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ABSTRACT

Axisymmetric systems in general relativity are considered. The field and the fluid equations that
are appropriate to general nonstationary (but axisymmetric) systems are first derived. They are then
specialized to yield the equations which govern stationary equilibrium. The equations which determine
the evolution of small departures from equilibrium are also obtained. Related matters that are considered
include the Landau-Lifshitz complex, the conserved quantities, and the constancy of the baryon number
and the angular momentum (per baryon) of a fluid element as it moves. The theory is developed with a
view toward establishing criteria for the stability of rotating systems to axisymmetric perturbations.

I. INTRODUCTION

The present paper is the first of a series devoted to the problem of the stability of
axisymmetric systems to axisymmetric perturbations in the exact framework of general
relativity. While the current lively interest in the possible significance of the Kerr
metric for the “wider aspects of cosmogony”” would amply justify a systematic treat-
ment of the problem, our initial motivation for the study was more modest.

The examination of the dynamical stability of spherically symmetric configurations
to radial pulsations (Fowler 1964; Chandrasekhar 19644, b) has shown that general
relativity can, under certain circumstances, initiate instabilities when Newtonian con-
siderations would indicate stability. These general-relativistic considerations are, of
course, basic to ascertaining the stability of the models for neutron stars that have been
constructed. But neutron stars are known to be in a state of slow rotation—i.e., slow
for them! Hartle (1967) has derived the equations that govern configurations in slow
uniform rotation in general relativity. Based on these equations Hartle and Thorne
(1968) have constructed models for slowly rotating neutron stars; but their discussion
of the stability of their models was inconclusive.! However, it is known (cf. Clement
1964, 1965; Chandrasekhar and Lebovitz 1968; Lebovitz 1970) that in the Newtonian
theory, the square of the frequencies of axisymmetric oscillations of slowly rotating
configurations can be obtained by a simple quadrature which requires only a knowledge
of the Lagrangian displacement associated with the fundamental mode of radial pulsa-
tion of the nonrotating spherical configuration and the uniform (! = 0)-deformation
caused by the rotation. It appeared to us likely that a similar result will obtain in
general relativity. More generally, in the Newtonian theory, the characteristic-value
problem associated with the axisymmetric pulsations of a uniformly rotating configura-
tion can be cast in a self-adjoint form and leads to a variational principle which shows
that instability, when it sets in, must be via a neutral mode of zero frequency (ci.
Chandrasekhar and Lebovitz 1968). If similar circumstances prevail in general rela-
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1 Hartle and Thorne (1972) have meanwhile obtained a criterion for the onset of instability in a
slowly rotating configuration independently of the one we have established in the second paper of this
series (Chandrasekhar and Friedman 1972).
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tivity—and it is not certain that they will in view of the gravitational radiation that
will accompany these oscillations—then one should be able to obtain a criterion for the
onset of instability by simply ascertaining when a stationary configuration can be de-
formed quasi-stationarily to an adjacent configuration, having the same mass and the
same angular momentum, without violating any of the conditions for stationary equilib-
rium. Since the consideration of such quasi-stationary deformations can be effected
without reference to the questions which the emission of gravitational radiation during
the oscillations will entail, it appeared to us that the establishment of a criterion for the
onset of 1nstab1hty via a neutral mode of oscillation (assuming that it is possible) would
be useful in all events (for a preliminary report on the solution to this problem, see
Chandrasekhar and Friedman 1971).

While the foregoing two problems provided the initial motivation for the study, it
soon became apparent that there was no need to restrict the objectives of the study
exclusively to their solution. A systematic investigation of the entire problem appeared
both useful and possible.

The plan of the first three of the papers is the following.

The present paper (divided into three parts) is devoted to deriving the basic equations
of the problem. In Part I, the field equations governing general nonstationary axisym-
metric systems are obtained. In Part II, the equations of Part I are specialized to yield
the equations governing stationary equlhbrlum and finally in Part III, the equations
of Part I are linearized about equilibrium to obtain the equations governing small
departures from equilibrium. While the equations of the theory will be developed with a
view toward applications to hydrodynamic systems, they can be readily adapted to
wider classes of systems. In particular, the application of the equations of this paper to
an examination of the vacuum solutions of Einstein’s equations is immediate.
~ In the second paper of this series, the solutions to the two problems which initiated
this study are given. In the third paper, the analysis of Paper II is specialized to vacuum
metrics and to a proof of Carter’s theorem. And in the fourth paper (now nearing com-
pletion) the general problem of the axisymmetric pulsation of a uniformly rotating
configuration is treated allowing for the emission of gravitational radiation during the
pulsation. Later papers will deal with the same problems related to the vacuum solutions.

In the meantime a different approach to these problems has been initiated by Schutz
(19724, b).

PART I

EQUATIONS GOVERNING NONSTATIONARY
AXISYMMETRIC SYSTEMS

II. A FORM OF THE METRIC TENSOR APPROPRIATE FOR DESCRIBING
NONSTATIONARY AXISYMMETRIC SYSTEMS

The form of the metric tensor that is appropriate for considering stationary axisym-
metric systems has been discussed widely in the literature (e.g., Hartle and Sharp 1967,
Hartle 1967, Bardeen 1970; see also the earlier papers by Lewis 1932, van Stockum
1937, Papapetrou 1953, Cohen and Brill 1968, Levy 1968). But it does not appear that
the form appropriate for nonstationary systems which preserve at all times their axisym-
metry has received much attention.*We shall accordingly consider this matter in some
detail.

We are restricting ourselves to systems which have axial symmetry at all times.
Precisely, we are supposing that the metric tensor is independent of one of the coordi-
nates, that coordinate (¢) being cyclic in the sense that we regain the same event if we
increase it by 2, the other three coordinates being held fixed.?

Let the spacelike coordinates, besides ¢, be x? and x%; and let ¢ (=4?) be the timelike
coordinate.

2 Alternatively, we may say that space-time admits a group of motions along the ¢-lines.
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Consider now the contravariant form of the metric tensor:
dst = gidxdx; . (1

Since all the components of this metric are (by assumption) independent of x' (=4),
it is clear that by a transformation involving only the remaining coordinates (x?, 2, x3)
we can bring the 3 X 3 matrix g# (i, § = 0, 2, 3) to its diagonal form; we may suppose
then that

= g% = g = 0; @

g0 = —e ¥ g2 = g, and g% = ¢ (3)

and let

where v, us, and u; are functions of 2%, x% and x%. Write the remaining coefficients of
g% in the forms
gOI — _we-2v g12 — qze-Zuz g13 _ qse—2/43 ,

gu = W — w2e —2v + q22e 2y + q22e 2‘43 (4)

where w, ¢s, g3, and ¢ are further functions of 2%, 2, and «2.

It should be noted that in specifying the coefficients g'/, as we have done in equations
(2), (3), and (4), we have not restricted the gauge unduly: we have only used the possi-
blhty of reducing g®, g, and g?* simultaneously to zero by coordinate transformations
involving only #0, 2, and «3.

With the contravariant form of the metric chosen in the manner we have specified,
the covariant form of the metric becomes

ds® = —e?(dt)? + e¥(dp — gada® — gada® — wdl)? + €2(da?)? 4 es(da®)?.  (5)

(Note that in using ¢ and ° interchangeably, we are adopting the convention of setting
c=1)

It will be observed that the chosen form of the metric involves seven functions,
namely, », ¥, us, us, @, gz, and gs. On the other hand, since the field equations provide
only six linearly independent equations, it is clear that these seven functions cannot
appear in the field equations as seven independent quantities. Indeed, the fact that
there are only six independent quantities can be seen as follows.

Consider the coordinate transformation

and

’

¢=0¢ +f,2,2), =2, &=z, and 2£=2". (6
Then
Sy = g,  firy = L5 (4,7 =0,2,3),
and
aof .
girrr = g -+ 670"_' n (Z = 0, 2, 3) . (7)

From the last of these relations it follows that the functions ¢s, ¢3, and w, as they appear
in equation (5), can occur in the field equations only in the combinations

_9¢:  9gs dw  9qs dw  0gs
= s — = — 0. 8

=G e M= M h=ga Ty ®
(We shall presently verify that they do, in fact, occur in these combinations.) Among
the combinations Ay, /4, and %; we have the identity

ahg 6h3 _ aho

I 9ar ot ©
Accordingly, the seven functions v, ¥, us, us, @, ¢s, and ¢; will appear in the field equa-
tions only as six independent quantities.
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1t will be observed that the metric (5) includes the form
ds? = —e¥(dt)? + e¥(d¢p — wdt)? + e:(dx?)? + €*3(dx?)?, (10)

which is generally chosen (cf. Hartle and Sharp 1967 and Bardeen 1970) as appropriate
for stationary axisymmetric systems. However, in the stationary case, when », ¥, us, us,
and w are functions of x? and x2 only, one has the additional freedom of gauge to restrict
the functions us and u3 by a coordinate condition. Thus, the conditions

Uz = u3 OF  ehs = xleks (11)

can be imposed if, in the stationary case, one wishes to use cylindrical-polar or spherical-
polar coordinates. In the nonstationary case we do not have this freedom. Thus, if we
should consider time-dependent departures from equilibrium of axisymmetric systems,
described in cylindrical-polar or spherical-polar coordinates in the stationary case, we
must allow that in consequence of the perturbations the Eulerian changes in u, and K3
will differ.

A further fact that should be noticed is that in the nonstationary case, we must
introduce in addition the functions ¢, and ¢s. Since these functions can be set equal to
zero in the stationary case, we can suppose that they are quantities of the first order
of smallness when we are con51denng small time-dependent departures from equilibrium.
It will then be convenient to replace ¢; and ¢; by ¢/ 3¢ and d¢s/ 3¢ to emphasize that
their emergence in the metric is a consequence of the imposed time-dependence; it will,
in fact, appear that these are the variables that carry the information concerning the
gravitational radiation that will be emitted when a system, initially stationary, becomes
time-dependent.

In concluding this section, we shall make some general remarks on the notatlon that
will be adopted in this series 'of papers.

We shall have occasion to use both tensor components and tetrad components (with
respect to some chosen basis of one-forms); and we shall distinguish them by enclosing
the indices that refer to tetrad components in parentheses. Latin letters (as space-time
indices) will be allowed the range 0, 1, 2, and 3; and Greek letters will be restricted to
2 and 3 only. Summation over repeated tensor (or tetrad) indices (Latin or Greek) will
be assumed and restricted to their ranges. But the summation convention will not
apply if one of the indices (such as a in ¢*a) is not a tensor (or a tetrad) index: e.g.,
summation over « is intended in combinations such as #,£* but not in combinations
such as £%?e. Commas and semicolons will signify ordinary and covariant differentia-
tion, respectively, with respect to the index (or indices) that follow. In § III (and only
in § III) we write dx* = 7dx°® and use capital Latin letters to take the values 2, 3, and 4;
and the same conventions will apply to these indices as to the others. Flnally, the
convention of setting “c = G = 1” will be adopted.

III. THE COMPONENTS OF THE RIEMANN, THE RICCI, AND THE EINSTEIN TENSORS

The most direct Way of obtaining the Einstein field-equations for the metric given
by equation (5) is by Cartan’s exterior calculus. For this purpose it is convenient to let

dt = ——idx‘, %='L£z, vV = M4, and w=’iQ4> (12)

and to write the metric in the form
ds? = Z e*4(dx4)? + ¥(dp — 24 qadx?)?, (13)

where the capital Latin letters (as indices) are restricted to the values 2, 3, and 4. We
next introduce a local tetrad frame w(® by the one-forms .

w@ = eradxd  and w® = &¥(dp — Z4 qadx?) . (14)
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(Note that there is #o summation over A in e*adx4 since 4 in e*4 is not a tensor index;
also that we have distinguished the tetrad indices from the tensor indices by enclosing
the former in parentheses.) The tetrad components of the Riemann tensor then follow
from the defining equations

dw® = ._..w(i)(].) A 0@
and . Lo . ‘
RPGayme® A w® = do®;) + 0@ g A w@) . (15)
We find
Roayyaydy = — {[ua,p exp (ua — us)l.p + [up.a exp (us — pa)l,a} exp (—pa — pa)

—ua,cus,c exp (—2uc) — $(qa,8 — gB,4)* exp (2¢ — 2ua — 2up) ,
Ruywym© = [us.ca + up.a(us — pa),c — pa.cpc,a] exp (—pa — pe)

—3(ga.8 — ¢8,4)(gB,c — gc.B) exp (2¢ — pa — 2up — pe) ,
Roywmw = —[.aexp (¢ — pa)l,a exp (—¢ — pa) — ¥.584.5 €xp (—2up)

— Y.cpa,c exp (—2ue) + %[(‘I_A,B — qB,4)% exp (—2us)

+ @a.c — ge.a) exp (—2uc)] exp (2 — 2pa)
Rywyme = —[¥,a exp (¢ — pa)l,z exp (—¢ — pp) + ¥,5up,a €xp (—pa — us)

+ 1(ge.5 — 4B.0)(gc.a — ga.c) exp (2¢ — 2uc — pa — wB) ,
Ry = 3[(9a.s — g8.4) .4 + (qa.8 — 98,4)(3¥ — pa — p5).4]

X exp (¢ — 2ua — us) + 3(gc.5 — ¢B.c)pa,c exp (¥ — 2uc — ps),
Roywysyo = 3{{(qa.c — gc.4) exp @ — pa)l.z — [(qa,5 — ¢5.4) exp (¥ — pa)l.c}

X exp (—us — we) + 3(gs.c — 9e.a)(2Y — ps — po) .4

X exp (Y — ua — up — po) , (16)

where 4 £ B # C and there are no summations.

The components of the Einstein tensor, as appropriate linear combinations of the
components of the Riemann tensor, can be readily evaluated with the aid of the fore-
going formulae. We find ’

Gow = 3{(ga.n — gn.4) exp 3¢ — wa — ps + ro)l.s
+ [(ga.c — gc.a) exp (3¢ — pa + us — po)l.c} exp (—2¢ — up — ue),
Gy = —W.a+ ¥.a¥.5 — ¥, apa.p — V.84B.4 T+ kc.aB
+ K¢, AlC.B — MC,AMA,B — MC,A#B,A) €xp (—I»‘A - MB)
— $(g¢,4a — qa,0)(ge.8 — qB.c) €xp (—2¢ — pa — up — 2uc) ,
Guyay = [W,alue + mB). 4 + wp apc.a] exp (—2pa) |
+ .88 + ¥.85(¢ + we — us).5 + ne.se + pe.8(uc — ws),8] exp (—2us)
+ [W.ce + ¥.c(¥ + us — re).c + ue,cc + wp.clus — ue).cl exp (—2uc)

— 3[(gc.a — ga.0)? exp (—2uc) + (8.4 — q4,8)* exp (—2us)]

q X exp (2¢ — 2u4) + L(gc.5 — gB.0)? exp (2¢ — 2up — 2uc) ,
an

Gomay = =Ry e — Reyerydoe — Reywea) - (17)
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Reverting to the original space-time indices, 0, 1, 2, and 3, we have

Goyw = —€ %Yo+ Yo + us — p2) 2 + use + pao(us — ua) ol

Goo

Goe

R©) (0

Rayq

Raye

R

Ry

R

— e+ (¥ + pe — us) s+ w2, + m2s(uz — ws) sl

+ e P[P o(ua + ps) 0 + paouzo] — T3 — gs,0)?

— 1 Ple M (wy — 2,0) + (w3 — g3,0)?],

ey + vo(v + s — p2)2 + paz t+ ma2(us — p2) .ol

+ e v g+ va(v + pe — )3+ pos o pzaue — ms) 4l

— 3 2[e M (wr — G2,0)% + € H3(w,s — g3,0)7] + FE Mgy 3 — g3,2)°

— e P[(uz + ps) .00 + p2.0(u2 — )0 + psolus — v) 0 + p2,0m3,0

ey o(Y + )2 + VYoomso] — TV g3 — g30)

T+ e vz + vs(v — us)s + e + YW + v — ps) .4

+ ¥ (w, — g20)? — € %3(w3 — 3,0)Y

— e P[P0+ Yol + us — v)0 + 00 + psolus — v)l,

ey o9 + v oy + ¥) o + v2(us — pe) 2l

+ e iy g + v + ¥) s + vs(ue — us) 3l

— 3P (wy — 20) + € %3(w,3 — ¢3,0)%]

— e P[0+ Yol — v) 0+ (2 + us)oo + ma0(uz — )0 + mzo(us — ) 0],
—e %Yo+ Yo + v+ ps— )] — e Y+ Y+ v+ pe — ps) 5l
+ e P[00 + Vo — v + p2 + ws) o] + G (g5 — gs0)°

— Fe¥ e M(ws — @o0)? + (w3 — @30,

ge W {[eV b (W — @a0)]0 — [T HH (g3 — gs2)]8) s

e Pl — Yoo+ Vove — VoW — maz — pa2(us — p2)o + paovl

— Je¥ (g 5 — g30) (@3 — ¢5,0) 5

e wmr s [ uitu (0, — goo)ls + [V Htu(ws — gao)la)

—e iy Fvows+ Yo+ Yobs — msa(¥ + v) 3 — pes(¥ + ) )

+ 3P (0 — gao)(wis — Gs0) - (18)

The expressions for Gy, Rays), and Ry (not listed) can be obtained from the
expressions for Gy ), Ray(2), and Ry (which are listed) by interchanging the indices
(2) and (3).

It will be noticed that, in agreement with what was stated in § II, the functions
@2, q3, and w appear in the foregoing equations only in the combinations specified in
equation (8).
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IV. THE EQUATIONS GOVERNING THE FLUID

In the present study, we shall limit ourselves to the case in which the source of the
gravitational field is a perfect fluid described by the energy-momentum tensor

T = (e + p)uins + pgii, (19)

where € and p denote the energy-density and the pressure, respectively. We shall fur-
ther suppose that there exists an “equation of state” which specifies e uniquely as a
function of p and the baryon number N (per unit proper 3-volume):

e=e(p, N) . (20)

The equations of the problem are then provided by the field equations supplemented by
the law of the conservation of baryon number,

(Nuin/—g),; = 0. (21)

The required field equations can now be written down by equating the expressions
for the Einstein tensor given in § III with the corresponding components of 7'(¥;
thus

GO = ROGD — LgW@R = T O (22)
or, equivalently,
RO = p[TWW — LeOOT] (23)
where ,
T = —(c— 3p) (24)

is the trace of T'%, ,
To write out the field equations explicitly, we need expressions for the components of

" the four-velocity #(®.

With the definitions

o _ 9% _ e -
dl—ﬂ’ dt—v (a_2:3)7

D = 6"'_"(9 - w — 927/2 — q31)3) , pl@) = a7y
V2 = [pO] + @ + [v®]2, (25)

we readily find that the contravariant and the covariant components of the four-
velocity #* are given by

and

e_‘l‘
w= (1 — pwe’ wh= b, ut=uh, (26)
and
el‘
== sttt

Wb
o= W@ — w — g? — gat) = e
(1 — V2)1/2 )

Uo = UlEHWar® — oty . \ 27)
The corresponding tetrad components of the four-velocity can be obtained by the

transformation
w® = eDui, (28)
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where (cf. eq. [14])
e 0 0 0
@), =
e®; 0 0 s E (29)
. o 0 0 et
We find :
© — 1 , W — v(l) @ — ‘v(a)
ey M T g vy YT U= vy (30)

The expressions for the components of 79 in terms of the components of (¥
given in equations (30) are simple; and the explicit form of the field equations (22) or
(23) can be written by using the expressions for the Einstein and the Ricci tensors
listed in § III.

' a) The Equations of Hydrodynamics

The hydrodynamic equations of motion follow from the identity
Téi; = [(e + puns + giply; = 0. (31)
A direct consequence of this identity is

1
e+ p

Considering the a-component of this last equation and writing out explicitly the ex-
pression for #,;; in terms of the Christoffel symbols, we obtain

u’u,;] = -

(57.«5 =+ ujui)p,j . (32)

dUa o O8kj 1 . ) _
o 8% 1.k i_ _ .
| W T G = T g B Tt (33)
where we have written
%tg = thao + Phag . (34)

Now substituting in equation (33) the expression for the metric coefficients, we find
u° 4 (e#aulv® — gu1)
dat :

~ 3 5 (— e + W) + 202 (—a) + @ 2 (@)

0
ax=

+ @250 (e gie) + (0 s (6 + gte)

9 . 9 3
+ 20%° 5 (gagse™) + 200° -2 (—gae®) + 2f o (et |

L1 (0p ., dp
- 3 4w ), (35)
where (cf. eq. [27])
Ue = UCHav™ — oty . (36)

Equation (35) is the required hydrodynamic equation of motion.
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b) The Equation Governing the Conservation of Angular M omentum

By considering the equations

Nu,; = —N u’ (37)
and A ‘
wl(e + plui;; + (e + puaw';; = —p. (38)
(which are alternative forms of egs. [21] and [31]), we obtain the relation '
' e+ P 1
u’( N % i Pi; (39)
or writing out fully the expression for the covariant derivative on the left-hand side, we
have
e+ p > le-l-p ag,k__l .
w(E B — e (40)

The 1-component of this last equation is
u-’(e -'];7? wm) = 0, (41)

since the metric coefficients g;z, as well as the pressure p, are all (by assumption) inde-
pendent of x! (=¢). An alternative form of equation (41) is

LR - Gred) (-0 o

This equation expresses the conservation of the angular momentum per baryon.

V. THE LANDAU-LIFSHITZ COMPLEX AND THE CONSERVED QUANTITIES

In our later considerations relating to the emission of gravitational radiation by
pulsating objects, we shall find it useful to have the expressions for the Landau-Lifshitz
complex in terms of which the various conserved quantities can be defined. We shall not
enter here into questions concerning the appropriateness, or otherwise, of using this
complex (as in the present context) in a coordinate system which is curvilinear at
infinity even if it is assumed (as we shall) that space-time is asymptotically flat. We
shall be content to state simply that the prescription given by Cornish (1964) for
evaluating and interpreting the Landau-Lifshitz complex (and the others) appears to
us valid in the contexts that are contemplated.

In applying Cornish’s prescription to our present problem we shall specialize the
coordinate system to a spherical-polar system at infinity. We shall write

ds? = —e(dD)? + e sin? 0(dp — gedr — ¢sd6 — wdt)® + e*:(dr)? + rle*s(df)?, (43)

where », a, ¢, ¢s, k2, and «3; are now assumed to be functions of ¢, », and 8. We shall
suppose that at infinity, the foregoing metric tends to the flat metric

ds? = —(dt)* + r*sin® 6(de)? + (dr)* + 7*(dh)?, (44)

which, following Cornish, we shall call the s-metric.
Cornish’s prescription for evaluating the Landau-Lifshitz complex, appropriately
for systems described by metrics such as the one we are presently using, is the following.
Let
VvV —g y
- ij — potrtagtagpis .
Y= et = g9 (45)
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and define in terms of v% the quantities

Tikil = nyilyhi — yiinghl
and
ki = Tl (46)

where |! signifies covariant differentiation with respect to x! and the d-metric. Then
evaluate
P4 = Fx . (47)

The Landau-Lifshitz “pseudo-tensor” ¢¢/ and complex 6%/ are now given by

‘ — 8e2lotrtagtuag)pii — Pis + e2(a'+v+x,+x3)Gij’
and
O = g2lotrtrgtuy) (tij + Tij) . (48)

(Notice that in the foregoing equations G/ and T'¢/ are the coordinate components of
these quantities.)

The total energy M, the z-component of the linear momentum P, and the angular
momentum J (about the z-axis) are given directly in terms of &% by the formulae
(cf. Cornish 1964)

M=—c f S S 22 sin 0drdode = — F S S X% sin 0d0d¢ ,  (49)
S_)w S-—)co
P& = — f S S (8" cos § — r®% sin )72 sin 0drdfde

S—-)a)

= — i 67r f S (x°2 cos § — X% sin 6)7* sin 8d0de , (50)

and

v J = — gl; S S S (@2 sin? 8)72 sin 0drd0de (51)

S—»co

where by the notation ‘“S — o’ under the integral signs, it is meant that the integrals
are first evaluated within a volume enclosed by a sphere of radius » (in the case of volume
1nte<rrals) or on the surface of a sphere of radius 7 (in the case of surface integrals) and
then 7 is allowed to tend to infinity.

A further relation that must be satisfied is

M _ 1 r o ene gin gdods . (52)

dt - 1( S—®

The evaluation of &% according to the foregoing formulae presents no difficulty. We
find

2% = }2 (7x™) 2 + (X" sin 6) 3

sin 0
= V2e2v+212 + [7627(62"3 — 82"2)]

+ div [e**2(e* — 1) grad (log 7 sin §) — 3F grad (»* sin? §)] , (53)
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292

1 . .
_1’_2 (r2x022) 9 + 'Le (X032 sin 0)'3 — fxOll Sln2 6 — rx033
= — (620‘+2x2) 20 — _} [62"2(626 —_— 82"3)],0 + 7’F’0 sin? @

+ S0 (s — o) ) 5, (54)

1'2 sin 6

2% = 7‘}5 (Px*B) , + 51—11179 (x%® sin 6) 5 + %x(mz — x" sin 6 cos @

= — ;lz(e“"’*?“x) 30 — cot § [e*:(e% — es)] 0 + Fosinfcosd — —
(55)
28%7% sin? = 7% sin? 0[ (rx ‘m) 2+ = n2 r (x® sin% ) 3 + = x"” + x"3 cot 0]
= div [? sin? § grad (we?et2x:)]
n2 0
4+ _S_‘l__ {(P[rog (e — e2)] 5 — r4(gaetts) o}
~ S (gse* 22 sin® 6) 3 , (56)
where we have introduced the abbreviations
o 14 q32 K
) F = ¢ (q22623+—75622)
an
M = re?ow (qge”s cos § — —qri € sin 0) sin% @ . (57)

Also, in equations (53) (56) (and in the sequel) ‘“div,” “grad,” and “v?’ have their
Euclidean meanings in spherical-polar coordinates.

We may also note here the expressions for x%%, x9%2, and x°?®* which occur in the
alternative formulae for M and P given in equations (49) and (50). We have

2x2+2x3
x020 — (e2¢+2x2) + 62”(282"3 —_ 62"2) — 7 sin? 0( 2 sin? 0 + F) ’ (58)
x022 —_ - (620'+2Ka) 0 + rq2w820+2“8 Sin2 /] ’ (59)
and
x923 — Z«:T""_ 202k, Sih2 9. (60)

The required components of the pseudo-tensor 7 and of the complex 6% can be
obtained by combining the expressions for #°7 given in equations (53)-(56) with the
corresponding (coordinate) components of the Einstein tensor in accordance with
equations (48).
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With % and x°® given by equations (53) and (58), we find that the two alternative
expressions for M (cf. eq. [49]) give, in agreement with each other,

= 3 limit S @ty 4 (e — ) — rFsint
y— 0

+ .i_ €2 (e2*s — e‘b"‘z)]r2 sin 648 ; (61)

whereas equations (52) and (54) give

Ei_y_— _1.".(2 r[_é 20+2x, 12:{2 20 __ o265} '2]2‘
7 _+81r1£n»it6t‘[ 6r(e )+re (e ¢s) — rF sin? @ |72 sin 046
— 1 limit /" sin®6 :% [P gou (s — €%%2)]d0 . (62)
7r— 0

The agreement of equations (61) and (62) requires only that
e — ¢ = 0(r?) as r— o, (63)

since, as we shall show later, w is O(r~%) as 7y — .
The alternative expressions for the ‘“conserved” linear momentum P® lead to
results that are formally different: the expression in terms of $°2 and $% gives

P® = —1limit S [IN — (e2F22) o cos 8 + re¥gw(e2*s — e2*2) sin? § cos 6]7* sin 6d6, (64)
r— o 0
while the expression in terms of x°%2 and x°* gives
P® = —1limit S [N — (e2t22) ¢ cos f]7* sin 648 . (65)
r— @ 0

And again the agreement of these two results will be assured if equation (63) holds.
Finally, we find with the aid of equation (56) that the expression (51) for the “con-
served” angular momentum gives

= —% limit of 372 sin? 0[—(,% (wet2es) — % (qze2"+2"s)]

¥ —> 0

+ rsin?2 @ 56—7 [re w(e*s — e2¢2)] s 7% sin 6d6 . (66)

PART II

EQUATIONS GOVERNING EQUILIBRIUM
VI. THE FIELD EQUATIONS AND THE EQUATION OF HYDRODYNAMIC EQUILIBRIUM

In the stationary case, there can be no motions in the x?- and the x*-directions: only
rotational motions in the x!-direction (specified by @) can prevail. Also, as we have
stated in § II, the functions ¢, and ¢; can be set equal to zero under stationary condi-
tions; and we have a further freedom of gauge to relate u; and ps in any manner that
may be convenient.
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The components of the four-velocity appropriate under stationary conditions are

(cf. egs. [25]-[27] and [30])
W=V =e7(Q — w), 1°=19@=0,

e_l‘

u°=m2)—lﬁ,, u = Qub, u* =0,
= — g L+ #76V), w0,
— p2Y—¥ Q- o = | e‘pV
h = € (1 — Ve = 1= v’
1 V
u(o) = (T:V—2)1/2’ u(l) = m) u(a) = 0 . (67)

The components of the Einstein and the Ricci tensors that are appropriate under
stationary conditions can be obtained by simply discarding in the expressions listed in
§ IIT (egs. [18]) all terms whose survival depends explicitly on the time-dependence of
the system.

_In writing the field equations. it is convenient to introduce the following abbrevia-
tions:
X = etstr(wy)? + et ts(wy)?, ¥V = ersrr(wq)? — errta(w 3)?

U = eflers (B ous,2 + ¥,0v,0) + e #3(Bapa s + ¥, 3)],

W = eflers+2(B ous,2 + tﬁ w,2) — e #(Baus s + Y o,3)] . (68)

Also we shall define
B=y¢y+vr. ‘ (69)

Indicating in each case the field equation that is involved, we have

et o0 + Yoo + msee + W+ us) 2(us — ua) o
F etz Yas + pess + (@ F ue) s(ue — Ma),s]

4+ %e2lﬁ-’2l’X = -—81rel‘2+lla( — V2 — p) (GOO) , (70)

e*Hoy g9 + v oB2 + vo(us — o) o] + e v gy 4 v 383 + v3(ue — pa) 3

1+V

— l-v) = 47|-gﬂz+l‘a[ e+ 1—s+ Zp] R™), (71)

et By g9 + v ove + (v + us) o(us — M2) .2 + us,20]
+ ey gy + v s+ 0+ p) .3(#2 — us),3 + po,3)

140X = ot (e + ) 1= + 9] @, (2

(R"), (73)

(¥ matma 5) o + (¥ HTHTw 5) 3 = —16m(e + p)edHretus 1—__V 7
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and

5489 + B2(8 + ps — m2) 2]
+ et a8 + B3(8 + pe — w) 3] = 16wperra (G2 + GF) . (74)
An alternative form of equation (74) is

[e#57#2(ef) 2],2 + [e#s#3(eP) 5]s = 16mp/ — g (75)
And finally, A
[ers7#2(eF) ol 2 — [e##3(eP) al.s = 2W + ¥ 2HY  (G® — G%¥). (76)
Certain linear combinations of the foregoing equations which we shall find useful are

e hofy g9 + v,9(28 — v) 2 — maz2 + (v — pa) 2wz — m2) ol

+ ey g + v,3(28 — v) s — e+ (v — p2)s(ue — pa) 3l

— 14X = 8reriths (ff L+ p) (77)

and

e ro (Y — ws) oo + Y o(@ + ) o + (W — pa) 2(us — p2) o
+ et (Y — po) sz + s+ ) s+ (W — p2) 3(pe — p3) 3]

+ gerax = —srorn STLV (4 )] (78)

a) The Equation of Hydrodynamic Equilibrium
In the stationary case, equation (35) reduces to the equation coverning hydrodynamic
equilibrium. We have

1
e+ p

Pa = — 3@ (¥ — wie¥) o + 20(we™) o — Q2(e) ] . (79)

If the rotation is uniform and Q@ is a constant, the equation takes a particularly simple
form; we have

b= —HEOHEN — @ = 0
e+ p 1
= 3 = V)La = =369 ] (80)
or, alternatively,
D = (5 + ?)(log uo),a . (81)

VII. THE ASYMPTOTIC BEHAVIOR OF THE POTENTIALS AT INFINITY

For many purposes it is important to know the asymptotic behavior of the potentials
v, ¥, w, u1, and u, at infinity. It is most convenient to consider their behavior at infinity
in a system of spherical-polar coordinates. We shall accordingly set (making use of the
freedom of gauge now available)

22=r, =90,
and )
e =remsinf, etr=¢ef, and s = remt. (82)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972ApJ...175..379C

S D II7SI 379!

CRCREL AN

pJ

[o724

No. 2,1972 AXISYMMETRIC SYSTEMS IN GENERAL RELATIVITY 393
In these variables the field equations (70), (71), (72), (73), and (78) become
V2 + %|grad (9 + ¢)|? + grad ¢-grad [log (» sin 6)]
+ pV?

= —1r2em 8- |grad w|?sin? § — dren—% ST L (83)

1— 1’

V& + grad v-grad (v + 7 + ) = 1r2e¥t% 2| grad w|?sin? 6

2
+ tmeri] e+ ) { s + 2], (89
& 19 1 9
pCT =0+ o=+ =0+ 550+ —) + [grady]?
= grter s | grad o|?sin? 0 + 8rer3] (c + 1) —1——_142—172 +p|, 9

9% 19 1 9% :
2 LS+ grad (n+ D) grad (o + ¢ + 2)

+ grad (n + ¢ + »)-grad [log (7 sin 6)]
= — 31267 %—2|grad w|?sin? § — 4we*% [EJI—TPI; — (e + 17)] , (86)

and

div (%72 sin? 0 grad w) = —167w(e + p)retn 1 _Y 7 sin @ . 87

The foregoing equations are not all linearly independent: equation (86) is, in fact, a
linear combination of the preceding three.

We are interested in the asymptotic behavior of the potentials #, {, », and w as
r —  outside of the fluid sources. In these regions e = p = 0. Also, as we shall show in
§ VIIa below, w is O(r3) as r — = ; as a result the terms in 72|grad w|? on the right-
hand sides of equations (83)-(86) are of O(r®); and this is an order higher than any that
we shall retain on the left-hand sides of these equations. Accordingly, we are effectively
concerned only with the solutions of the associated homogeneous equations.

We shall presently verify that

{=0@0? as r—o o, (88)

Therefore, in equation (83) the two terms on the left-hand side, besides vy, are at
most of O(r~%); and we may conclude that

1= 400, (89)

where M is a constant. From equation (84) we may similarly conclude that » is of
O(r1). In equation (85), the terms arising from { are of O(r~4)—on the assumption (88)
to be verified—and |grad »|? is also of O(r~*). From this last result it follows that

v+ =007?); (90)
and we infer that (cf. eq. [89])
v=—M/r+ 0(r?). (91)
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Returning to equation (84), we observe that by virtue of equations (88) and (90)
the term grad »-grad (v + n + ¢) is of O(r~%). Accordingly, we may sharpen the result
(91) to the stronger statement

v=—M/r+ 0. (92)

Again, since the two terms on the left-hand side of equation (83), besides vy, are
both of O(r~*), we may write

=ML N0 | oy s (93)

and in accordance with equation (88) we may also write

20 + o6 (94)

=

Now inserting the forms (92), (93), and (94) for v, 7, and { in equation (85), we obtain
d2 . —_ 2 . ‘

(d—ez+4)(N—Z)—- M2 (95)

and the solution of this equation appropriate to the problem on hand is
N —27Z= Acos20 — M2, (96)

where 4 is a constant of integration. (Note that we have not included a term in sin 26
in the solution in view of the required symmetry of the configuration about the equatorial
plane at 6§ = x/2.) ‘

~ Next, substituting the forms (93) and (94) for 5 and ¢ in equation (83) and making
use also of the relation (96), we are left with

- .
(202 + 2 ot0 +2A+4A cos 20 = 0. 97)
The solution of this equation, [ree of singularity, is given by
N =1314cos20+ N,, : ' (98)
where N, is a further constant of integration. Equation (96) now gives
Z=3iM*— 34 4+ Ny+ Asin?8. (99)

The regularity of the solution at 6 = O requires that { behave like sin? § at § = 0. This
requirement determines the constant A4; we find

A = iIM?+4 2N,. (100)
The behaviors of 3, ¢, and v to O(r~?) becomes determinate. We have
1 A(1 + cos 20) —

7=+ — + 3 -|- o),
¢ = %M) + 00,
7
and
v=—M/r+ 0(3). (101)
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A particular consequence of the foregoing behavior is
1 .
vbn+E=(4— 1) 5+ 00 (102)

a) The Asymptotic Behavior of w as r—
The behavior of w as » — « is determined by the equation (cf. eq. [87])

div (e %—r2sin? 0 grad w) = 0, (103)

or, in view of the behaviors (101) by the equation

le (1 + — + ) 7% sin? § grad w] =0. (104)
The solution of this equation in ‘“zeroth” order is of the form (cf. Hartle 1967)

3 apP J dP
_—_ZZ;w(o)() #l=22rl£2dz (= cos), (105)

where a factor 2 has been introduced in the definition of the constants J; for later
convenience; also, P; denotes the Legendre polynomial.

The solution for w including the “first-order” term 4M /7 in equation (104) can be
obtained by the substitution

o= 3 [w® + 4_rf‘£ w9, %P‘l' (106)

Equation (104) then gives

1d( do® _ (-1D0+2) o _ _,1+2
rtdr r dr) ) 2 it Ji. (107)

We need to consider only the particular integral of equation (107); it is given by

I+ 2 J,
wy= — 125 (108)

Therefore the solution for w to O(r—%) is given by

_ 2. 6]1M

- + 069, (109)

where a term in J, cos 6 has been omitted to conform to the required symmetry about
the equatorial plane.

VIII. THE INERTIAL MASS AND THE ANGULAR MOMENTUM OF THE CONFIGURATION

The inertial mass (M) and the angular momentum (J) that must be associated with a
stationary axisymmetric configuration can be ascertained with the aid of the formulae
(61) and (66) of § V and the asymptotic behaviors of the potentials established in § VII.

In applying the formulae (61) and (66) in the present context, we make the identifica-
tions

c=n+4+¢, ke=x=n—¢, and ¢@=g¢g=0. (110)
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Formula (61) now gives
M = —3% limit f[ e + % etr(1 — e‘“f)]r2 sin 6d6 . (111)

From the asymptotic behavior of { as 7 — «, namely, that it is of O(r~2), it follows that
the second term in brackets in the integrand does not contribute to M; and the first
term gives

1 limit f — r2 sin0dd = M , (112)

r— @ 0

in view of the asymptotic behavior of n (~M / r) as r — o Similarly, formula (66) gives

J = —1 limit f 7% sin3 0, (e"'w)d() = —1limit S 7*sin3 0 (—;% do . (113)
r— o 0

r— o

From the asymptotic behavior of w given in equation (109), we now find

J =237,/ sin®6do = J,, (114)
0
in agreement with the interpretation of the leading coefficient in the asymptotic expan-
sion for w (cf. Hartle 1967).

The expressions (112) and (113) for M and J enable us to express them as volume
integrals over suitably defined sources. Thus, rewriting equation (112) in the manner

M = =1 f [V sin 0drds (115)

S—

and substituting for V29 from the field equation (83), we obtain
M=3SS 3411'6"”7*2r e+ P V = + §r%e*t %% |grad w|? sin® 6
+ 1|grad (n + ¢)|? + grad {-grad [log (r sin ¢9)]$r2 sin 6drdf . (116)

It can be verified by an integration by parts that the last term in the integrand does not
contribute to the volume integral. We are thus left with

2
M= S [21re2"‘2r 6—1% + i r2e'rt%=2 | grad w|? sin’ 6

+ ilgrad (n + ¢) |2]r2 sin 8drdf , (117)

in agreement with an earlier result of Bardeen (1970; see also Hartle and Sharp 1967).
Similarly, rewriting equation (113) in the manner

J = —1 [ div (e¥%~2 sin? @ grad w)7? sin 6drdd , (118)

and making use of the field equation (87), we obtain the formula

J =2 LS (e + p)e i _V 7 73 sin? 9drdo (119)

which expresses the angular momentum of the configuration as an integral over the
sources (cf. Hartle and Sharp 1967).
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PART III

EQUATIONS GOVERNING INFINITESIMAL
AXISYMMETRIC PERTURBATIONS

IX. THE EULERIAN AND THE LAGRANGIAN CHANGES

We suppose that a configuration that is initially axisymmetric and in a stationary
state is subjected to an infinitesimal perturbation; and we shall suppose further that in
the nonstationary state that ensues axisymmetry is preserved. In this part, we shall
obtain the linear equations which govern such perturbed configurations.

In considering the changes in the various quantities caused by the perturbation, we
shall distinguish between the Eulerian and the Lagrangian changes; these are, respective-
ly, the changes that take place at a fixed location and the changes that accompany a
fluid element as it moves.? It is convenient for this purpose to describe the perturbation
by a Lagrangian displacement & which is the spatial displacement that an element of
the fluid experiences relative to its location in the unperturbed state. Since we have
assumed that the perturbation does not affect the axisymmetry of the configuration,
it is clear that the components £ (a = 2, 3) of & should suffice to describe the perturbed
configuration. This statement should not be taken to mean that motions in the ¢-
direction do not occur. They do occur; but their role consists principally in altering the
distribution of . But as we shall show presently, the changes in  that occur can be
ascertained by appealing to equation (42) that ensures the conservation of angular
momentum per baryon.

We can consider the Eulerian and the Lagrangian changes in a variable as the result
of the action of certain operators & (Eulerian) and A (Lagrangian); these operators are
clearly related by

0

pal (120)

A=bd+¢

In, the subsequent analysis the assumption will be made that the changes (Eulerian
or Lagrangian) caused by the perturbation are quantities of the “first order” of smallness
and that all effects nonlinear in them can be ignored.

In the initial stationary state, there are no motions in the x%- and the x3-directions.
The motions v* that ensue in these directions as a result of the perturbation are, there-
fore, of the first order of smallness and we can write

v =g, (121)

X. THE EQUATIONS GOVERNING THE FLUID

We have seen that the ¢,’s vanish in the stationary state. Their appearance in the
metric that describes the perturbed nonstationary state may therefore be thought of as
being caused by the perturbation. The ¢,’s then, like the v%’s, are quantities of the first
order of smallness. An important consequence of botk v* and ¢, being quantities of the
first order of smallness is that V and vV as defined in equation (25) differ from each
other and with the expression for V in the unperturbed state by quantities of the second
order of smallness; they can therefore be ignored in a linear theory such as the present.
The relation given in equation (67), namely,

V= = ¢—(Q — o), (122

continues to hold formally in the perturbed state as well—but only formally since ¥,
v, @, and w are subject to first-order changes.

3 For a general account of these concepts, see Chandrasekhar (1969; see especially §§ 13 and 14).
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A further consequence of the formal applicability of the definition (122) to the per-
turbed state is that the expressions for 0, u!, %y, %1, @, and #V given in equations (67)
also continue to be applicable.

To emphasize that ¢, like v*, is nonvanishing only in the perturbed state, we shall
write

a0 in place of g, (123)

in all developments dealing’ with the perturbation of axisymmetric systems that are
initially statlonary

a) The Equations Ensuring the Conservation of Baryon Number and of Entrdpy
From equation (21) it follows that

ANuY — g = —(Nu'v/ — gt «: (124)
Equivalent forms of this relation are '
| AN _ AtV —g)
N W\ — g @
— — __1'_.____ 77 — — 0 —_
- MO‘\/ —g (S u '\/ g),a 5[10g (% \/ g)] . (125)
Ffom:the definitions of #® and \/ — g we find
ou® VeV N — g '
CE = vty amd eyt mt ). (120
Inserting these relations in the second form of AN/N given in equation (125), we obtain
AN _ VeV Y ey —
=TT W et w) \/ (Eu\/ £) . - (127)

Since we have not included any dissipative mechanisms in the expression for the
energy-momentum tensor of the fluid, the fluid elements must conserve their entropy
during their motion: in general relativity, the conservation of baryon number and the
conservation of entropy are not two independent laws (cf. Chandrasekhar 19695).
The changes in the pressure and in the energy density that accompany fluid motion
must therefore be adiabatic; and we can write

Ap _ AN de _ AN
‘_P—,—-’YN and ¥ N (128)
where v is a suitably defined adiabatic exponent.
A consequence of the relations (128) which we shall find useful is
€+
A( P 4plY N2 . (129)

b) The Equation Ensuring the Conservation of the Angular Momentum per Baryon
From equation (42) it follows that

A(€+Pu1 =0. (130)

4 Actually, that g, is expressible as the time-derivative of a function in a lmeanzed perturbation
theory can be deduced directly from the (0, a)-component of the field equation (see § XI below).
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In view of the relation (129), we can rewrite equation (129) in the manner

AN
5 5 + dog w) + ¢=(log w). = 0. (131)
We have already noted that the formula for #; given in equations (67), namely,
eV ,
"= T e (132)

is formally applicable to the perturbed state. Evaluating éu; according to this formula
and inserting the result in equation (131), we obtain

oV _ P é]_V

vl — V) et+p N

— & — £2(log ) e - (133)

With 8V determined by equation (133), the redistribution of { that results from the
perturbation can be deduced from equation (122); thus

5(Q — w) = (@ — w)[—v — oy — u)] . | (134)

Finally, we may note the following two identities which can be derived from the
foregoing relations:

\/ — &,
(e + pumv/ — gl = —[(e + P)wmt*v — gl (135)

(e + P — gl = —[be+ (e + PG + ma+ ) + (e + p) Toors]

and

¢) The Pulsation Equation

The pulsation equation is no more than the equation of motion (35) linearized about
the equation of equilibrium (80). In writing out the equation, we shall restrict ourselves
to the case when, in the stationary state, Q is a constant; in this case the equation
governing equilibrium, namely (81), is particularly simple.

To obtain the pulsation equation, we apply the Lagrangian operator A to equation
(35). Noting that in the present context we can interchange the operations of A and of
partial differentiation (by virtue of the equations governing equilibrium®), we obtain

e Fga AW 1 p 9 (1)2
0)2,20 2 S __ 40 - 02 9 =
W)ee S — Wiy — 2 T paae T A 5 A

_Ae+pap 1 a
T (e 4+ p)2? 9x= €+ p 9x= Ap - (136)

(u0)2e2w(ﬂ - w} axa

Substituting for Ap and A(e + p) their values given by the adiabatic conditions (128),
we find that equation (136), after some rearranging, becomes

v P _[(1 4 12 )AN s op 0
(c + p)(W)rea = = [<1+€+P) v 12 ax“ ax“( 7P =+

B+ P A(u) — e+ puow (522 - 28 )

oxe

8 For a direct proof of this statement in the Newtonian framework, see Chandrasekhar 1969 (§ 14).
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Now, it can be verified that
a Aul Au" ap
0y2 _____ = —_— i
—He+ pera(s) =P -2t s
Inserting this last relation in equation (137), we find after some further simplifications
o (? AN) 9 Au
0)2 — 2a__=_o — g2 g Y au
e+ PPV — e T = —wy/ = gz (LS + (4 DV — 8505 5
AN 9 AR  0%q,
V=8 g P — (G — G
(139)

Equation (139) is the required pulsation equation.

XI. THE LINEARIZED VERSIONS OF THE (0, a)- AND THE
(1, @)-COMPONENTS OF THE FIELD EQUATIONS

The (0, 2)-component of the field equation that is valid quite generally under non-
stationary conditions is (cf. egs. [18], [25], and [30])

= —e Py — Y0 + Yol — V)2 — pa20 — ma2(us — pa)o + usov 2
+-3er gy 50 — ¢3,2) (@,3 — g3,00)

e-l-p

= 8m(e + p)uOu® = 8 — T 5 eh? (140)

where in accordance with our present convention we have replaced ¢, of Part I by gq,o.
Remembering that in the present linearized theory 22 = £2,, we can directly integrate
equation (140) with respect to time if we ignore all terms that are nonlinear in the
perturbation. Thus

—e M odus — W2 + (v — ¥) 200 — Ous,e + w320 (us — pe) + v,20us]

gy, — go)os = br it L. (141)
Introducing the abbreviation
Q = etrrrta(ges — gs) (142)
we can rewrite equation (141) in the form
8rv/ — g 1e s Pz g = etecmldy s+ (Y — )0 + duse — (v — pa),20us
— (¥ + ) 20m] + 3Qw,; . (143)
An alternative form of this equation which we shall find useful is
8rv — ¢ 16 tr 5 82 = et (ePBY) o — (€8) 20us + €Pduz,s — 2ePy 20y

+ AW + us) 20(us — wo)] + 30w s, (144)
where it will be réecalled that B8 = ¢ + ».
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The (0, 3)-component of the field equation similarly gives

e+ p

1— 12 £ = err ol (o) 3 — (€f) 502 + €POuzs — 268y 309

+ AW + pe) 30(ue — ps)] — 3Qw,s . (145)

At a later stage in the development of the theory, it will be convenient to define the
variables

8ry/ — ¢

ou = 30(us + o) and b7 = 36(us — po) . (146)
In terms of these variables, the basic relations (144) and (145) take the forms
O + ou) 2 — 280 + p) + ¥,2(8¢ — ou)

= e2“2(8 ct? £ — Q 0-’,3) — 01— (Qus + ¢ — v)00r, (147)

; "1T= 2 — ¢
and
(5¢ + 5#) 3 V,3(5¢ + 5#) + ¢,3(5¢‘ - 5#)
= e¥s (81r lej 52 8+ 2\/(2_ . w,z) + 673+ Qus + ¢ —v) 0. (148)

Considering next the (1, 2)-component of the field equation, we have quite generally,
RM® = Ry
= Je W rma{[eVrmtua(w g — ga,00)].0 + [T H#(ga,50 — G5,20)] .8}

= 8r(e + p)uPu® = 8x(e + p)ume¥tr? . _ (149)

Again this equation can be integrated with respect to time if we ignore all terms that are
nonlinear in the perturbation. Thus,

167!'(6 + p)u"ule—2‘“2"+2“2£2 = (5(.0,2 _ 92,00) + w,2(361// — ov — aﬂz + 6}1.3)

+ e ¥Wtrtuug g trsiii(gy 3 — g30)]3, (150)
or, alternatively,

dw,p — Q2,00’= 16m(e + p)uluye otk
— (38 — 6y — By + dug) — e RO 5 . (151)
The (1, 3)-component of the field equation similarly gives
dws — gs00 = 16m(e + p)ulure W 2+ouags
— w3(38% — 8 + Sy — Oug) + e HTrmItHQ 5 (152)
Eliminating éw from equations (151) and (152), we obtain
| (3 trhataQ o) o + (e3P e Q) 5) 5 = (e —TritraQ) oo
— [w,2(38¢ — 6 — duz + dus)].s + [w,3(36¢% — v + dua — Spa)] 2
+ 167 {{(e + Pt I — [(c + plutaneIwg ) (153)
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Equation (153) has the form of an inhomogeneous wave-equation. It will appear later
that it is this equation which provides information about the emission of gravitational
radiation by the perturbed system.

Finally, we shall state in the form of a lemma two formulae that can be derived with
the aid of equations (151) and (152) and which are of considerable importance in the
reduction of the remaining field equations (see § XII below).

LEMMA:
' ‘ o{e et (ws — qo0)? + 6"’_"’(0’.3 — g3,00°]}
= 327(e + p)ulurersT (B0 2 + Bw 3)
— & P[4Xoy + Yo(us — wo)] + 25, (154)
and S{e¥ [t #r(w, s — go,0)? — € H3(w,;3 — g3,00)%]}
= 327(e + p)ulmer#s (8w 3 — Bw3)
— e P[4Ysy + Xo(us — )] + 2D, (155)
where » _
S = e+ (Qaws — Qaws), and D= —e¥(Quws+ Qaws), (156)

and X and ¥ have the same meanings as in equations (68).

XII. THE LINEARIZED VERSIONS OF THE REMAINING FIELD EQUATIONS

The linearized versions of the remaining field equations can be obtained by applying
the Eulerian operator § to the general equations of Part I. Thus, the application of the
operator § to the (0, 0)-component of the field equation gives

- A 8?"“’{[5¢ 22+ 202002 + dus,0 + (5*# + 5#3) 2(us — w2) 2 + (& + ws) 28(us —pi2) 2]
+ o(us — Mz)[lﬁ 2+ ¥abe + usm + ('P + pa) 2(us — p2) oI}

e+ pV?
—

+ Y[ XY + £ Vo(us — m2)] — 35, (157)

where we have used equation (154) to simplify the terms in (w,o = ¢a,00)% Similarly, the
other field equations give

et {[0v 99 + 21’,25?,2 -+ 5#3,22 + (Ov + dus) 2(us — mo),2 + (v + us) 20(us — p2) 2
+ 5(#3 - Mz)[V,zz + V.,oV,2 + M3,22 + (V + #3) .2(#3 - #2) 2]}

-+ e“*"‘a{Z “ 3} — 8w (e“2+"8 ) — 8wetitri(e + p)udmtow o

2
+ e"’_“3{2 > 3} = 81!'6'38“2-’—“’[(6 + p) I——LK—IE -+ P]; -+ 6—2"+“’+“’5(/.¢2 + HS),OO
+ 24merstra(e + p)ulutw o — 3V P[X6Y + 1 Vo(us — o)l + 35, (158)

{e¥r e madw g — ga,00 + >w,2(36¢ — Oy — dpe + Op3)l} 2
+ {e¥rtrafdw s — gao + 0,3(30 — & + duz — ous)]} 5
‘= =16wd[(e + p)u0m/ — g] = 16x[(e + p)uomt*y/ — gl (159)
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e #1{[6B 2 + 28,2082 + 8B.2(us — pa) 2 + B.26(us — pa) ]
+ 6(us — po)[B.22 + BoB2 + Balus — wo) .}
+ e #3{2 > 3} = 16md(e+strap) + e 2T rF(2Y + py + ps) 0 - (160)
An alternative form of equation '( 160) is
[e#s~ “’(e"ﬁﬂ) o + [#8s(98) )0 = —3(#3 — m)QW + 3 jev-21Y)
— efler B o5 (s — wa)ia + o “’3 0(uz — pa) 3]
+ 16w3(pv/ — §) + eI + s + )/ — g - ~(161)
We also have
[e#57#2(e#3B) 2] 2 — [e*73(e%3B) 5] 5 = —8(us — pa) (167py/ — g + ¥ 770X)
= ey — ) 2 — 0By — i) 3]
+ 26W + (358 — 2) Y + #D B
+ [16m(e + PO (Bw,s — B, 3) — e — m)lV — ¢,  (162)
vt ravst Y+ Yas — 0+ v)ams — (0 v) sl
Ry 0 90,309 + eV (010 00,0 — 4790 50 5)

+ 8w(e + p)u'ui(e*:£%w, 3 + e*stdw,) . - (163)

and

Two linear combinations of the foregoing equations which we shall find useful are
e {[0v 2 + 00,228 — ») 2+ v28(28 — ¥),0 — Spae + (v — pa) 2 — mo) .2
+ v — us) 26(us — o) 2] + 8us — pa)[v.o2 + v2(28 — v) 2 — wa
+ (v — pa) 2(us — w2) o]}
€+ P

+ et k{2 > 3} = 8#6[6"2"”"3( s+ P) + e tustug(2y + sz + 13) 00

+ Brerstie + p)wdutw,. — HF[Xop + 1o — w)]l + 1S, (164)

e {[6v,00 + B20v,2 + 88w 2 + v 2(us — p2) 2 + v 28(us — p2) 2
+ 6(us — pa)lv.ee + Bov.a + vo(us — pa) o)}

1+V

+ gm—us{Z « 3} = 41r6§d‘=+"a[(e -+ P) >+ 2?]; + e retasi(Y + pp + )00

+ 16messtin(e + p)utngw,o — 26%P[Xo0 + 3 Vo (us — w4+ S, (165)
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and
e {[0f 0 + (P + v+ ps — we) 200 + Y0 + v + pz — p) 0]
+ 0(us — w2 + Yo + v + us — w2) ol}

V2
+ (208} = —8rafetil (e 4 p) T + He — D) || + ety

— 16merths(e + p)untow o + 269 [XoY + 3 Vo(us — w)] — S.  (166)

In § XI we considered the linearized versions of the (0, 2)-, (0, 3)-, (1, 2)-, and (1, 3)-
components of the field equations. It can now be verified by direct calculation that
symbolically the following relations hold:

[0, 2)-Eq.].2 + [(0, 3)-Eq.],s = (0, 0)-Eq.
[(1, 2)-Eq.]. + [(1, 3)-Eq.],s = (0, 1)-Eq., (167)

where the (0, 0)- and the (0, 1)-components of the linearized field equations are given
by equations (157) and (159), respectively. (The relations [166] must clearly be equiva-
lent to two of the four Bianchi identities.)

Since only six of the 10 field equations can be linearly independent, it is clear that
besides the four equations considered in § XI, only two of the remaining six equations
need be considered. In view of the relations (167), equations (157) and (159) can be
eliminated from further consideration; and this leaves us with equations (158) and
(161)-(163). Of these four equations, it appears that equations (161) and (162) derived
from the (2, 2)- and the (3, 3)-components of the field equations (by addition and by
subtraction) are the most useful; and for later use we shall rewrite them in the following
forms:

e hd(Y + ) o2 + (20 + 20 4 ps — w2) 2060 + v) o]
+ err#[2 > 3] = 16w(errtrsp) + 2e~2retri (Y + ) oo
— 22 PW + 3%V )or — 2er#B 907 5 + 2¢* B g7 5, (168)

and

e (Y + 0v) 2 + 20080 + 2vadv,e — S + ¥) 2(us + m2) 2 — 28 + ) 20,9
— 2 & 3] + 22V + eV (Q00,3 + Q50,2)
— 16mertis(e + Paun(Pus — Buog) = — dr(EH X + 32mpesit) — Zedrhustuigy g,

(169)

where du and 67 have the same meanings as in equations (146), and W is defined in
equation (68).

"The derivation of the principal equations of the theory is now completed. Applications
of the theory to the solution of the two.problems outlined in § I will be found in the
second paper of this series (Chandrasekhar and Friedman 1972).

We are greatly indebted to James M. Bardeen, Frederick J. Ernst, James R. Ipser,
Norman R. Lebovitz, Kip S. Thorne, and Andrzej Trautman for many helpful discus-
sions. And S. C. is grateful to Kip S. Thorne for an invitation that enabled him to spend
three most profitable and refreshing months in close association with Thorne and his
students at the California Institute of Technology. This paper owes much to Kip
Thorne and to those three months.
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