


This article was downloaded by:

On: 17 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597304>

A Convenient Methodology for the Selective Reduction of Carboxylic Acids With Benzyltriethyl-Ammonium Borohydride—Chlorotrimethylsilane

J. Das^a; S. Chandrasekaran^a

^a Department of Organic Chemistry, Indian Institute of Science, Bangalore, India

To cite this Article Das, J. and Chandrasekaran, S.(1990) 'A Convenient Methodology for the Selective Reduction of Carboxylic Acids With Benzyltriethyl-Ammonium Borohydride—Chlorotrimethylsilane', Synthetic Communications, 20: 6, 907 – 912

To link to this Article: DOI: 10.1080/00397919008052339

URL: <http://dx.doi.org/10.1080/00397919008052339>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A CONVENIENT METHODOLOGY FOR THE SELECTIVE
REDUCTION OF CARBOXYLIC ACIDS WITH BENZYLTRIETHYL-
AMMONIUM BOROHYDRIDE - CHLOROTRIMETHYLSILANE

J.Das and S.Chandrasekaran*

Department of Organic Chemistry, Indian Institute
of Science, Bangalore 560 012, India

A combination of benzyltriethylammonium borohydride and chlorotrimethylsilane (1:1) in dichloromethane (0-25°C) has been found to be a convenient reagent system for the selective reduction of carboxylic acids to alcohols.

Metal borohydrides are important reducing agents in organic chemistry¹ and reducing agents formed by a combination of transition metal halide and NaBH₄ have been used for the reduction of various functional groups and these reactions have attracted considerable attention in organic synthesis.²

Recently we reported our results on the facile and direct conversion of alkenes to alcohols with a new reagent system consisting of benzyltriethylammonium borohydride-chlorotrimethylsilane.³ In exploring further the synthetic utility of this reagent system we

* To whom correspondence should be addressed

find that carboxylic acids are reduced selectively in dichloromethane under very mild reaction conditions to the corresponding alcohols. The results of this facile reduction of a wide variety of aliphatic and aromatic carboxylic acids are summarised in the Table. As it is evident from the table the reagent system tolerates a number of other functional groups like nitro, chloro, thiol and carbomethoxy (entries 3,5,9 and 12) in the molecule. The usefulness of this methodology lies in the fact that the reactions are done at room temperature in a short period of time, alcohols are formed as the only product in high yields and dichloromethane as a solvent offers distinct advantage as the reaction medium.

The mechanism of this reaction and active species responsible for the reduction remain unclear. We have earlier shown that this reagent system behaves differently from borane.³ Additionally, free borane generated in situ in dichloromethane by the reaction of quaternary ammonium borohydride-methyl iodide⁴ very readily reduces p-nitro methyl benzoate in 80% yield whereas with our reagent system even after prolonged reaction time (8h) at 28°C more than 70% of starting material could be recovered unchanged (entry 13). Unlike borane this reagent system reduces benzoyl chloride to the alcohol at 0°C (entry 14). δ -

TABLE

Entry	Substrate	Time(h)	Product ^a	yield ^b
1	C ₆ H ₅ COOH	5	C ₆ H ₅ CH ₂ OH	92
2	p-tBu-C ₆ H ₄ COOH	4	p-tBu-C ₆ H ₅ CH ₂ OH	95
3	p-NO ₂ -C ₆ H ₄ COOH	2.5	p-NO ₂ C ₆ H ₄ CH ₂ OH	94
4	p-MeO-C ₆ H ₄ COOH	4.5	p-MeO-C ₆ H ₄ CH ₂ OH	97
5	m-Cl-C ₆ H ₄ COOH	4.5	m-Cl-C ₆ H ₄ CH ₂ OH	94
6	Ph-CH ₂ COOH	4	Ph-CH ₂ CH ₂ OH	88
7	C ₆ H ₁₁ COOH	4	C ₆ H ₁₁ CH ₂ OH	96
8		6		78
9	HSCH ₂ COOH	6	HSCH ₂ CH ₂ OH	96
10	H ₃ C(CH ₂) ₁₆ COOH	4	H ₃ C(CH ₂) ₁₆ CH ₂ OH	97
11	H ₃ C(CH ₂) ₃ COOH	4	H ₃ C(CH ₂) ₃ CH ₂ OH	85
12	H ₃ COOC(CH ₂) ₇ COOH	2.5	H ₃ COOC(CH ₂) ₇ CH ₂ OH	92
13	p-NO ₂ -C ₆ H ₄ -COOCH ₃	8	p-NO ₂ -C ₆ H ₄ CH ₂ OH	25
14	Ph-COC ₁ ^c	3	Ph-CH ₂ OH	95
15	δ -Valerolactone ^c	5	NO REACTION	--
16	Ph-COOCH ₂ H ₅ ^c	6	NO REACTION	--

a) The products exhibited expected spectral data and were compared with authentic samples.

b) Yield refers to pure isolated products.

c) The reaction was performed at 0°C.

Valerolactone (entry 15) and ethyl benzoate (entry 16) remain largely unaffected by this reagent system.

While this work was in progress a report appeared in the literature on the use of sodium borohydride-chlorotrimethylsilane in THF for the reduction of a number of organic substrates.⁵ Our methodology using benzyltriethylammonium borohydride-chlorotrimethylsilane in dichloromethane appears to be milder and more selective.

Experimental

General Procedure for the reduction of carboxylic acids

To a stirred solution of benzyltriethylammonium borohydride (4 mmol) in dichloromethane (6 mL) cooled to 0°C was added chlorotrimethylsilane (4 mmol) in dichloromethane (2 mL). After stirring for 0.15h, a solution of the carboxylic acid (2 mmol) in dichloromethane (4 mL) was added. The reaction was allowed to come to room temperature (25°C) and stirred for 3-6h. A solution of 10% sodium bicarbonate (15 mL) was added and the reaction mixture was extracted with ether (3x25 mL). The combined organic extract was washed with saturated sodium bicarbonate solution, water and brine. After drying over anhydrous Na_2SO_4 the solvent was evaporated and the residue was purified by flash chromatography to reveal the product.

Acknowledgement: The authors thank the Department of Science and Technology, New Delhi, for financial assistance.

References

1. Hajos, A. in: *Houben-Weyl-Muller, Methoden der organischen chemie*, Band IV/1d. Thieme, Stuttgart 1981, p.1; Walker, E.R.H., *Chem.Soc.Rev.* 1976, **5**, 23.
2. Chung, S.K., *J.Org.Chem.*, 1979, **44**, 1014; Sato, F., Sato, S. and Sato, M., *J.Organomet.Chem.*, 1976, **122**, C25; Kano, S., Tanaka, Y., Sugino, E. and Hibino, S., *Synthesis*, 1980, 695; Kano, S., Tanaka, Y., Sugino, E., Shibuya, S. and Hibino, S., *Synthesis*, 1980, 741; Satoh, T., Suzuki, S., Suzuki, Y., Miyaji, Y. and Imai, Z., *Tetrahedron Lett.*, 1969, 4555; Bosin, T.R., Raymond, M.G. and Buckpitt, A.R., *Tetrahedron Lett.*, 1973, 4699; Satoh, T., Suzuki, S., Kikuchi, T. and Okada, T., *Chem. & Ind.*, 1970, 1626; Hanaya, K., Fujita, N. and Kudo, H., *Chem. & Ind.*, 1973, 794; Kano, S., Yuasa, Y. and Shibuya, S., *J.Chem.Soc.Chem.Commun.*, 1979, 796; Kano, S., Tanaka, Y. and Hibino, S., *J.Chem.Soc.Chem.Commun.*, 1980, 414; Satyanarayana, N. and Periasamy, M., *Tetrahedron Lett.*, 1984, **25**, 2501.
3. Baskaran, S., Gupta, V., Chidambaran, N. and Chandrasekaran, S., *J.Chem.Soc.Chem.Commun.*, 1989, 903.
4. Brandstrom, A., Junggren, U. and Lamm, B., *Tetrahedron Lett.*, 1972, 3173.

5. Giannis, A. and Sandhoff, K., *Angew. Chem. Int. Ed. Engl.*, 1989, **28**, 218.

(Received in The Netherlands 7 December, 1989)