _ T say0 £8,,0
EP,aE €8 du()dugsu.agu,ﬂ)

and the symmetry ¢s manifest.
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terms to a similar symmetric form we must consider the term

SIS V=g T L b — ) adx. (23)

The reduction of this term is a particularly “difficult” one: it uses the linearized versions
of the (0, 0)-, (1, 1)-, [(2, 2) + (3, 3)]-, and [(2, 2) — (3, 3)]-components of the field
equations (given, respectively, by I, egs. [157], [158], [161], and [162]) for the unbarred
quantities, as well as the initial-value equations (6) and (7) (with respect to the barred
quantities); and several integrations by parts are also involved. Eventually, we find

SIS V=g 7L e — ) aix
= SSS] - Zl; M X (345y + 3orér) + -2-1; Usrér
+ 51; (W — 39— ¥) (syr + Syor)
g Y 8+ g 50
—~ f; 20/ — g(Subp + W + Sou — orbr)
L ofermting) o @) b6 + () + ) 1)

+ Zl-l_r eBtura {[Bus 98,2 + 0 .2(8 + 2us) 2107 + [Sus.2B.2 + W ,2(8 + 2us) 2007}

1

 4r

eBtur 13 {[Sus 38,3 + oW ,3(8 + 2us) 3]0 + [Su2,38.,3 + d.3(8 + 2u2) 3]0}
+ 2(e + p)uPm/ — g[Wtew .o + (B — £ 5)or]
+ /= g[4p3u(d¢ + ou) + 20pou — 28udp(e — p) — 8(e — p)oY]

- gl; (0205 — 930,200 + (0205 + ©30,2)67]

+ Té_ﬂ' Q[w,36(lﬁ _ V) 2 w,ga(lp —_ V),g]]]dx . (24)

On examining the integrated parts which arise during the course of the reductions
leading to equation (24) we find that some of them can survive. We consider these
terms separately in § I1T-¢) below.

Now combining the results (22) and (24) and rearranging, we finally obtain
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—PSS SV =g e+ DT e

] + i_é:r e—3|ﬁ—v+n2+u3QQ_§ dx

2 AN
= SIS [v-ef=m (1+ BNV — e e,

AN - .
+ (—Z_V— &+ éN— £ ) [p.a — vPV2(log 1) o] — (e + p) VZE2(log u1) .«£8(log 1) 8

— T GPV + 50Y) + e+ P VSIS — 16m(e + ) T T HEE
— e + Py + 2(c — )@ + Bow) + debb + bebd — 4pouiul

T 2e + PulogE o + W o + 0Bz — Bu) + br(fes — fo)]]

— - XY + 3rdr) + o= (W — 364 ¥)(o46r + byor)

+ 1 Usrér + 1 eB(ers a0y o8 o + errdY 0 3)
27 4x

- %r B {[(e*#dus,2) 2 + (e#r#Buz ) slo + [(e##sbus,2),2 + (e bps s) 0}
+ ;11; et ritBL[8 obus s + (8 + 2us) 20 ,2J07 + [B.20us.2 + (B + 2us) 289 5)07}

- Zl; e rstBIB Bus s + (8 + 2uz) 309 3101 + [B,30u2,s + (B + 2u2) 509 3]07}
+ (e + p)uoume ¥t/ —glesr (80,5 + £Q.5) — e+ 2(8Q 5 + £Q2)]
— o 0oals — @) + W(@0s — 050

+ or(w,2Q.5 + @,3Q,2) + 57(w20s + @30,2)]

— Té_.; —3lﬁ+l‘<el-‘z"#aQ’3Q,3 -+ e#a_ﬂzQ'zg'z):l]dx . (25)

We observe that in the form to which we have now reduced the equation, it 4s mani-
festly symmetric in the barred and the unbarred quantities. Clearly a variational
principle is implied; but we postpone a precise statement of it to § IV below.

a) The Terms That Survive among the Integrated Parts

In examining the results of the integrations by parts that were carried out during
the course of the reductions leading to equation (24), we shall restrict our considerations
to the important case when a system of spherical polar coordinates (#! = ¢, &% =7,
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x® = ) is used and one sets (cf. I, eq. [82])
¢ = ret¥sing . (26)
In this case
=) =eWo=0 at 0=0 and 6=, (27)

but ¢¥¥ 5 does not vanish at the poles.
-In view of the relations (27) and the further fact that 4/ — g vanishes at the poles (on
account of sin 6 being a factor), we conclude from equation (6) that

Q=0 at 6=0 and O=m. (28)

Similarly, from equation (7) it follows that
Y30y —us) =0, or O =208u; at 6=0 and O=m. (29
Returning to integrated parts resulting from the various integrations by parts, we find

that those carried out with respect to x%(=6) in the reduction to equation (24) leave
the terms

1 2r R

~ % {{d¢dx2{eﬂ+~z—us[(w + ¥) s0bus — Wluss + WY 3

+ ('P + ﬂz) ,35%(#2 - #3)]}15
1 2r R

+5 0 S ,Ofd¢dx2 {eB e — (v + pg) 5800(ug — ps) — w5 + Wduzs — (¥ + v) ,50¢0pus

— (Y + v) 302 — (¥ + v) 30madps + @ + ) ,58u20us]}0 , (30)

where the vanishing of Q at the poles has been used. Making use of the relations (27)
and (29), the foregoing terms reduce to the manifestly symmetric form

1 2r R - _ _ _ .
~ % (if 'of dodx?[eBTrisay o(Susdue — Suadus + Ouodus + Suadus)s ; (31)
and this integral must be added to the right-hand side of equation (25).
Examining next the integrated parts that result from the integrations with respect to
x%(=r), we find that the terms which do not vanish on the boundary of the configuration
(by virtue of ¢, p, and Ap vanishing here) leave the surface integral

7
- gl; S S s (2P + ) 2(0Sus + Srbus + d75Y)

+ 4us 20700 — 209dus,s + W + v) 0¥ + ws)]
+ 0),3@6(\1/ - T) —_ %8-3¢+”+"3_“2Q,2Q}R . (32)

We shall verify in § V that this surface integral vanishes as R — « for quasi-stationary
deformations; but in the general case it does not, as we shall see in detail in Paper TV.

IV. THE VARIATIONAL PRINCIPLE

It will be recalled that in deriving equation (25) £ was a trial displacement and that
£ and the associated barred variations were required to be consistent only with the
initial-value equations (3)-(7), while £ and the associated unbarred variations were
taken to satisfy the dynamical equations as well. We now formally identify & and &
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and the barred and the unbarred variations in equation (25); we obtain
— S S S [V - e} + DEPT oy

—2v 2 ‘
— %7; [(Ou)? + 26¢0u — (5.,)2]}4_ .1%; e—w—ﬁ-p,ﬂ,]] dx

=SS ST v-ef-mo (1 + BV (5F) - 5 e ates

+ 2 ——-E [p.« — vPV2(log w1),a] — (e + p) V¥HE2(log u1) o

14 Mo £
— T8 + (e + D VION) — 167 + 2)’ T V2)2 e’

+ 4e + PmlovE . + dr(E0s — o)
— le + POV + (e — P)ovsu + 2oy — 4p(ow)?l}

- ;;1,, SXI6) + 3or?] + = (W — 1+ Dygir
-'— U(57)2 + eﬁ[d‘ “’(&p 2)2 + 6"”"’(5{11 3)2]
= 51; el (e#™0us,0) 2 + (e #1ua,3) 5l0%

+ 511‘,‘, ef{e* B oBus,s + (8 + 2us) 26% 2] — e#4[B s0ps s + (B + 2pus) 0¥ 5]} 67
4+ 2(e + p)Wlu1e= 7/ —g(ers 20 5 — eFr a3 o)
— o [3(00,s ~ ©Q.) + br(0Qs + 00,9

1

— 15 WPl (Q) + om0  ax, (33)

where for brev1ty we have not explicitly written out the terms (31) and (32) which may
survive the integrations by parts.

We will now consider equation (33) together with the terms (31) and (32) as a formula
for o? in which ¢ is a trial displacement and the variations AN, &8¢, etc., are chosen
consistently with the initial-value equations. Suppose now that we evaluate a2,
successwely, with the aid of two trial displacements £~ and £ 4 36£* and the assoc1ated
variations, AN, &y, dus, €tc., and AN + 1A2N, oy + 36%), dus + 306%us, etc. In other
words, we consider the effect on o , given by equation (33), of an (arbitrary) increment
36£2 in a selected trial dlspla,cement and the correspondlng increments in the other
quantities which are consistent with the initial-value equations. Let the effect be an
increment 0% We can write down an expression for d¢2 directly from equation (33) and
the terms (31) and (32) by subjecting it to the desired variation. We start with this
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expression for do® and essentially trace backward the reductions that led to equation
(25) starting from the pulsation equation. The only difference is that we are not now
entitled to use any of the dynamical equations. We find

—8’ SSS I]:\/ —gz (e + P)(uo)zz: e (E)” — {—: [(0w)? + 26¢0p — (67)212

L —3y—vtugtug()2
+ o W “Q]]dx

= SIS ol + D ~ e+ putugd — o (LAY)

Au® AN
+ (e+ p) —5— + N Pa— (e + p)u“ulAQ,a§V—g
- gl;r5{\/—g[G(2)<2) + GO® — 167p]}o*u — §17—r 5{v/ —glGO® — GOO]} g2
- —311; 5 {ertm{GOW — SrT W]} g2y

_ Té_ {2 WrrustmQ + (eWhritisQ 5) o + (e HHermQ ;) 5
T

+ [0,2(30¢ — ov + dus — du2)ls — [0,3(35'P — oy — dus + dpa) 2
— 167[(e + p)ulu e~ mg2] o + 167[(e + p)ulue 2ot ag3],2}6Q:ﬂdx ;
(34)

where it will be noted that the first group of terms in braces, in the integrand on the right-
I(lan)d side, which are contracted with 6£%, constitutes the terms of the pulsation equation

18). :
From equation (34) we can draw the following inference.

If the selected trial displacement £ and the associated variations are such that all the
dynamical equations are also satisfied, then da* = O for arbitrary infinitesimal increments
in £ and in the associated quantities which are consisteni only with the initial-value equa-
tions; conversely, if besides equations (3), (4), (5), (9), (10), (13), and (14), the field equa-
tions necessary to complete the set are satisfied and if 6a* = 0 for all arbitrary infinitesimal
variations in & (and associated variations in the other quantities which are compatible with
the initial-value equations), then the pulsation equation (18) will be satisfied by the selected
£ and o* given by equation (33) and the terms (31) and (32) will be a characteristic value of
the problem. (See note added in proof on page 767.)

V. THE CONDITION FOR THE OCCURRENCE OF A NEUTRAL MODE OF DEFORMATION

We return now to the principal question to which this paper is addressed, namely,
the condition that a uniformly rotating configuration will allow a neutral mode of
deformation. Precisely, the question concerns the existence (or otherwise) of a non-
trivial Lagrangian displacement £* such that all the equations governing equilibrium,
linearized about a particular solution of the same equations, as well as certain necessary
equations of constraint, namely those that ensure the constancy of baryon number,
entropy, and angular momentum, are all simultaneously satisfied. When such a dis-
placement exists, we say that the equilibrium configuration considered allows a neutral
mode of deformation. When a configuration allows such a mode of deformation, then we
may expect (if Newtonian analogies prevail in general relativity) that it will be on the
verge of either dynamical or secular stability.
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In the present context, the equations governing equilibrium have been written down
in Paper I (Part II); they are the equations of hydrostatic equilibrium (I, egs. [79] and
[81]) and four hnearly independent field equations, say, I, equations (70), (72), (73),
and (74). The equations that we must consider, to answer the question concerning the
occurrence of a neutral mode of deformation, are the linearized versions of these same
equations together with equations (3), (4), and (5) which ensure the constancy of the
baryon number, entropy, and angular momentum of each fluid element as it is displaced.
One observation concerning the linearized equations should be made: since the form
of the metric appropriate to a stationary state allows us the freedom to impose a coordi-
nate condition on ug and u3, we must retain the same freedom in the linearized versions
of the equilibrium equations; in particular, we should have the freedom to put dus =dus
corresponding to the choice of a cylindrical-polar or a spherical-polar system of coordi-
nates for describing the stationary state.

Consider first the linearized version of the (0, 1)-component of the field equation
given by I, equation (73). It is apparent from I, equation (159) that the resulting
linearized equation can be written in the form

{e¥ i efdw 5 + w,5(36¢ — &y — dus + Sus)]
— 167(e + p)u'ur(\/— )&%} 2
+ {eVtrrmdw s + w330 — 6w + dup — dus)]
— 16m(e + p)a"ul(\/—g)?} 3=0. (35)
Accordingly, there exists a function Q(x? x?) such that '
et Bafdw s + w,9(30¢ — o — dus + Sus)]

4 — 167(e + p)udum(n/— & = —Q (36)
an
e3¢""+ﬂ2“l‘a[6w'3 4 w'3(36¢ — 0y + Suy — 6#3)]
— 167(e + p)ulumi(n/—g)8 = +Q... (37)3

We observe that these equations are of exactly the same form as the initial-value equa-
tions (13) and (14) if we set gq,00 = 0, as would indeed seem appropriate for the quasi-
stationary case we are presently considering. However, the definition of Q in terms of
(g2,3 — ¢3,2), as in equation (8), has no relevance in the present context. Also, we are
now entitled to put dus = dus in equations (36) and (37) which we cannot do in the non-
stationary case.

The elimination of éw from equations (36) and (37) leads to the equation (cf. eq. [15])

(e"3¢'+"+lls"‘ll aQ'2) 2 + (6—3'1""""'#2_“ sQ’3) 3
= —[w 2(351// — v + Ouz — 5#2)] 3+ [w 3(3511 — ov + ous — 5#3)] 2
+ 167 {[(e + p)ume 1t 5 — [(e + p)ulme T2 F ] 5}, (38)

where we can put dus = dus, if we so desire.

Since the relations (36) and (37) are of the same form as I, equations (151) and (152)
(except that now ¢e,00 = 0), the lemma stated in Paper I as equations (154) and (155)
is now valid if the terms in gq,00 are suppressed. On this account, the linearized versions
of the field equations as they are written down in Paper I, § XII, also continue to be
valid if the terms in the time derivatives are similarly suppressed. In these resulting
field equations we are again entitled to put dus = dus, if we so desire.

3 Equations (36) and (37) provide a generalization of an earlier result due to Ernst (1967, eq. [5]).
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Now we have already verified (cf. I, eq. [167]) that the equation
$H3Qus + errremlg s + b — v) ob + Suss — (o = o) adus
— @+ )bl — 8ev/—g 7 T
+ = 30ua + Hremlsg s+ — v) o+ Sas— (v — ) b
— (b + o) ] — B/ —g 7Bz 0} =0 (39)

) 1 -
is the same as the equation

§{estH[GOO — 87rT(°>(°)]} -0. (40)
Hence there exists a function P(x2?, x%) such that

430w s + eVTTETRGY o + (Y — v) 20 + Spse — (v — us) 20us
— (¥ + ps) 20pe] — 87!'\/—8 : + 17

S8 = —3Ps (41)
and

— 30wz + e¥Trerrifsy s + (U — ) 50¢ + Oues — (v — M2) 302

— ) ] — Brv/—g Lo s = 4P, @)

Except for the replacement of Quw 5 by Qw,a -+ P ; equation (41) is the same as I, equa-
tion (143). Accordingly, we may now write (cf. I, eqgs. [147] and [148]; also egs. {9] and
[10] of this paper)

(O + ou) 2 — v 2B + o) + ¥,2(0¢ —op)

(gr T2 g QuatPay 5 -
. o (8 Fobae = ST ) e — ety =) (49)

O + op) s — vs(BY + o) + ¢ 3(0¥ — ow)
=ezu.-,(8 16+P 53+M)+573+(2u2+¢_,,)357 (44)

We can eliminate (8¢ + du) from equations (43) and (44) to obtain the following
equation for P in the case é7 = 0

[e¥-2rtuma(P , + Qua)la + [ V-2 sa(P s + Qo) s

- (e ) = ()

e (8 — du), ¥l
(22, &%) ’ (45)

Alternatively, we can eliminate (8¢ — du) to obtain the equation (also in the case ér =

0)
¢.3e"”+2”z(8 Ll B - Q‘;’y'f;) v e—”+2“a(8 et ? sw%i}f_? 2

= Y sle (B¢ + ow)ls — Y. ole’ (8¢ + ou)ls . (46)

+ 2
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Equations (36), (37), (43), and (44) replace the linearized versions of the (0, 1)- and
the (0, 0)-components of the field equations. These equations may be completed by
adding the linearized versions of, say, the [(2, 2) + (3, 3)]- and the (1, 1)-components of
the field equations.

Finally, we have the linearized version of the equations of hydrostatic equilibrium.

In the case of an initial uniform rotation, the equation takes the form (cf. eq. [18])

0
Of AN) + e+ ) (Au ]év P = (e+ p)uoubB = 0. (47)

a) A Variational Base for Determining the Occurrence of a
Neutral Mode of Deformation

As in § III, we now define a trial displacement £* as one which satisfies the same
boundary condltlons as are demanded of a proper solution, but is arbitrary otherwise.
And we also define associated barred variations AN, &, etc., and require that they
satisfy the same boundary conditions as are demanded of the proper variations and are
further consistent with equations (3), (4), (5), (36), (37), (43), and (44). We then
multiply the equation of hydrostatic equilibrium (47) by £/ —g, sum over a, and inte-
grate over the whole of 3-space (we do not expect any divergence at infinity in the
present case as, indeed, we shall verify).

It is clear that by reductions exactly paralleling those adopted in § III, we can
proceed to transform the result of the integration to a form that is manifestly svmmetrlc
in the barred and the unbarred quantities. The fact that in equations (43) and (44) we
have Qw, o + P . in place of Quw,, In equations (9) and (10) results in the only additional
term

= SSSPSW ~ 0o — Py — ) sl (48)

and this term arises in the reduction of the term (23) and is the counterpart of the terms
in Qw 2and Qw s in the last line of equation (24). But on integration by parts even this
additional term (48) vanishes! Thus, we shall arrive at formally the same expression
as on the right-hand side of equation (25), the left-hand side now being zero.

By arguments analogous to those by which we established the variational principle
in § IV, we can now formulate a necessary and a sufficient condition for the existence of
a neutral mode of deformation. Restricting ourselves to the case when we can put 67 =
0, and rewriting equation (33) in the present context in the form

0= fff[[\/—gi—w(w G -5

+287 f“[ — vpV?(log w1) ] — (e + p) V*{£*(log 1) o]

£%p, P, B

2V 2 2o
T 7308V + (e + PV — 16m(e + ) Vz)zze &’

= [+ POV + (e — PIsgiau + 25ebp — 4p(ow)"
+ 4e + Pt b} — = XU
+ Zl; fler2(0),2)* + e#(8¢ 3)°)
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1
- Pl(e#5 b ) 2 + (e #sdu 3) 5|0y
+ 2(e + p)ulme T/ —g(e#eE2Q 3 — eHEQ o)
1
- Z; (w.2Q,3 - w,aQ.z)&ﬁ

— o W prm(Qa)t + Q) ]| dx (49)
we can state that a necessary and a sufficient condition for the occurrence of a neutral mode
of deformation is that if for some £ and associated variations, comsistent with equalions
3), P, (5), (36), (37), (43), and (44) and two additional field equations necessary to
complete the set, the quantity on the righi-hand side of equation (49) and its first variation
vanish, simultaneously.

It should be remarked that the condition (49) for the existence of a neutral mode of
deformation may not be equivalent to the condition derived from equation (33) for the
onset of dynamical instability. But it is clear that equation (49) provides a sufficient
condition since equation (33), together with the constraint é7 = 0, are formally equiva-
lent to equation (49); and the imposition of the additional constraint does not invalidate
the acceptability of the resulting trial functions. Whether the condition (33) is also a
necessary one requires to be established, though in the case of slow rotation (see § VI
below) an additional coordinate freedom that obtains for the (! = 0)-part of the per-
turbation makes the two conditions that follow from equations (33) and (49) equivalent.

b) The Asymptotic Behavior of the Perturbed Polentials

It remains to verify that all the volume integrals which appear in equation (49)
converge and also that the surface integral (32) evaluated at » = R vanishes as R— .
For this purpose it is necessary to determine the asymptotic behaviors of the perturbed
potentials 6y, oy, d», and Q as r — «. We shall consider this problem in the system of
coordinates in which the correspondmg behaviors of the unperturbed potentlals were
determined in Paper I, § VIL. The linearized versions of the equilibrium equations (I,
egs. [84]-[86]) that formed the basis of that treatment are

Vv2v + grad dv-grad (9 + ¢ + ») + grad v-grad (69 + 6¢ + ov)
= — 272 sin? Gt %2 | grad w|2(én + 6F) + ’17 S

1+V2

+ amsfera (e + p) 105 + 2]} (50)

1 82
72 O

82

19
5724_;3_ )(5y—|-6n—6g')+2gradv-grad6v
= — 372 sin? fe2 % | grad w|2(89 + 8¢) + 5; S

+ 81ra§e2v—2r[(e + p) T—_V—:;—z + p]§ , (51)
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and 9?2 19 1 92
Ty TR

+ grad (g + {)-grad & + grad (log r sin 6) - grad (6n + ¢ + &v)

= 32 sin? fe**%~% | grad w|%(6n + &) — % S

8 + grad (n + ¢ + »)-grad (on + oF)

_ 41r6§e2"_”[61i_2$ — (e+ p)]} , (52)

e 790 dw  9Q aw)

where
(53)

rsin 6 \ or 96 00 9Jr

And equation (38) governing Q takes the form
—3n—30+» —3n—3¢+»
19 ,2&____6_Q. —l.—i(sinof—"._——@
72 97 rtsintd or 72 sin 6 06 rtsintd 90
1 dw 0 dw 0
e [555; (3on + 35t — 8v) — 229 (36y + 360 — 5v)]

or 96
o (8 (et e ] 8 et et Ty (o,

72 sin 6 {30 72 sin? @ or 7 sin? 0

+

In determining the asymptotic behaviors of é», &9, and ¢ for r — « from equations
(50)-(52), we may ignore the terms in e and p on the right-hand sides (since these terms
vanish outside the fluid) and substitute for the equilibrium potentials their known
asymptotic forms (cf. I, egs. [101] and [109]):

— 12
p=+ My 1A cos ) — B, oy, (55)
¢ = 1AL ) 4 o), (56)
y= =206, trtr=A-BB 0N, 6D
and 2] 6JM
=5 ——h + O(r) . (58)

With the aid of the foregoing relations we find that
S 6J 9Q

r - 75 sin 6 96 (59)

and
.

7 sin? 0| grad w|*(9n -+ 67) — 0L sin? 6(6n + 6F)  (r— @) . (60)

76

We shall presently verify that Q is of O(r—%) while 87 4 8 is at most of O(r~2). According-
ly, the terms in S and |grad w!? on the right-hand sides of equations (50)-(52) may also
be ignored for the orders in which we shall be working; and substituting from equations
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(55)-(52) for the remaining terms, we obtain

Voo + [+ 0679 ] 2 en + ot + ) + [ =204 = 13 5+ 069 | o =0,
(61)

"”2+75?+r2a02 (6n — 5§'+5v)+[ +0(“4)]—6v—0 (62)
and
1 92 cot06 M 0
wtrmtam) it (ot g Gt a e =Sl

19 a i)
— 24 — M) = Z (5 + 6¢ + + 09 Z o0, Z (69 + =
Adding equation (62) to twice equation (63), we obtain

2cotf d 1 ¢

+;E’ o 579"';2@ (61 + o¢ + ov)

+

61‘2

— 24 — M) 52 (on + 8¢ + ) + O~ 58w, 5 Bn + 80) | = 0.

: (64)

In deducing the behaviors of the perturbed potentials from equations (61), (62), and
(64), we first observe that the quasi-stationary deformations we are presently considering

must leave the inertial mass of the configuration unchanged. By equations (55) and (57)
this requirement implies that

& =03 and & isatmost O@(2). ' (65)

Now two possibilities arise: either 69 and 8¢ are of O(r2) or &y and &{ are at most of
O(r®). It is convenient to consider these two cases separately.

Case i: dn and 8¢ are of O(r~?). In this case the equations that determine the highest
orders of év, 69, and ¢ are

V2oy + = (an +8) =0, (66)
arz"l-;"é;'l';;a?z (6n — &) =0, (67)
and ) . 6
cot

é)r2+;:'~);+ o + 2602 (on+6¢) =0. (68)

From these equations it can be readily deduced that

a cos? 6 a sin? @ 1aM

= o o = o and v = 35 (69)

where a is constant. In obtaining the solutions of equations (66)—-(68) in the form (69),
we have made use of the condition that ¢ must behave like sin® 6 at the poles.
Case ii: 6n and 8¢ are both at most of O(r~3). In this case, it follows from equation (61)
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that the leading term in é» must satisfy the equation
. vy = 0; : (70)
and the solution of this equation compatible with the requirement (65) is
_D _D 29— 1) = 2
= ;;P2(cos 0) = 27 (3cos?d — 1) = e (3cos20+1), (71)
where D is a constant. Similarly, from equation (64) we conclude that
o+ o6t + v = ng(cos 0]2) = 57 (4cos?f — 1) = %(2 cos 20+ 1), (72)

where B is a further constant and P(cos 6| p) is the Gegenbauer polynomial of order
and index p determined as a solution of the equation

1 d/. dPn, _
e (sm” OW) + m(m + p)Pn = 0. (73)
(The Legendre polynomials coincide with the Gegenbauer polynomials of index 1.)
Now letting '
_ _ 80
on — 6§ + ov = gl (74)
we find that equation (62) gives
d?
d‘o% + 16g = 3MD(3 cos 20 + 1) ; (15)

and the solution of this equation compatible with the requirement of symmetry about

the equatorial plane is
g = Ccos 40 + §M D(cos 20 + §) , (76)

where C is a constant. Accordingly,
on — 6¢ + oy = }4[0 cos 46 + EM D(cos 26 + 1)] . (17
From the solutions (72) and (77) we now find that |
& = —2-17—4[%3(2 cos 20 + 1) — C cos 40 — $M D(cos 20 + 1)]. (78)
And the condition that 6¢ vanishes at the poles gives
C=32B—4MD. (79)

Inserting this value of C in equations (77) and (78) and combining with the results of
case 1, we obtain the solutions

oy = }s[%aM 4+ $D(3 cos?0 — 1)] 4+ O(r ™), (80)

NP 29 _
én—rzcosf) 2,'3(3cos(9 1)

+ }4[%3(12 cost 8 — 10 cos? 8 + 1) + $MD(5 cos’ 8 — 1) sin? 6] 4+ 0¢—) ,
(81)
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and
o = { [B(6 cos’d — 1) — 3MD(5 cos? 9 — 1)]% sin? @ + O(r%) . (82)

Finally, turning to equation (54) governing Q, and substituting for the various quanti-
ties their asymptotic forms, we have to consider

1o 1 40 ( 9Q\ _712DJ .
7t 9r \r* sin* 0 67’) + r“ sin 0 96 \sin® 6 90 —p cosb (83)

and the solution of this equation appropriate to the problem is

9D
0=

J sint 6 cos 0+999§tﬂ' Pn(cos 8] — 3). (84)*

With the foregoing asymptotic forms for the perturbed potentials we verify that each
of the terms in the surface integral (32) vanishes as R — o« ; and also that all the terms
that appear in the integrand of equation (49) lead to convergent integrals. The demon-
stration of the validity of the criterion for the occurrence of a neutral mode of deforma-
tion is thus completed.

VI. THE REDUCTION OF THE VARIATIONAL EXPRESSION FOR
o2 IN CASE OF SLOW ROTATION

From the fact that the variational expression for ¢% holds generally, it can be con-
cluded that in the case of slow rotation, when its effects can be considered as a perturba-
tion on the spherical configuration, an exact formula for o2 can be obtained by using for
the trial displacement in the variational expression the proper solution that belongs to
the radial mode of oscillation of the spherical nonrotating configuration and evaluating
the expression consistently to order Q2. A formal proof of this conclusion can be given
along the lines of Lebovitz’s proof (1970) in the corresponding Newtonian context.
As Lebovitz has pointed out, the result stated is analogous to the one in quantum
mechanics, namely, that the first-order correction to an eigenvalue due to a perturbation
is given by the diagonal matrix-element of the perturbed operator evaluated with the
eigenfunction of the unperturbed operator and “its validity can be traced to the same
reason: the symmetry of the unperturbed operator.” The same arguments apply, almost
in all details, to our present problem; and we shall not repeat them.

Once the conclusion of the preceding paragraph is accepted, it follows at once that
the terms representing the (! = 2)-deformation of the spherical configuration due to the
rotation will not contribute to the variational integral: they will simply vanish on
integration over the polar angle. Only the terms representing the (! = 0)-deformation
will contribute to o2

Now Hartle (1967; see egs. [67]-{70]), who has developed the theory of slowly rotating
configurations in general relativity, has shown that a metric of the form

ds? = —e(dt)? + 7% sin? 6(de — wdf)? + eMN(dr)? + 2(db)? (85)

is adequate for deducing all the (! = 0)-changes caused by the rotation. In particular,

we can write
vV = () + 14 and A= )\(s) + )\(9) , (86)

distinguishing the corrections of O(Q?) due to the rotation from the (zero-order) “Schwarz-

4 The solution of the homogeneous equation is 7 ™+3P,, (cos 8| —3); but regularity conditions at the
poles would appear to allow the inclusion of only m = 5.
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schild” values by the subscripts (€) and (S), respectively. In Hartle’s notation

Mo
r — 2M(r)y

where %y and m, are functions that can be readily evaluated (Hartle 1967, eqs. [97] and
[98]).

The foregoing remarks with respect to the metric apply to the equilibrium configura-
tion. But it is clear that the form of the metric is equally adequate for describing the
perturbed time-dependent configuration so long as we are interested only in the (/ = 0)-
deformation.

It will be observed that with the identifications

ve = ho and A(ﬂ) = (87)

¢y =rsinf, es=7r, wu=\, and »v=v, (88)

the metric (85) is of the form that underlies our present considerations. In particular, to
o(2?) ,
T —g=retsing = r2sin 61 + (\ + »)@) exp [(A + 1)),

u = (T_e—l,?)l—ﬂ =[1—ve + iV exp[—rws),
V=r(Q— w)sinbexp[—rs)], and wu =rVsin. (89)

Turning to the time-dependent perturbed problem, we observe that for the chosen
form of the metric the Eulerian changes in ¥ and u; vanish identically:

o =8us=0. - (90)
For the Eulerian changes in » and \, we may write
oy = 511(5) + 51’(&2) and Opg = — %57‘ = §\ = 5)\(3) + 5)\,(9) ’ (91)

in accordance with our (notational) convention of separating the O(2?) corrections from
the “Schwarzschild’’ values. In the present instance, évg) and 6\, are known from the
theory of the radial oscillation of a spherical configuration (Chandrasekhar 1964; egs.
[36] and [41]).

In accordance, finally, with what we have stated earlier, we shall now insert for the
trial displacement £* in the variational expression (33) for o2, the proper Lagrangian
displacement £(r) belonging to the radial mode of oscillation of the spherical nonrotating
configuration:

£2=¢r) and £g£=0. (92)

Consider first the contribution (31) that survives the integrations by parts. In view
of equations (88)-(90) it is, in the present context,

27 o 2r T o

- f f et (3N) (sin ) o7dre = — f f f et (80\)2 sin 0drdode

=SSS —‘g;_r?& @GN#dx. - (93)

In this last form, the contribution can be incorporated with the rest of the expression
(33) for o? (which is again considerably simplified because of the vanishing of é¢ and
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éus). The variational expression for ¢? thus becomes

S S S (e + p) (W) (v —g)Ptdx

- _ PV (AN , 1

= LSS [v-efr (1 + BV () + 5 et

— 28 (5, — ypV2(log ). + (e + ) Vi(log w) ¢
- (p + 8—:1—2) (ON)2 + 2VepsV + 16m(e + p)2V2e%g2

+ 2(e + ptumgsra} + -3-;—” - X (1) — _51; UGN ] s (94)

Inserting the relations (cf. I, egs. [68])
U= et tPBouza+ Yovs) = W
X =Y = err#(wy)?, (95)

and

which are now valid, in I, equations (74) and (75), we find
2U = —%e"\"—"X + 1611'?'\/—g - 2[6’"_“’(€ﬁ),3],3

= —}MX + 16mp/—g + 31/72;5— - (96)

Making use of this last relation in equation (94) and separating the terms that are
explicitly of O(2)?, we obtain

2SS S (e + p) (W) (v —g)eP§dx
= SISV 10 (5F) + gttt — 257 2.t = 2(0 4 ) @ ax

+ SIS 7v-s0 {55 (5F) + 20057 Qg+ (c + Plllog w T

5V oNE
+ 20p 57 + 167(c + PP + 2e + pwmoa, W}(S)
+ L 74 sin® G (w )2(6)\)2] dx (97)
167 " ’

It can now be verified that by ignoring the second integral, explicitly of O(Q?), on
the right-hand side of equation (9%,) and evaluating the first integral with the appropriate
Schwarzschild values, we recover the variational expression (Chandrasekhar 1964; eq.
[61]) that gives o2 for the radial oscillations of a spherical configuration.

It is clear that in evaluating the quantities in braces in the second integral on the
right-hand side of equation (97) it will suffice to use for /—g, AN/N, ¢, p, etc., their
Schwarzschild values. But for these same quantities we must insert expressions that
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are correct to O(Q?) in evaluating the first integral on the right-hand side (as well as the
integral on the left-hand side).

Turning now to the evaluation of the corrections AN ) and 8\, we first prove the
following two lemmas.

LeEMMA 1: .
4 Ay + vo)l.r = 477(e + p)(s) €xp [2N(3)]
an v
M@ + vy, = dar(e + p)s [((E%_—f))—(% + 2\ @ + Vz} . (98)

Proof: Writing out equations I, (70) and (72), appropriately for the metric considered
here, we obtain

2, 1 1 g e+ pV?
(5 - ) = HE e s T
and ) . {
e—‘""( :" -+ i) p= — 1 MNw )2 + 87p . (99)
Adding these two equations, we have ‘
2N _ e+
-—;—(}\-I—v),r— 4:1r———-—1 — e (100)

Now separating the zero-order and the first-order terms in this last equation, we obtain
the desired relations.
The first of the relations (98) for the Schwarzschild metric is, of course, well known.

LEMMA 2:
e = —[\o + @l
and
M@ = —[A@ +r@l.f. (101)
Proof: Equation (6) written out for the metric considered here' gives
et p +ugt i 2 tu
87 T evtrtug Baf = eVt “’['—6&‘2("’ + )] = — > ertriusug) | (102)
or
S\ = —dmr 16_4_' 52 A . (103)

Separating the zero-order and the first-order terms in this last equation and making use
of the relations of Lemma 1, we obtain equations (101). Again, the first of these equations
for the Schwarzschild metric is known (Chandrasekhar 1964; eq. [36]).

Turning next to the evaluation of AN/N to O(Q?), we first consider 8V /V which not
only occurs in the expression for it but is also needed in the evaluation of the second
integral on the right-hand side of equation (103).

Since 8V /V always occurs with a factor V% in the relevant expressions, it will suffice
to evaluate it with the zero-order values for the various quantities. Thus, we obtain from
equation (5)

B (apaNy (1, 1oV
vV e+p N/ £r+Var ’ (104)
or, substituting for V its value given in equation (89), we have
oV _ _( vp ANY (E_%__L_iﬁ’)
vV e+ p N/ ¢ r dr Q—wdr/’ (105)
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Finally, considering equation (3) for AN/N and rewriting it in the form
AN _ eV o 2y _ 9%
we find, after some rearranging,
AN vp AN 2
—~=V2( —§| - ( A)—-———ax. 10
N [ e+ p N () + E £ + (107)

Now substituting for A and 6\ from Lemmas 1 and 2 and separating the zero-order and
the first-order terms, we obtain

; () =t -5 3 o
an
(e - vz[(:%% ST rESE )

We have now evaluated all the quantities that occur in equation (52) to the relevant
orders and expressed them in terms of known functions; it accordingly becomes an ex-
plicit formula for the determination of ¢? to O(Q?); and it is exact. As we have stated in
?aper) I, § I, an equivalent formula has been derived independently by Hartle and Thorne

1972).

In the near future we hope to investigate with the aid of equation (97) the stability
of the slowly rotating neutron-star models that Hartle and Thorne (1968) have con-
structed.
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Note added in proof.—The variational principle stated in § IV can be formulated
alternatively as follows. If we subject £, £, 87, and Q to arbitrary infinitesimal varia-
tions and require d¢? to vanish for such variations, then all the dynamical equations will
be satisfied. Note that for any initial choice of £, £, é7, and Q, the initial-value equa-
tions (9) and (10) suffice to determine 8¢ and du so that all the quantities appearing in
equation (33) can be evaluated consistently with the initial-value equations only. These
and related matters will be considered in greater detail in Paper IV.
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ERRATA FOR PAPER I

1. In the expression for g' given in equation (4) on page 381, the last term, read
gfes  instead of gile s

2. In the expression for Gy, in equation (17) on page 383 there are two misprints.

In the second line the term in parentheses immediately preceding exp (—ma — uB)
read MC,BIB, A instead of pc,apB,a; and in the third line, read exp (42¢ — pg —

- 2#0) instead Of €xp (—le/ — M4 — MB — 2#0)

3 In equation (126) on page 398 read (Y + v + 2 + us) instead of (¢ +
p2 + ﬂs)

4. In the footnote on page 399, read 1969  instead of 1969b.

5. On page 404 in the second line following equation (167), read 167 instead
of 166.
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