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ABSTRACT

The resonant oscillations of one of two congruent Darwin ellipsoids, forced by the natural oscilla-
tions of the other, are considered; and the instability of the ellipsoids to synchronous coupled oscillations
is traced to this resonance.

I. INTRODUCTION

In the first of two papers on the Darwin ellipsoids (Chandrasekhar 1964, 1969;
these papers will be referred to hereafter as Papers I and II, respectively) the natural
modes of oscillation of either component by itself (with the other remaining static)
were considered; and it was shown that “all the physically realizable congruent ellipsoids
are siable with respect to their own natural oscillations.” In the second paper, a class of
synchronous coupled oscillations was considered; and it was shown that “two of the
five modes of oscillation belonging to this class excite instabilities along the entire Darwin
sequence.” This last result was characterized as ‘“‘unexpected’ since it is at variance with
Darwin’s surmises with respect to the “limiting” and the “partial” stability of his
figures. :

The question to which this paper is addressed is: Should the instability of the con-
gruent Darwin ellipsoids be considered as really ‘“‘unexpected”? Actually, on second
thoughts, it would rather appear that the instability is indeed natural under the cir-
cumstances! Thus, suppose that one of the two congruent figures is set into a mode of
natural oscillation (considered in Paper I). The tidal potential of this component over
the other will then vary periodically. As a result, the other component will be set into
forced oscillations. Since the natural frequencies of oscillation of the two components
(being congruent) are the same, it is clear that we shall have a case of resonant forced
oscillations. The amplitude of the forced oscillations should, therefore, be expected to
grow linearly with time. The energy in the oscillation of the first component will thus
begin to be drained to the second component; and this transfer of energy must result in
the -excitation of the coupled modes of oscillation (considered in Paper II) and the
eventual instability.

II. THE RESONANT OSCILLATIONS OF ONE OF THE COMPONENTS
FORCED BY THE NATURAL OSCILLATIONS OF THE OTHER

As shown in Paper I (egs. [39] and [47]-[49]; see also Paper II, eqgs. [58]-[61]), the
equations governing the even modes of natural oscillation of one of the components
(while the other remains static) are

az
3—=+3Bu—Bu—Bu) Vu+(—3% & _ 3By + Bia + B2 ) Ve
ae dae

(1)
dVi

dat

+ (B13 - st) Vi — 2Q =0 ’
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d
2 (3% + 3Bu+ Bu — 2Bu + 2 — ) Vu
+ 4 (3L + 3B+ Bu — 2Bu+ 20— Ba) Va )

+ %(— dii; — 6B33 + Biz + B + 2533) Vs + 2(Bn — B2)QVi =0,

dVu d V22

th

+ ( T + 4By — Bu — 622) Ve=0, (3)

and

iz Vu + V22 + V33 =Y, €

where the various symbols have the same meanings as in Paper II.
Letting
(Vu, V22, Vss, V12) = (Xl) X2, Xs; X4) ) (5)

we can write equations (1)-(4), in matrix notation, in the form
Lijd/d)X;(t) = 0, ‘ (6)

where the coefficients L;;, as indicated, include terms in d/df. Seeking solitions having a
time-dependence of the form

X;(t) = Xje, (7

where X,’s now denote the amplitudes of the oscillation and \ is a characteristic-value
parameter to be determined, we obtain the characteristic equation

Li;NX;=0. (8)

It has been shown in Paper I that equation (8) allows three characteristic values for
A2 (which are all negative corresponding to the stability of these modes). Let N now
denote a characteristic root and X; a suitably normalized characteristic vector of the
matrix L, belonging to it. Also, let X denote a characteristic vector of the transposed
matrix Lt , belonging to the same A, so that

Li(MXt =0. (9)

During the oscillation, with an amplitude appropriate to the solution X; (say),
the orientation of the ellipsoid in the equatorial plane, as well as its semiaxes, will
vary periodically with amplitudes that can be deduced from the formulae given in
Paper II, § III (eqgs. [27] and [28]). The resulting variation of the tidal potential over
the other component can be similarly written with the aid of the formulae given in
Paper II, § IV (egs. [33]-[37]) and § V (egs. [62], [66], and [67]): the required expressions
for 8Q and 88,; are formally the same; but they should now be evaluated in terms of
Vi, Vas, Vi, and Vi, that follow from the adopted solution of equation (8). (Since
the centers of mass of the two ellipsoids are at relative rest during the natural modes
of oscillation, we should set V, = V, = 0.)

Under the influence of the varying tidal potential, the equations governing the forced
oscillations of the second component are, again, formally the same as in Paper 1I,
equations (58)-(61); but the terms in §Q and §B3;; must now be interpreted as arising
from the natural oscillations of the other component. Thus, if

Vn, sz, Vas, Vm) = (Y1, Yz, Ys, Y4) (10)
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denote the virials of the component executing the forced oscillations, the equations
governing V; are represented by

L;(d/dt) Yi(t) = Fie*, (11)

where L;; denotes the same matrix defined by equations (1)—(4) and the forcing term
F;is given by (cf. Paper I1; egs. [59]-[62], [66], and [67])

Fy = 11881 — I220B22, F3 = —NIu — I2)0Q + (In + I2)0812, F.s=0, (12)
Fo = — 20Ty + I2)8Q + 2Q(I1n — I2)8812 + MudBu + AN 20822 — 2MI33683; ,
where

081 = 20a1 + das + daz, 0B = 20a; — das, OB = —daz, and QL = da;, (13)

and

5
da; = M (OuX1 — a1Xs — asXs) ,

5
5a2 = TM— (Q21X1 - 3(1.22X2 - a23X3) 9 (14)

5
daz = i (01 X1 — aX: — 3aiXs) ,

and
5 4Rayaqa3 X,

T MR F a2 — a)PR F a? — a2 (af — a)

0B =

(It should be noticed that in accordance with our earlier remarks, we have set ¥V, = 0
in Paper II, eq. [66].)

The complementary solutions of equation (11) are the same as those of equation (8);
and it remains only to determine a particular integral. We set

V() = kXM + Ziet (15)

where X; denotes the (normalized) characteristic vector of L (belonging to \) and «
and Z; are constants, unspecified for the present. Inserting this form for the solution in
equation (11), we obtain

dL;;(N)

xLin,-e”t + K EN

Xje” + Liije“ = Fie“ . (16)
Since X; has been chosen as a characteristic vector of L, belonging to A, equation (16)
reduces to

dL;;
oA

Liij = Fi — K Xj . (17)

Contracting this equation with X%;, we obtain (cf. eq. [9])
aLi,-

t.
XN

Xj = XT,'F,'. (18)

This equation determines «; and it will be noted that it is independent of the adopted
normalizations of both X; and XT,.
With « determined by equation (18), equation (17) will clearly allow nontrivial
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TABLE 1

THE CHARACTERISTIC VECTOR OF L AND A

2 . + . +
¢z A V22/V13 ¥33/V1 V2V, V2211 \£EYALT V2V,
Mode 1
14° -0.33060 -0.51087 -0.14221 -0.66469 0.13925 -0.93168 0.12075
16° -0.27401 -0.45218 -0.14133 -0.60704 0.15561 -0.91124 0.13500
17° -0.24749 -0.42378 -0.14008 -0.57678 0.16392 -0.89987 0.14126
1795 -0.23464 -0.40985 -0.13927 -0.56127 0.16811 -0.89391 0.14414
18° -0.22205 -0.39612 -0.13834 -0.54551 0.17232 -0.88779 0.14686
1895  _0.20972 -0.38260 -0.13728 -0.52950 0.17654 -0.88153 0.14940
19° -0.19762 -0.36929 -0.13612 -0.51322 0.18078 -0.87515 0.15176
1995  -0.18576 -0.35620 -0.13484 -0.14:9667 0.18502 -0.86868 0.15393
200 -0.17413 -0.34334 ~0.13345 -0,47983 0.18928 -0.86214 0.15591
2095  -0.16272 -0.33073 -0.13196 -0.146270 0.19353 -0.85560 0.15770
21° -0.15152 -0.31836 -0.13036 -0.44526 0.19779 -0.84911 0.15928
2195 -0.14053 -0.30625 -0.12867 -0.42750 0.20204 -0.84276 0.16066
22° -0.12975 -0.29439 -0.12689 -0.40938 0.20629 -0.83665 0.16183
2295  -0.11916 -0,28280 -0.12501 -0.39088 0.21053 -0.83091 0.16279
23° -0.10877 -0.27149 -0.12305 -0.37197 0.21475 -0.82575 0.16353
2140 -0.08855 -0.24968 ~0.11888 -0.33267 0.22313 -0.81821  0.16438
Mode 2
14° -1.18773 +0,20108 -0.75472 0.56381 1.84648 1.71814 0.32860
16° -1.17374 +0.11517 -0.62244 0.60901 1.45730 1.64725 0.30727
17° -1.16215 +0,08057 -0.56523 0.62831 1.31633 1.62537 0,29860
1795 -1.15523 +0,06525 -0.53870 0.63722 1.25574 1.61722 0.29461
18° -1.14758 +0,05122 -0.51352 0.64567 1.20095 1.61079 0.29083
18%5  -1.13920 +0.,03840 -0.48959 0.65370 1.15109 1.60588 0.28719
19° -1.13014 +0,02674 -0.46687 0.66134 1.10577 1.60244 0.28369
19%5  -1.12038 +0.01616 -0.44527 0.66862 1.06439 1.60034 0.28027
200 -1.10998 +0.00661 ~0.42476 0.67558 1.02658 1.59950 0.27691
2095 -1.09893 -0,00199 -0.40525 0.68225 0.99190 1.59984 0.27359
21° -1.08727 -0.00968 -0.38670 0.68866 0.96006 1.60130 0.27028
2195  -1.07502 -0.01655 -0.36904 0.69485 0.93074 1.60380 0.26697
22° -1.06221 -0.02263 -0.35222 0.70084 0.90370 1.60731 0.26363
2295 _1.04885 -0.02801 -0.33619 0.70666 0.87866 1.61175 0.26024
23°  -1.03498 -0.03271 -0.32091 0.71235 0.85546 1.61712 0.25680
24° -1.00576 -0.04035 -0.29238 0.72339 0.81380 1.63040 0.24969
Mode 3
14° -1,52515 -1.93737 1.08505 1.36032  -0.48256 0.88526 0.04504
16° ~1.55384 -2.29401 1.42058 1.48337  -0.57510 0.84785 0.03830
17° -1.56891 -2.50708 1.61609 1.55486  -0,61902 0.82825 0.03436
1795  -1.57666 -2.62292 1.72134 1.59315  -0.64013 0.81833 0.03232
18° -1.58450 -2.74485 1.83152 1.63300  -0.66057 0.80839 0.03028
1895  -1.59249 -2.87303 1.94680 1.67445  -0.68029 0.79846 0.02825
19° -1.60057 -3.00762 2.06734 1.71745  -0.69928 0.78854 0.02624
1995  -1.60877 -3.14853 2.19312 1.76196  -0.71747 0.77869 0.02427
200 -1.61705 -3.29596 2.32436 1.80794  -0,73489 0.76891 0.02236
2095  -1,62542 -3.45008 2.46124 1.85540  -0.75151 0.75921 0.02051
210 -1.63386 -3.61091 2.60384 1.90428  -0.76734 0.74960 0.01873
2195  -1.64236 -3.77853 2.75229 1.95453  -0,78238 0.74010 0.01704
220 -1.65091 -3.95314 2.90684 2.00612  -0.79666 0.73071 0.01543
2295 _1.65950 -4,13470 3.06753 2.05901  -0.81016 0.72145 0.01391
230 -1.66812 —4.32359 3.23476 2.11318  -0.82293 0.71230 0.01249
24° -1,68539 -14.72375 3.58950 2.22524  -0.84635 0.69436 0.00991
1046
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TABLE 2*

THE PARTICULAR INTEGRAL DESCkIBING FORCED RESONANT OSCILIATIONS OF THE DARWIN ELLIPSOID

2 s
¢ A x z, z, iz, v v,
Mode 1
14° -0.33060 -0.16841 0.04342 -0.03736 -0.75888 -6.34640 9.4414
1 16° -0.27401 ~-0.14722 0.03624 -0.03073 ~0.67653 -8.,42128 12.1567
- 17° -0.24749 ~-0.13531 0.03296 -0.02778 -0.64002 -9.80638 14.0685
17%5 -0.23464 -0.12896 0.03139 -0.02639 -0.62272 -10.6063 15.2024
18° -0.22205 -0.12232 0.02986 -0.02504 -0.60602 -11.4827 16.4683
18%5 -0.20972 -0.11536 0.02838 ~-0.02375 -0.58987 -12.4342 17.8710
19 ~-0.19762 -0.10804 0.02693 -0.02249 -0.57426 -13.4526 19.4066
1995 -0.18576 -0.10034 0.02553 -0.02129 -0.55914 -14,5173 21.0550
20° -0.17413 -0.09221 0.02417 -0.02012 -0.54452 -15.5891 22,7708
2095 -0.16272 ~-0,08360 0.02285 -0.01900 -0.53037 ~16.6036 24,4711
21° -0.15152 -0.07444 0.02157 -0.01791 -0.51670 ~-17.4663 26.0264
2195 -0.14053 -0.06468 0.02033 -0.01687 -0.50351 -18.0519 27.2551
22° -0.12975 -0.05421 0.01913 -0.01586 -0.49082 -18.2214 27.9430
22%s -0.11916 -0.04292 0.01797 -0.01489 -0.47868 -17.8556 27.8878
. 239 -0.10877 -0.03069 0.01684 -0.01396 -0.46712 -16.8984 26.9639
24° -0.08855 -0.00257 0.01471 -0.01219 -0.44616 -13.4859 22.7196
Mode 2
14° -1.18773 -0.09479 0.99636 -0.85721 -0.01975 0.49852 -1.04339
16° -1.17374 ~-0.11798 0.78373 -0.66462 -0.09278 0.51991 -1.04078
17° -1,16215 -0.12855 0.68489 -0.57734 -0.12608 0.52823 -1.03709
1795 -1,15523 -0.13352 0.63851 -0.53682 -0.14157 0.53198 -1.03494
18° -1.14758 -0.13825 0.59446 -0.49857 -0.15621 0.53548 -1.03268
18%5 ~1,13920 -0.14277 0.55277 -0.46258 -0.17003 0.53881 -1,03039
190 -1.13014 -0.14706 0.51354 ~0.42890 ~-0.18300 0.54199 ~-1.02812
1995 -1.12038 -0.15114 0.47674 -0.39746 -0.19518 0.54508 -1.02596
20° | -1.10998 -0.15502 0.44233 -0.36820 -0.20658 0.54809 ~1.02395
2095 -1.09893 -0.15872 0.41024 -0.34104 -0.21727 0.55109 -1.02215
210 ~-1.08727 -0.16224 0.38038 -0.31588 -0.22729 0.55408 -1.02062
21%5 -1.07502 -0,16561 0.35264 -0.29259 -0.23670 0.55712 -1.01941
220 -1.06221 -0.16884 0.32692 -0.27107 -0.24555 0.56023 -1.01854
2295 -1.04885 -0.17193 0.30307 -0.25119 -0.25390 0.56343 -1.01807
23° -1.03498 -0.17492 0.28099 -0.23285 -0.26180 0.56676 -1.01803
24° -1.00576 -0.18062 0.24164 -0.20029 -0.27650 0.57390 -1.01939
Mode 3
14° -1,52515 -0.12233 2.69919 -2.32221 0.34446 0.85563 -1.96919
16° -1.55384 -0.09455 3.35145 -2.84209 0.59014 0.86199 -1.91259
17° -1.56891 -0.08208 3.68363 -3.10521 0.70513 0.86489 -1.89220
1795 -1.57666 -0.07627 3.85051 -3.23728 0.76054 0.86610 -1,88335
18° -1.58450 -0.07076 4.,01694 -3.36898 0.81432 0.86709 -1.87510
1895 -1.59249 -0.06557 4,18299 -3.50049 0.86649 0.86778 -1.86733
19° -1.60057 -0.06067 4.34864 -3.63186 0.91709 0.86815 -1.85990
19%5 -1.60877 ~-0.05608 4.51344 -3.76286 0.96599 0.86814 -1.85262
20° -1.61705 -0.05177 4.67763 -3.89374 1.01329 0.86770 -1.84537
2095 -1.62542 -0.04774 4,84123 -4, 02464 1.05900 0.86682 -1.83811
21° -1.63386 10.04397 5.00410 -4,15551 1.10312 0.865u44 -1.83064
2195 -1.64236 -0.04046 5.16613 ~4.,28635 1.14559 0.86354 -1.82293
220 -1.65091 -0.03719 5.32749 -4.,41740 1.18650 0.86109 -1.81484
22%5 -1.65950 -0.03414 5.48785 -4.,54845 1.22573 0.85805 -1.80630
230 -1.66812 -0.03131 5.64750 -4,67984 1.26338 0.85441 -1.79726
24° ~1.68539 -0.02623 5.96438 -4, 94365 1.33387 -0.84527 -1.77740

*
The values of ,Zj have been derived with the choice Zl(=V11) =1,
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solutions for Z; even though the determinant of L vanishes. With the choice Z, = 1,
for example, equation (17) can be solved uniquely. A particular integral of equation (11)
can thus be obtained.

Associated with the forced oscillation of the figure, which can be determined with the
aid of the foregoing solution, the center of mass of the ellipsoid will also execute oscilla-
tions in the equatorial plane. And the amplitudes of the displacements can be determined
with the aid of the equations (cf. Paper II, eqgs. [29], [72], and [73])

(A — Bn) V1 — 2MV, = (19)
and

5 R
(A2 — Bo) Vo + 20OV, = — W% X, + %)\ﬁ (QuX1 — a1Xs — asX3) ;  (20)

and this completes the solution.

III. NUMERICAL RESULTS

In Table 1, the characteristic vectors of L and L' are given for a sequence of Darwin
figures. And in Table 2 the solutions for the forced resonant oscillations corresponding
to the three even modes of natural oscillation are given; the vector Z; has been evaluated
with the choice Z; = 1.

I am greatly indebted to Miss Donna Elbert for carrying out the calculations sum-
marized in Tables 1 and 2.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago.
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