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IIT. SCATTERING IN ACCORDANCE WITH RAYLEIGH'S PHASE FUNCTION

. 11. The equations of the problem.—We have already indicated in Paper XVII, § 6,
how the functional equations governing the angular distributions of the reflected and
the transmitted radiations from an atmosphere scattering according to a general phase
function, expressible as a series in Legendre polynomials, can be reduced to independent
systems of functional equations.

In the case of scattering according to Rayleigh’s phase function, we can express the
reflected and the transmitted intensities in the forms (cf. Paper X1V, eq. [231])

3
I(0; 1, @5 1y @) =mF[S(°) (B pg) —dpp, (1 —p) (1 —pd)t
. . (214)

XSO (p, pg)cos (o= gp) + (1= w2 (1~ ud) SO (4, uy) cos 2 (0 — @) ]

and
3
I(7;= 1) 0 1y @) =mF[T(°> (s my) 4+ 4pp, (1—pHt(1—pd)?
’ (215)

XT® (py py) cos (@ — @) + (1= pB) (1= pd) T (u, po)cos 2 (¢ —¢p) 1,

and the functions of the different orders (distinguished by the superscripts) satisfy inde-
pendent systems of equations. Of these systems, the two governing the functions of order
one and two are directly reducible to the standard forms considered in Section I. And
the terms in the reflected and the transmitted intensities proportional to cos (¢ — ¢o)
and cos 2(¢ — ¢o) are of exactly the same forms as those given in Paper XXI, equations
(223) and (224); only the functions XM, YO, and X®, Y® must now be redefined in
terms of the functional equations which they satisfy. These terms require, therefore, no
further consideration. _

Turning to the functions S (u, po) and 79 (g, we) of zero order, we find that these
functions must be expressible in the forms (cf. Paper XIV, egs. [241]-{245])

(216)

%}-&—%) SO (g, mo) =5 [¥ ()¢ (mo) —x () x (o) ]
« + &1 (1) ¢ (o) — & () & (po) ]

and
i_l)rm (s o) =% [x (W) ¥ (o) —¥ () x (o))
Mo M (217)

+81¢(w ¢ (po) —¢(w) §(ma)l,

* Sections I and II of this paper have already appeared in 4p. J., 107, 48, 1948. The remaining Sec-
tions ITI-V of the paper are published here. The numbering of the sections and equations continue from
those of the earlier part.
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where )
1 d
Y =3—wt g [ G- N 218)
dp’
— 421 3 126 (0)
600 =it f WS (u,w) L, @19
. ) du’
X () = G =) et [0 G—wTO ) (220
and ) iy’
= yle—m/uf 3 PTO) (p, ') o (221)
. . () =ple +16f0u (uu)“ ,
Further, we must also have
Q)
re =1x (1) x (o) +8&¢ (w) ¢ (1o) (222)
and
1 1NoT®

1
v 2) om (3¢ () x (o) +5¢ (1) ¢ (o)l -

a0 o) 50w 6 (o) 1.
m

.

Substituting for S and T(® according to equations (216) and (217) in equations
(218)—(221), we obtain the following system of functional equations of fourth order:

V) =3 =t g [ SR 0 W) = x 0 x (W) 1w

, (224)
e ST e W e (W) — 5 ) § W1dw,
1 2
— 2 1 K no_ '
¢ (n) =u +ﬁn/(; “_i_ﬂ,['#(#)%(u) x(u)x(u)]du -
+iu N =) s (whlde,
x (1) = (3— ) ert 16#/ CIx (0¥ () —¢ (0 x (8)1d
(226)
+%nf 3:#,[§(#)¢(u')—¢>(u)§‘(u’)]du',
0o MM ‘
and
¢(w) = ple kg Ly f X (¥ () = (W) x (W) ]dp
0 (227)

zﬂf ,[s“(#)qb(u’)—cﬁ(n)?(u’)

12. The form of the solution.—In solving systems of functional equations of the type of
equations (224)—(227), we shall be guided by the forms of the solutions obtained in the
direct solution of the equations of transfer in a general finite approximation and the
correspondence enunciated in theorem 9 between the X- and ¥V-functions occurring in
such approximate solutions and the exact functions defined in terms of functional equa-
tions they satisfy.
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190 S. CHANDRASEKHAR

Accordingly, in the present instance, we shall assume that S<°) (, 1) and TO(u, u')
are of the forms (cf. Paper XXI, egs. [221] and [222])

11
(7+;) SO (u, 5 = X (1) X (1) 13+ 1 (u+ ) + un']
— V(WY W3 —ci(p+up) +up] @28
Fea(u+p)X ()Y () F+ Y (u) X ()]

and
(——l)T(") (, ) =Y () X (W) [3 = c1(p—p") —pu'l
—X (WY W) B+ea(u—w) —pp] 7
—Co(p—p) [ X (W)X W) +V Y w)l,

where ¢; and ¢; are certain constants unspecified for the present, and X(u) and ¥ (u)
are the standard solutions of the equations

1 3 — ‘u’2
X(w) =14 Fuf m[X(u)X(;ﬂ) — V() ¥ ()]dp! (230
and

3 —
V() = e S IV (0 X () —X () ¥ (u))dw',  @an
having the property
1
%_[ B—wh) X (W) dp=FE Bao—a) =1 (232)

and

f0‘ (3—u2) V(1) du= (380—By) =0 233)

where a, and B8, have their usual meanings (cf. eq. [11]).
- An alternative form of equations (228) and (229) Wthh we shall find useful may be
noted here:

SO (u, u) ={ B =p)[X (W) X (u) — ¥V () ¥V (&)]
+ u+u) X (Wi w) X (W) 4 ¢V (&)]

/

M
utw

(234)

+ (w4 u) Y (WX () + (c1— ) Y (1)1}

and
TO(u, ) ={@=p) [V (W) X (w) —X () V ()]

— (IJ,—;.LI) X(wlla+w Y (.U'/) + 2 X (1)) (235)

— (p=u) Y (W) [caV (u) + (c1— ) X (u)]) “’“‘#,.

13. Verification of the solution and a relation between the constants c; and c..—The
verification that the solutions for S and T(% have the forms assumed in § 12 will
consist in first evaluating ¥, ¢, x, and { according to equations (218)—(221) and then
showing that when the resulting expressions for ¢, ¢, x, and { are substituted back into
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equations (216) and (217) we shall recover the form of the solutions assumed. In general,
such a procedure will lead to certain conditions which the constants introduced into the
solution (such as ¢; and ¢» in the present instance) must satisfy. We shall see that, in the
particular case under discussion, the conditions derived in the manner indicated do not
suffice to determine ¢; and ¢, without an ambiguity and an arbitrariness. This is a further
example of the nonuniqueness of the solution, in conservative cases, of the functional
equations incorporating the invariances of the problem. But, again, an appeal to the
integrals of the problem resolves the ambiguity and the arbitrariness.

Our first step, then, is to evaluate ¢, ¢, x, and { according to equations (218)—(221),
when SO (g, p') and T (u, p’) have the forms given by equations (234) and (235). The
evaluation of the integrals defining ¥, ¢, etc., is fairly straightforward if appropriate use
is made of the various integral properties of the standard solutions of equations (230)
and (231). It may be noted that, in addition to equations (232) and (233), use must also
be made of the relations (cf. theorem 4, eqs. [44]-{46])

ay=14 3 [3 (a2— ) — (a2— 8D ], (236)

XWX W) Y (W)Y () X (p) —1
3— u o2 1
( “).{ bt p o B (237)

+ (a1 — pao) X (u) — (Br— uBo) ¥V (u)
and

1 N — 4 — p— T,
(3_M2)f Y (u) X (1) X;(.U«)Y(M) d,/=Y(“) e Tk
Y [l A 5 M (238)

+ (Bi4wBo) X (1) — (a1 pag) ¥V (n).

Evaluating ¢, ¢, x, and { in the manner indicated, we find that

Y () = G4 cw) X (u) +con? (p), (239)
x () = @B—cw) Y (p) —copX (u) (240)
d(w) =4+p[@ X (w) +¢V (W], (241)
and .
) = —pl@X W +a¥y Wl - (242)
where
q1= 3 (cra2+ c2B2+ 3 ay) (243)
and ‘
g2 = £ (c1fa+ c2a2—3B1) . (244)

'Using the expressions (239)—(242) for ¢, x, ¢, and ¢, we next evaluate S and T
according to equations (216) and (217). We find

S R
(F-I—;)S()(u,u)
=XWX W8+ (pt+u) +5lci—c2+8(¢2— ¢ Jup'l
— V(WY W) B—c (utn) +3lc—ci+8(g2— ¢ }un'
Fo(pt+u) X (W) YV (w) +Y (0) X (w)]

(245)
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and

———>T(°) (ks 1")
=V (WX W)B—c (p—p) —3{c?—c24+8(q2— ¢2) t uu'l
— X (WY W)B+c (p—u) —Flc—ci+8(qi— gD }uu'l
—Cu—p) [ X (WX W) +Y (V).

(246)

A comparison of equations (245) and (246) and (228) and (229) now shows that,
among the constants ci, ¢, g1, and ¢, we must require that there exist the relation (cf.
Paper X1V, eq. [250])

: ci—ci+8(¢gt—4q)) =3. (247)

Substituting for ¢; and ¢ according to equations (243) and (244) in equation (247),
we obtain

32(c2—¢d) +9[(c,+¢,)(a,+B8,) +3(a,—B)] 248
X [(¢c,—¢)(a,—By) +3(a,+B)1—96=0.

After some minor rearranging of the terms, the foregoing equation can be reduced to the
form

32+ 9 (aZ—BD1(c2— ¢ +27 (a;+B) (a,+8,) (¢, + ¢, 240)
+27(a; —B) (a,— B,) (¢, — ¢,) +81(al—pB}) —96=0.
On the other hand, according to equations (232), (233), and (236),
3249 (a2~ B2 =324 (9a,— 16)2— 8152
=288 (1 —a,) +81 (a2— B2 (250)
=27 (a2—BY).
Equation (249) therefore becomes
(a2— B (c¢2—c)) + (q +5)(a +8,) (¢, +C)
+ (a,=B) (a,—B) (¢, —¢,) + (al—BY) =0.

(251)

Hence

‘ [(a1)+31)(61+ ¢2) + (ag— B[ (ar—B1) (c1— ¢2) + (az+B2)]1=0. 252

It is apparent that one of the two factors in equation (252) must vanish. But within
the framework of equations (224)—(227) it is impossible to decide which of the two it
must be; and in either case we shall have only one relation between the two constants
¢1 and ¢;. The problem is therefore characterized by an ambiguity and an arbitrariness.
We shall show in the following section how this can be resolved.

14. The resolution of the ambiguity and the arbitrariness in the solution.—It can be
readily verified that the problem of diffuse reflection and transmission in accordance
with Rayleigh’s phase function admits, as in the conservative isotropic case, the flux
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and the K-integrals. The emergent values of F and K must therefore be giveﬁ by equa-
tions of the form (cf. egs. [190}-{193])

F(0) = uF (14v1); F(r1) = poF (em/mo4- 1), (253)
K (0) =2uF (— mo+72), | (254)

and ‘
K (1) =%4pcF (—poe /o4 viTi+7v9) (255)

where v; and v, are constants.

It is evident that only the azimuth independent terms in the intensity will con-
tribute to F and K. We have, accordingly, to evaluate F(0), F(r1), K(0), and K(r1) for
emergent intensities of the forms (cf. egs. [214], [215], (234], and [235])

—_ 2

100, 1) = buoP {5 S0 (o) X () = 7 () ¥ ()]
+ ZX (o) [(ertp) X (w) + 2V (W] 256

+ 5 o le:X (W) + (a—w ¥ ()}
and

3___ 2
I(r,—w) =%M0F§—1§6— £

MHo— M

[V (o) X (1) — X (o) ¥ ()]
- 1—36—X (mo) [ 2 X () + (c1— ) ¥V (w)] (257)

— 57 W)Lt w) X W + e ¥ (w1,

With (0, p) and I(ry, — ) given by equations (256) and (257), the integrals defining
F(0), F(r1), K(0), and K(r1) can all be evaluated quite simply by using the various
relations given in theorem 8 (egs. [81}-[86]) and remembering that in the present case

x1=% (3a;—a3) and y1=% (31— B3) . | (258)
We thus find
F(0) = poF {14 32X (po) (cra1+ c2B1+ a2) + 2V (uo) (c1B1+ coar — Bs) |, (259)

F(711) = uF{ e /w4 %X (mo) (c1B1+ c2a1 — B2)

(260)
+ % V (po) (cra1+ caBi+as) |,
K (0) = 1uoF{ — ot E X (o) (cras+ c2B2+ 3y) -
+ 3V (po) (c1Ba+ c2aa—3B1) |,
and
K (1) = ilioF{ — Mo €7 T1/Me — 1—3(-;X (#_0) (¢1Bs + c2a2 — 3f1) 262)

— &V (po) (craz+ caBe+30a;) |
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Comparing the reflected and the transmitted fluxes given by equations (259) and (260)
with those given by the flux integral (eq. [253]), we find that

yi= 32X () (ra1+ eoBrit ) + & V (uo) (caBy+ caar— Bs)  (263)
and also that
T1=X (po) (¢1B14 c2a1 — Bs) + =7 (o) (cray+ coB1+ as) . (264)

We must therefore require that

cra1+ cafi+as = cif1+ csa1— Be, (265)

or

(ci—c)(a1—B1) +as+B:=0; (266)

but this is one of the factors in equation (252). The appeal to the flux integral has there-
fore decided which of the two factors in equation (252) must be set equal to zero.
In view of equation (266) we can combine equations (263) and (264) to give

vi=Z[(c1+ ¢c2) (ar+B1) + (az—B) [ X (wo) + 7 (o) 1. (267)

Next, from equations (254) and (261) we find that
ve= 32X (o) (crag+ c2Be+3ar) + ZV (no) (c1B2+ c2a2—3B1) . (268)

And, finally, from equations (255) and (262) we obtain
71T+ vz = — 5 X (Ro) (c1Be+ caa2—3B1) — 2V (o) (cra2+ c2B2+ 3 ay) . (269)

Now, substituting for v; and v, according to equations (267) and (268) in equation
(269), we find

[(ar4B1) (ci+¢o) + (ae—B) I 71= — 2 [(ae+ Bo) (c1+ ¢2) +3 (a1 — B ] ; @70)

or, solving for (¢c1 + ¢»), we have

(ag—Bs) 714 6 (a1 — B1)

- _ ) (271)
o1t (a1 +B1) 71+ 2 (az+ B2)
Since we have already shown that (cf. eq. [266])
C1— Co= —a2+ﬁ2, (272)
ar— P

the solution to the problem is completed.
IV. SCATTERING IN ACCORDANCE WITH THE PHASE FUNCTION A(1 4 x cos ©)

15. The.equations of the problem.—In the problem of diffuse reflection and trans-
mission according to the phase function (1 + x cos ©)(A < 1,1 2 x > —1) we can
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express the reflected and the transmitted intensities in the following forms (cf. Paper
X1V, eqs. [196] and [199]):

1005 by 05 by 0) = P 1S® Gy i) 4 (1= )4 (1= i) -
XS® (g, py)cos(e—e)]
and
I (753 — s 05 gy ;) =£};F[T<°> (i ) + 2 (1= Dt (1 — )3

XT® (u, py) cos (e — o) 1.

(274)

The system of equations governing S® and T® are directly reducible to the standard
forms considered in Section I. And the terms in the emergent intensities proportional to
cos(p — @) are of exactly the same forms as those given in Paper XXI, equations (278)
and (279); only the functions X® and ¥® must now be redefined in terms of the func-
tional equations which they satisfy.

Turning to the “zero-order” functions S (u,-uo) and T (u, uo), we find that these
functions must be expressible in the forms (cf. Paper X1V, eqgs. [205]-[209])

i+1) SO (4, wo) =¥ (1) ¥ (ko) — x () x (o)
Mo M

(275)
—x [ () ¢ (o) — ¢ (w) ¢ (o)l
(——— TO(u, po) =x (m) ¥ (o) — ¢ () x (po) 276)
+x{¢(u) @ (mo) — () & (mo)l,
where ¥, ¢, x, and { are defined in terms of S(” and 7(9 in the following manner:
1 du' ’
y(w) =1 +%>\/0- SO (u, u’)#—ﬂ,, @77)
1
¢ (p) =p— %)\f SO (u, u') du’, (278)
N 0
1 ’
x (n) = e v %Nf TO (g, p') du (279)
0
and
1 )
¢ (w) =,ue‘ﬂ/ﬂ+%)\f TO (4, u) dy'. (280)
0
Further, we must also have
aS©®
or =X (1) x (mo) — 2 (1) ¢ (po) (281)
and : '
1 1\oT® 1
——— =—[¥ (1) x (po) +2x¢ () ¢ (uo)]
Mo K/ 0TI Mo (282)

— I W ¥ () +55 () § (o) ]
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Substituting for S(® and T according to equations (275) and (276) in equations
(277)—(280), we obtain the following system of functional equations of fourth order:

b0 =1+ f ,w(mwu'>—x<u>x<u’>

(283)
=t (w)]
¢ (u) =p— ')—x(.u)x(u)
(284)
=)t w1,
x (M) = e m/e x Wy () —¢ (w)x (v}
. (285)
+3 x)\,u () —o(w) (w1,
and
O R IV A~ I (0¥ () —tl/(u) ()]
(286)

N =) ¢ w)].

16. The form of the solution.—The solutlons for the reflected and the transmitted
intensities in a general finite approximation have been found in Paper XXI (eqgs. [276]
and [277]). Applying to these solutions the correspondence enunciated in theorem 9, we
are led to assume for S (u, po) and T (u, uo) the following forms:

SO (u, p) ={X (W) X (W1 =21 =N cr(p+p) —2 (1 =N pp']
— V(WY )14 =N ¢ (pdpu) —x(1—=N\) pp']

(287)

—x(1=N) 2 (u4p)[X () ¥V (u) + ¥ (p) X (u)] ]2
‘ bt

and .

TO (1) = {7 (W) X (W) [1+x(1 =N ¢, (u—p) +x(1—N\) pp']

— XYWl —x(1=Nc(p—p) F2(1 =N up'l (288)

+r(1=N c2(p—u)[X (WX W) +7 Y(u')]}u‘ﬁ‘u,,

where ¢; and ce are certain constants unspecified for the present and X(u) and ¥V (u)
are solutions of the equations

P14 a(1—N)pu”

7 (X () X (u) =YV (w) YV (u)ldu (289)
Kt u

X (w) =1+%me
and

1 — 19
V) = e"l/"-i-%)\ufo H_xp(l_ u?\) Plyw) X () —X (w) Y (u)]dp'. @00

17. Verification of the solution and the evaluation of the constants in the solution in terms
of the moments of X(u) and Y (u)—The verification that the solutions for SO (u, u’)
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and 7 (u, u’) have the forms assumed in § 16, will consist in first evaluating ¢, ¢, x,
and ¢ according to equations (277)-(280); then requiring that, when the resulting ex-
pressions for ¢, ¢, x, and ¢ are substituted back into equations (275) and (276), we shall
recover the form of the solutions assumed; and, finally, showing that the various re-
quirements can be met. In the present case it will appear that the procedure outlined
makes the solution determinate.

The evaluation of y, ¢, x, and { according to equations (277)-(280) for S (y, k)
and TO(u, u') given by equations (287) and (288) is straightforward if proper use is
made of the integral properties of the functions X(u) and V(). Since these functions
are defined in terms of the characteristic function

V() =3IN[1+x(1—=N) p, (291)
we have (cf. theorem 4, eqs. [44]-[46]) |
a,=1+iMa2—=B+2(1 =N (a2—=8)1, (292)

[1+2(1—=)) p?]

le(u)X(u') — V(¥ () d y X (W) —1
0 p+ g I (203)

—x(l—X)[(al—#ao)X(#) — (Bi—wuBo) Y ()1,

VY (p) X (u) -—X(u) Y (u)) dy' = V() —en
p— FNu (294)
—2(1=MN[(Br4uBo) X (1) — (a1t rao) ¥ (w)].

Evaluating ¢, ¢, x, and ¢ in the manner indicated, we find

and

[1+xu—Muﬂ£

Y () = (1—qou) X (u) —pon? (u), ‘ (295)
x (w) = (14 qow) ¥ (u) +pouX (u), (206)
¢ () =plq:X (W) +p0Y (W1, (207)
and ,
) =ppX (W) +¢Y ()1, (298)
where
go= 32N (1 —N\) (c1a0+ c2Bo+a1) , (299)
Po_—'%x)\(l_)\)(ClBo-f‘ ceao—B1) , (300)
g1=143N[x (1 =N (crar+ c2f1) — aol, (301)
and
P1=%)\[x(1—)\) (c1B1+ c2a1) + Bol - ‘ (302)

Using the expréssions (295)—(298) for ¢, x, ¢, and { in equations (275) and (276)
for S and T, we obtain

(o) S Gy w1
po |
=X X W)[1—gq,(u+u) +{g2—p2—x(q2— )} pp'] 503

— YWY (W) 14+q,(u+n) +1{g2—p2—x(g2—pD) }uu']
— by ()X (W) Y () + 7 () X ()]
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and

G-
=YV (W XW)[1+q,(p—n) —{g2—pi—2x(q2—p?) }uu] son
—X (WY ()1 —q(p—p) —{g2=p2—x(q?—p) }pu'l

+p, (=) X (W) X () +7V w) Y ()].

Now, comparing equations (303) and (304) and (287) and (288), we observe that we
must have

go=2x2(1—XN\) 1 and po=x(1—N) ¢c2; (305)
further, we must also require that
@—pi—x(gi—p) =—x(1—N). (306)
According to equations (299), (300), and (305), we have
¢c1=3N(crao+ c2Bo+ a1) : (307)
and . ‘
ca= 3N (c1Bo+ c200— B1) . (308
Solving these equations for ¢, and ¢;, we obtain
_ qo _ (2 = Nao) a1 — ABoBy
OETA=N N (2= Ny T= N o
and (2= hao) B+ B
_ Po _y — (&= Aao) b1 0a1
=T —N N T (2= hay) = NBE 10

Inserting for ¢; and ¢, from equations (309) and (310) in equation (301) for g1, we find

2A (1 =) (ai — BY)
@1=3(2—Nao) | 1+ ] @311)
2 [ (2= Na,) 2— \2B2
Using the relation (cf. eq. [292])
4 (ag—1) =N(aZ—B8) =21 =N (a?— B8], (312)
we can now reduce equation (311) to the form
C2(1 =N (2= Nao
1= (2= %ay) ?— NIBT " (313)
Similarly, )01 '
(1 =27 ABo 314)

P ==Xy = Nt

It remains to verify that equation (306) is valid for qo, po, g1, and p, given by equations
(309), (310), (313), and (314). To show that this is the case, we first observe that, accord-
ing to equations (309) and (310),

2 2
a1—31

(315
(2= hay) ?— N2’ '

qi—pl=x"2(1—\)?
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while, according to equations (313) and (314),

4(1—=2))?
2 H2 =
q;— by VESVAES U (316)

Hence

11—
3= 3= (1= 1) = e

2= Nay) P— N2

[#N2(1—=N)(a2—B2) —4(1—N)]; @)

or, using equation (312), we have -

03— 23— % (= )

x(1—2N) ,
) (2_)\“")2,_)‘263[4)\(%_1) —M(ag—B) —4 (=N (318)
x(1—2N)
- (2= )\ao) 2 )\253 [)‘253\_ 4 4 4)\a0 — )\za_g]
=—x(1—N).

The constants go, po, g1, and 1, as defined by equations (309), (310), (313), and .(314),
are therefore related, as required.
This completes the verification.

V. RAYLEIGH SCATTERING

18. The equations of the problem.—When proper allowance is made for the polariza-
tion characteristics of the radiation field, the laws of diffuse reflection and transmission
are best formulated in terms of a scattering matrix S and a transmission matrix T (cf.
Paper XXI, egs. [533] and [534]). And, as we have already indicated in Paper XVII
(the last paragraph of § 5 on p. 455), the equations governing S and T are of the same
forms as equations (85)—(88) of Paper XVII, provided that these equations are inter-
preted as matrix equations in which a phase matrix plays the same role as the phase
function in the more conventional problems. For the particular case of Rayleigh scatter-
ing the phase matrix is explicitly known (cf. Paper XIV, eq. [10]), and the required
equations for the field quantities I3, I,, U, and V* can be written down. However, in
view of the form of the solutions for U, V, and the azimuth dependent terms in 7; and 7,
found in Paper XXI (egs. [290}-{303] and [548]-{551]) it is evident that the exact solu-
tions for these terms in the scattering and the transmission matrices must be of identical-
ly the same forms: only the various X- and ¥-functions occurring in the solutions must
be redefined in terms of the exact functional equations which they satisfy. Consequently,
it is sufficient to confine our detailed considerations to the azimuth independent terms
in I; and I, which we shall now regard as the components of a fwo-dimensional vector

I=(I,1,). (310)15
Let
F= (F,F,), (320)

14 For a definition of these quantities see Paper XXIT, § 15, and the references there given.

15 Strictly, superscripts (0) should be attached to these and similar azimuth independent quantities
describing the diffuse-radiation field. We have suppressed them for the sake of convenience. They
should, however, be restored when writing down the complete solution (cf. Paper XXI, § 19, egs. [540]-
[546]).
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where 7F; and 7F, are the incident fluxes in the intensities in the meridian plane and
at right angles to it,' respectively. The reflected and the transmitted intensities can then
be expressed in terms of a scattering and a transmission matrix (with two rows and
columns) in the forms

I(0,u) = S (y wo) F'and  T(7y,— ) T (u, po) F.  @21)18

_ 3
T 16u

The equations governing S and T can be written down in analogy with equations
(85)—(88) of Paper XVII by replacing p(u, ¢; ¢, ¢’) by the matrix

2 (1 — 42 — 2,/2 2
3T (u,p) =% #,(2 w) (1= p") +pp “1>. (322)

The resulting equations can be written most compactly by adopting the following
notation: :

Let the “product” [4, Bl,, .’ of two matrices, A(u, u’) and B(u, u’), be defined by
the formula

d ,
" 'u (323)

[4, B 4 ——wa,

where, under the integral sign, the ordinary matrix product is intended. With this prod-
uct notation, the equations satisfied by S and T take the forms

1)s+—_1+ (J, 8] + S, J1 +1IS, J1, 8], 526

gf = exp] —Tl( + b+ ene (1,71 4 e T, J1 1T, J1, 71, 629
1

L4 T gt e (4,81 + (T, 7} + 1T, 71, S1, (326)
1 Ko a7y '
an

1T—l—%= er/mJ 4+ [J, T 4+ e—/0o [S, J1 +[[S, JI, T1. 327

A discussion of equatlons (324)—(327) shows that S and T must be expre551ble in
the forms

(1.1 n_(YW)  2Z(w) ¥ (k) x (")
(w* )s G wr =(3 0 2o () J\ 20 () 285 () .
28)
£ (w) 23y (u) ) («E (u") o (u)
. o (u) 240 (w) / \ 2% (1) 240 (")
arn
11 ) E(w) 20y (W) (¥ (W) x (1)
>T( L) =g 226 ) G 2 (u) -
29
(v (W 2%¢ (p) ) (S (/u o (u')
x (u) 28 ¢ () / \ 2% (1) 230 (u)

16 These directions are referred in the transverse plane containing the electric and the magnetic vectors.
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where
3 rldy ) , ,
¥ (w) =ﬂ2+§\f0’ :, (/281 (ky w) 4+ Si2(p, 1) 1‘, (330)
3 rldy ,
oW =1—wty [ (1= Suu ), Gav
0o M
_ 3 ! d}L, 19 ’ ’
x () =145 [ 5 (S0 (a0 A S (i, 001, @32)
_3 Ldu o , ‘
) =5 [ (= Su () ©39)
3 Ldu’ ,
£ =wemnht s [ EE Ty (uy w) +T0 (s, 00 ], @30
8 Jo M
‘ . 3 rtdy . ,
1) = (=) etz f (1= ) T (s ). (335)
3 ,tdyt ,
o (W) = it f L (W () AT ()1, 639
and l
_ 3 Ldu! o ,
0w =5 f B (1= ) Tty ) (337)

Substituting for Sy, etc., according to equations (328) and (329) in equations (330)—
(337), we shall obtain a simultaneous system of functional equations of order eighi. It is,
however, not necessary to write down these equations explicitly.

19. The form of the solution.—The solutions for S and T in a general finite approxima-

"tion have already been found in Paper XXI (egs. [539]-[546]). Applying to these solu-
tions the correspondence enunciated in theorem 9, we are led to assume the following
forms for S and T:

() Su G ) = 200 () X0 ) [ o G ')+ ')
— V(W) V(w1 —vg (utp)) +pu’] 439
— v+ u) X, (W) V() + YV, (w) Xo (w1,

(ﬂi+%) S ) = (b w) (VW) X, (0) + X0 () 7, (0)]
— Ve [Xl (I-") Xr (M’) + Yz (,u) Yr (.U«/)] (339)
FO =) 0 (X1 (0) + V() 1IX, (&) — V' ()],

(#i+%) S (i 1) = (et w)) u (X, (0) Yo (u)) 4 7, (0) X1 (0)]
= [ X, () Xy (") + V, () ¥y (u)] 340
F+Q =) p[X, () =YV, ()X, (W) + ¥V, (p)1},
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(——+ ) San (s ) = X () X, (W) 11 =2 (ot ) + g
=V, () Y, ()1 tus(u+p") +usup’]
s+ p) (X () Ve (W) + V- () X, (0T
= Qusup’ (u+p) X, (0) =V, (0) 11X, (0) — ¥V, (n)]
+Q (us—uz) {p2[X, (u) =V, (w)1[X, (s) + 7, (u)]

+u? X, () + Y, (X, (W) =V, ()]},

1
—;) Tus (s 0" = 2{ ¥y () Xy (W) (1 =y (u— ') — page’]
— X, (w) Vi (u) [ 4w (p—p') — up'] 342
‘|'V3 (ﬂ—#') Xz(#) Xz(#l) + YI(IJ-) Y, (M')]},

———>T12(#>#> = (u= ") e[ X () Vo (1) + V2 (0) X, ()]
(X1 (0) X, (0)) 4 Vi () ¥, (u)] B8
—Q@e—rv) ' [ Xi(w) + V(0 1X, () =V, (u)]},

———)Tm(u,m (6= 1) (2 (X, () Vo (1) + V0 (1) Xy ()]
X, (8) X (W) 4 Vs (0) Ty (u)] B4
—QGa—w) w (X, (1) — Vo () 1IX, (&) + To ()],

and

L) T Gy ) = T () X, () [ i (0 — ) — ]
=X, (W) Y, ()1 —us(p—n") —usup']
—ug(p—u) [ X, () X, (W) + Y, () ¥, (u)]
+Quspn’ (p— u) X, (0) = ¥V, () 1[X, (u) =V, (1)]
—Q (g —uy) {2 [X,(w) =V, (WX (n) + Y, ()]
— w2 X, (w) + ¥, (u)1X, () — V. (u)]},
where », o, vs, v4, #3, %1, and Q are certain constants, unspecified for the present;
s = 1420 (us— u3) ; (346)17
X,(u) and ¥V ,(u) are the solutions of the equations

(345)

1 1 —_ M’Z
X0 =14 fuf mﬂx, (&) X, (1) = Vo () 7, (0] W/ (347)

and

V() = e+ 8#]

17 Cf, Paper XXI, egs. (512)—(514).

[V, (w) X, (0) -—X (w) Y. (u)]dp'; (48
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and X;(u) and Y,(u) are the standard solutions of the equations

1 1 _— /9
Xo(w) =1+inf —+“—,[Xl () X1 (w) — ¥, () Vo () 1y’ (349)

and

Vi(w) =en/k4-2u

N =X, (W) Vi (u)]du', @50
having the property 4

1
f (1—p) X, (0) du =2 (a0—an) =1 (351)
and

| folu—m) V. () du= (Bo—B2) = 0. @52)

For the purposes of the various evaluations in §§ 20 and 21, it is convenient to have
equations (338)—(345) re-written in the following forms:

T e AP AR AR AT
+‘Xl (W) [+ w) X,y (,u') —v ¥y (,u.')] (353)

+ V(0 [=5X () + ba—w) Vi (w01},
St (s ) = pp'{n [ X (W) V(W) + Vi (0) X, (0))]
—ve [ X () X, (0) + Vi (w) ¥V, (u)] 354)
FO@e—v) 0 [ X (W) + YV, (WX, (b)) — YV, (u)]1},
Sa (py 1) = pp{n [ X, (W) Vi(p) + 7, (0) X (0)]
v [ X, (0) X, (0)) + T, (w) Vi (u)] 659
+Qe—v) p [ X, (w) = YV, (WX, (&) + YV (u)]}
Sua (k1) = ' 130X () X () = T2 () 7, ()]
+ X, (W (—us+ ) X, (0) +us ¥, (u)]
+ V. (W) [us X, (0') — (a4 p) V. ()]
—Quspp' [ X, () — V. (WI[X, () — ¥V, (n)]
+Q (us—us) (p+p) [ X, (1) X, (0) =V, (0) ¥V, (n)]

(356)!8

+ (=) (u = W) [X, () Vo (&) = 7, (0) X, (w11},

T oy ) = 20w’ S5 (V0G0 X)) = X0 7o )]

=X (Wl =X (W) + Gt YVi(w)] sy

— VW 6= ) Xo(0) =571 ()1},

18 The reduction of eqs. (341) and (345) to the forms (356) and (360) requires the use of eq. (346).
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Tio(uy v) =pup’{ve[Xo(w) YV, () + YV, (0) X, (0]
e[ X () X W) + V() Ve (w)] ese)
—Q@a—w) ' [ X, (w) + V(WX (u) =V, ()1},

T (1) = it (2 [ X, () ¥y () 4 ¥, (1) X, (0]
(X, (W)X, () + 7, (p) ¥V (p)] 359

= Q=) p X, (p) — YV, (WX, (w) + Vi (w)1Y,
and

TGy ) = b’ o=y 17 () X, 0) = X, () 7 ()]

M
—Xr (/“L) [u;in (:u,> + (_u‘i—l_/»‘) 1/vr (“/>]
-V, (W= (a4 X, (w) +us ¥V, (p)]

(360)18

+Qusup' [ X, (u) =V, (WX, () — Y, (u)]
_Q‘(u4—u3) (/4_ /J'l) [Xr (I-") Yr (ﬂ,) - Yr (/“‘) Xr (/J',)]

—Q (= u9) (u+w) [X, (0) X, (0) = ¥ () 7, (w11

20. The verification of the solution and the expression of the constants vy, va, vs, va, Us,
and us in terms of the moments of Xu(u), Yi(w), Xo(u), and Y, () and a single arbitrary
constant Q.—We shall first evaluate ¢, ¢, x, ¢, £ 7, o, and 6 according to equations
(330)-(337) for S and T given by equations (353)-(360); then require that, when the
resulting expressions for ¢, ¢, etc., are substituted back into equations (328) and (329),
we shall recover the form of the solutions assumed. As we should expect, this procedure
will lead to several conditions! among the constants vy, vs, v3, v4, %3, %4, and Q introduced
into the solution. We shall show that all these conditions can be met and that six of the
constants (v1, vs, v3, v4, %3, and #,) can be expressed in terms of Q and the various mo-
ments of Xy, ¥, X,, and V,. The constant Q itself will be found to be left arbitrary. This
is a further example of the one-parametric nature of the solutions of the functional equa-
tions incorporating the invariances of the problem in conservative cases. In § 21 we
shall then finally show how this last arbitrariness in the solutions can be removed by
appealing to the K-integrals of the problem.

The evaluation of ¢, ¢, etc., according to equations (330)—(337) for S and T given
by equations (353)—(360) is straightforward if proper use is made of the various integral.
properties of the functions X, ¥, X,, and V. In addition to equations (351) and (352),
use must also be made of the following relations (cf. theorem 4, egs. [44]-[46]):

ao=1+%[(as~ B3 — (ai—BD1, | (361)
L X (WX (W) —Yi(wY, (u’) X, (w) —1
(1 #?)f P =5, oz

4+ (a1 —pao) Xy (u) — (Bi— uBo) YV, (),

19 Actually, we shall see that there are twelve of them.
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o Vi(w Xo(w) — X (w) Vi (W) ' Vi(u) — e e
(1 #)/o- p—u o tu (363)

4+ (B4 wBo) X (u) — (a1 + pag) YV, (u),

Ao=1+ 2 [(45—Bf) — (41—B)H1, (364)

oy XWX W) V(W) V), X () —
'u)‘/o #’l‘ﬁ‘" g Su (365)
+ (41— ndo) X, (,U«) — (By— uBy) V, (W,
and
9 Ly, (.U') X, (,U'I)_—X'r (,u) v, (,u,) r_ v, (IJ') — e T/k
t M)fo p— p du = fu (366)

+ Bi+uBo) X, (u) — (A14+rdo Y, (m)

where (cf. eq. [11])

1

1
an—fo z(#)#d#, Bn—fole(#)#d#, o
4, =f0 X, wdu, and  By= [V, () wrdu.
Evaluating ¢, ¢, etc., in the manner indicated, we find that
Y () =+pulaX,(w) +¢V W], ' (368)
E(w) = —pleXi(W) + 7w ], (369)
¢ (1) = (L 4wp) X, (p) —wau ¥y (1), ~ (370)
7 (w) = (L —=wp) Vi (u) +opXi(w), (371)
x (w) = (T4p1p) X, () +peu ¥, (u) —tp? [ X, () =V, (w) ], ' (372)
o (p) = (1—pip) Vo (w) —panX, (u) +1u2 [ X, (0) =V, (w) ], (373)
Cu) = —3upX, (u) =Y. (W1 +30—v) 2 [ X, (w) =V, ()], 679
and 0wy = +3pl—nX,w) +rV, (W] =30 @a—w) w2 X, (0) =V, ()], 375
T 3 [aws— Bors+ a1+ $Bos — 3 Awat 30 ba—0) (A1 —Bp) 1, 376)
=2 [Bos—aws— B+ 34w — 3Bwe+ 30 o —w1) (41— By 1, (377)
21 =%[+A1‘A0”4+BOM3+Q(“4—143)(A1 By) 4+ Bovy — awsl , (378)
. 2=3[—Bi—Bots+ Aotz +Q (s — u3) (A1 —By) + aws — Boval , (379)
an

= %Q [— (a2t Bo) we—w1) — (Ao+Bo) (ug—u3) +us (A1 —B1) 1. s0)

We now substitute for ¢, ¢, etc., according to equations (368)—(375) in equations (328)
and (329) and compare them with the solutions (353)—(360), which were originally as-
sumed in the evaluation of ¥, ¢, etc.
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Considering, first, Ty, we have
1
L) Ta G ) = £ WY W) =¥ () £ W)
boou
+ 20y (w) o () —¢(p)n (k)]
=2{V; () X, (W) 1=y (p—n) — {92 —=224+3F (¢2— ¢)) up'] @81
=X, WY, W)ty (w—p) — =i+ 3 (g7 — ¢ }un']
Fr, (u—p) X, (WX, (W) + 7V, ()Y, (x)1}.
Comparing this with equation (342), we conclude that we must have
vi—vit+3(gi—q) =1. (382)

The consideration of Sj; leads to the same condition, (382).
Considering, next, Sai(u, '), we have

(i/—kl) Sor (ks u) =x (WY (W) — o (0 &)
p'ow
+2[¢(w) @ (w) —0(u)n(p)]
=X, (.U) Y, (.U,) [+wu-+ qw’ + {P192—P2(]1 +vws — vy _Q (e —w1) }## ]
+ V. (w) X (W) [ HFrwt gon’ — {prga— pagi +vaws —vws — Q (v —w1) }up’] 383)
+ X, (u) X (W) —vop+ qip" 4+ {p1g1 — p2qo+yvws —vavs — Q (e —w1) Jup')
+ V. (W) Y, (W) —vep+ g’ — {p1g1— p2g2 +vws —vary — Q (2 — 1) }
F+Qe—v) w(u+p) [ X, () — V, (WX, (&) + 7V, (u)]

+p2u’ [Q e —w) Watws) +1(ga— g X, () =V, (WX, () — V()]
Comparing equations (340) and (383), we find that we must have

pu']

q2=mr1; g1 = —vg, (384)

QWwa—w) Watw) +t(g2—q1) =0, (385)

d P1qe— paqitvaws —vws =Q (va—w1) (386)
an

P1q1— Paqetyvws —vavs =Q (o —r1) . (387)

The consideration of the other cross-terms, Si2, T2, and T, leads to the same conditions
as do equations (384)—(387).
Finally, considering Sse(u, u’), we have

(%—I—%) S, (s ") =x () x (&) — o (1) o (1) ‘
+ 205w &) —0(w) 0 (u)]
=X, (WX, (W) (1+p, (u+u) +1{p2—p24 3 G2—»2) Jpu’l

—Y, (WY (W)[1—=p (u+u) +{p2—p24+3 02— Jup']

+o, )X (W)Y W)+ 7V (u)X, (u)]

—up (wt )Py =2 ) t+3Q @I —w)]X, (0) =V, (WX, (W) =V, ()]
— (X, (W) =Y (WX, () + 7 (u)]

+uIX, () + ¥, WX, () = ¥, (u)]].

(388) .
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From equations (341) and (388) we now obtain the further conditions

1= —us;  pr=1us, (389)
A2—p2 -3 02— =u,=1+2Q(u,—u,), \ (390)
(p,— 2 t+30 0 —v) =Qu,, (391)
and
= —Q (us— us) . : (392)

The consideration of Tz(u, ') leads to the same set of conditions as the foregoing.
Collecting all the conditions among the constants that we have found and combining
them with equations (376)—(380), we have

m=ga=3[—=Bi+Bovs—aws+ 341 — 3B+ 30 vo—v) (41 —By) 1 393)
—v=qg=%[+ataw—Bwst+3Boi— F 4w+ 30 @2—v) (41— By) 1, 3o
s =pa=3[—Bi—Bous+ Aotts+ agvy — Bovo+Q (wg—u3) (A1 —By) 1, (395)
—us=p1=3 [+ A1 — Aows+Bouz+ Bow1 — aws+Q (s —uz) (A1 —B1) 1, 396

=243 02— =1, (397)

vo (us +vs) —vi (Us+vs) =Q Wa—v1), (398)
—vy (U3 —vs) +ve(us—vy) =Q 2—wy), (399)

Q wa—v1) watws) +twetv) =0, (400)
wl—ul+3 0—v)) =u,=1+20 (u,—u,), 401)
—t(u,+u) +30@2—v?) =Qu,, (402)

b= —Q (uy—us) , (403)

and

t=30[— (a—v) (as+Bo) — (tta—us) (Ao+Bo) +u5 (A1—B)) 1. (00

In considering the foregoing set of twelve equations, we first observe that, according
to equation (403), equations (401) and (402) are equivalent. Further (cf. egs. [400]
and [403)),

we—v1) Watvs) = (s —u3) @2+v1) . (405)
" Next, adding and subtracting equations (398) and (399), we obtain
1 v (e 4wy —vyiFvs) —vy (g4 uz+vy—v;) =20 2 —r1) (406)
an
vy Watvs—ustuz) —viwstvstus—u;) =0, (407)
or ;
we—w1) (us+ Uz — 2Q) = We+v1) vy —v3) ‘ (408)
and
we—v1) Wa+vs) = Watwy) (g — us) . 409)

Equations (405), (408), and (409) can be combined in the form
vetvy — V4+V3 - wy+us — 2Q

Ve —WV Uy — Uz V4 —V3

= % (say) . (410)
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It is now seen that equations (397) and (401) are equivalent; for, according to equa-
tion (410),
vi—vi=u;—ul— 20 (u,—u,); (411)
or, using equation (397), we have
1—3@i—v)) =ul—ul—2Q u,—u); (412)

but this is the same as equation (401).
Now turning to equations (393)-(396) and rearranging the terms, we can re-write
them in the forms

(3 40— 8)vy— 3Boyy = 6 (a1+ aws — Bavs) +30 (ra—w) (A1 —B), 413
3Bows— (340— 8)py =6 (— By + Bovs— aws) +30 (vz—v) (4, —B), @14

» (3A0— 8) ty— 3Bty = 3 (A1 + Bovs — aws) + 30 (s —ug) (A, —By), @15
3Bous— (3 40— 8) 1ty =3 (—By+ agy — Bovs) + 30 (sts— ug) (A1 —By) . @16)

From these equations the following set can be derived:

PLvo—r) — 2@ (vy—vs) =ay. - (417)
Py (wodvi) — 2wy vy +vs) = ay, (418)
Py (uy—u3) +o, vo—v) = bo, (419)
Py (us+us) +wy wa+v) = b1, (420)

where we have used the abbreviations

6 (a14+61) =a1; 3(A41+B1) = b1, 3 (as+Bo) =m1,

(421)
6 (a1 — B1) = as; 3(41—By) = by; 3 (ay— Bo) =2,
P,=3(40+Bo) —8—12Qb,, and P.=3(4,—By — 8. (422)
Using equation (410), we can reduce equations (417)-(420) to the forms
Py votr1) — 2w (s ;) = % — 4,0, (423)
@y Wo+v1) +Po(us+u3) = by, (424)
b
Py wy+v) @ a+v) = {, (425)
and ‘
— 2@y (vy+v;3) +Powatv) = ay. (426)
Solving equations (423) and (424) for (v, + ») and (#s -+ us), we have
A (Vz +V1) =P, %— 45.51Q>+ 2w1b1 (427)
and
A (u4_+ U3) = — oy (%2 — 4&51Q)+ b.Py, : (428)
where ° ‘ ' : ,
A =P1P2+ 26515.52 . (429)
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Similarly, from equations (424) and (425) we find

A (V4 +v;) =P, %—2‘- a @ (430)
" and
A(V2+V1) = 252—%-’-0«11)1. (431)

Equations (427) and (431) now determine \; for, according to these equations, we
must have

P, (%2 - 4631@)-1- 2w, b, = 2w, %"‘ aPy, 32
or
P2GQ -2 bng

A= P = Thoi + Ao

(433)

It is now seen that equations (410), (427), (or [431]), (428), (430), and (433) determine
the six constants »i, vs, v3, v4, %3, and %4 uniquely in terms of the various moments of
Xi(w), Yilw), X,(u), and V,.(u) and the constant Q. It remains to verify that, with the
constants determined in this fashion, equations (397) and (404) (which we have not
used so far) are also satisfied.

Considering, first, condition (397), we observe that, according to equation (410), this
is equivalent to '

Watvs) N (a+u3—20) +3 watv) Nwatv) =1. (434)

Substituting for (v4 + v3), (41 + u3), and (v» -+ »1) from equations (427), (428),-(430),
and (431) in equation (434), we have

(02Ps — a1@i\) (— ae®e+ 01PN 4 41w N0 — 2N0A) ‘
| 41 (a2Py+ 2@, b1\ — 4@ NPoQ) (4 NPy + 2w2by) = A2, ‘(435)
After some straightforward reductions, equation (435) becomes |
IN(a1a2+ 2b1b2) (P1Pa+ 2w1m5) — 202AP:0A = NA?, (436)

or (cf. eq. [429])
3 (a1a2+2b1bs) =A+42b5PQ . (437)

Hence we have only to verify the truth of equation (437).
Now (cf. egs. [351], [361], and [364])

[3 (Ao+Bo) —81[3(Ao—Bo) — 8] +18 (az— B0)
| =9(A5—Bj) —484,+ 64418 (a3 — B5)
=9 (47—B) +16+18[(4— a0 "~ Bil #38)
=9 (A7—B) +48+18 (ai— B — 48a
=9 (A1—B)) +18 (ai—B) =13 (a1a2428:8) .
2 (1024 2b109) =Py (P14 2Q05) + 2w,m
=A+ 2P0,

Hence
(439)

as required.
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Finally, considering equation (404), we can re-write this in the form (cf. eq. [403])
8 (ug—uz) =3[ wy—v1) (az+ Bo) + (us— u3) (Ao+Bo) ws0)
— (4,—By) { 1+ 2Q (us— us) }]

or
(g —u3) [3 (Ao+Bo) —8—6Q (A; —B1)]1 4+ 3 we—r1) (as+Bo) =3 (41— By) . (441)

With the abbreviations (421) and (422), the foregoing equation is equivalent to

Py (uy—us) +w (Vg“V1> = by (442)

but this is the same as equation (419), which we have already satisfied. With this we
have satisfied all the equations (393)-(404).

Substituting for X according to equation (433) in equations (428), (430), and (431), we
find that the solutions for the constants can be expressed in the following forms:

_ 1 _ _ a1q9— 4w1G52
Vet = ‘X We—w) = m , (443)
__1 _ _albz—Zwle
vy tvg = X (uy—us) = m , (444)
dzbl - 2w2P1 - 46521)2@
= (445)
Ut thg Poay— 20455, ’
1 szl—szpl_Z(ZngQ
—_— = —_— = (
Uy +uz — 20 X vy —v3) Pooa— 2bm, , 446)
= Ny @Pi— 2wbi 4+ 20,150
us =14 20 (ug—u3) =\ Pty — 2 byoia , (447)
and _
l= (11P1 - 2&511)1 + 4:(31.P2Q (448)
A

_P2(12 -2 bzwg !

where it may be recalled that a1, a2, b1, bs, @1, @s, P1, and P, are defined in equations
(421) and (422).
The constant Q is, however, left entirely arbitrary.

21. The removal of the arbitrariness in the solution and the determination of the con-
stant Q.—In the preceding section we have verified that the solutions for the scattering
and the transmission matrices are of the forms given by equations (338)-(345) (or,
equivalently, [353]-[360]) and have further shown that the constants, »;, ve, s, v4, %3,
4, and s, occurring in the solutions can all be expressed in a unique manner in terms of
the constant Q (which is left arbitrary) and the moments of the functions X(-u), ¥, (u),
X (u), and ¥ i(u)—the latter two functions being the standard solutions of equations
(349) and (350). The functional equations governing S and T therefore admit a one-
parametric family of solutions. As in the two other cases of conservative scattering that
we have considered (Secs. IT and ITI), this arbitrariness in the solution of the equations
incorporating the invariances of the problem can be removed by appealing to the flux
and the K-integrals. However, in the present instance, there are (formally) two such sets
of integrals corresponding to the fact that F; and F, can be specified independently of
each other. Indeed, starting from the equations of transfer (Paper XIV, System I, p.
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153) appropriate to the problem on hand, we can show that the problem admits the
integrals

+1
F(o) =2 f UG + 4, () Vidie = i, ooy, (449)

i +1
K (0) =5 [ Uy () + 1, (ry ) ) wdp
= %IU’OFI [— K e—T/M°+'Yl(1)T +7§2)] ’

(450)

+1
Fo(r) =2 f U, (rw) 41, (5, ) ) pdu= pf, [ 41, s
and

+1
K0 =5 [ U, () + 1, () ) it

(452)
poF [ — pye 7+ y®r+y3],

I

where (I; + I,1) and (I, + I,) are the fotal intensities in the dlﬁuse radiation ﬁeld
which are proportional, respectively, to F; and F, and where v{, v{®, ), and
are constants.

We shall now show how the integrals (449)-(452) enable us to eliminate the arbitrari-
ness in the solution found in § 20 and determine Q explicitly in terms of the moments of
X,(p) and V().

First, we may observe that, according to equations (321),

3
I,0,p) +1,,00,u) —-R— [S1u (&, mo) + S (1, o) 1 Fy (453)
3
Ii(ry,—w) + 1, (71, — ) =16x [(T11 (s o) +T21 (s o) 1 Fy, (454)
3
1,0, p) + 1., (0, w) —T[Sm (my o) + Saz (py po) 1 Fr,\ (455)
and
3
I (ry—w) + 1 (71, — 1) =—1—-“[T12 (my o) +T 22 (s pod 1 F. (456)

Considering the part of the emergent intensities proportional to F; and substituting
for the relevant matrix elements of S and T from equations (353)- (360), we have

31—
4#0+

+ 23X, (po) [0a+w) Xy (0) —v3 Vi () + 317, (8) — 2 X, (0)

, +30 Ga—v1) w{ X, (p) — ¥, (u)}1 37
+1Vi (o) [a—w) Vi) =03 X0 () + 31X, (0) — 32V, (n)
+3Q 02 =) 1 { X, () = ¥, () }1{

1000, 1) + 1 (0, ) = o §9 1= (X, (o) X1 () — Vi () V1 ()]
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and

31—
Ill('rl:—/-‘) —f"Irl(Tu—#) =%M03

4 po—

“[Y (uo)X () — Xy (mo) YV (w)]

— X0 G0 (B ) V) =X, ) + 3 X, () — a7, ()
+ 30 we—v1) w{ X, (w) — V. (0)]] ¥

=3V (po) [+ w) Xy () —v3 Vi () + 517, (0) — w2 X, ()

+3Q G2 =) w (X, () = V. (0 1P,
Using equations (457) and (458), we can determine the emergent fluxes and the K’s
by evaluating the various integrals defining these quantities. The evaluations can all be
carried out explicitly if proper use is made of the integral properties of the X- and V-

functions.?? Comparing the resulting expressions for F;(0), Fi(71), K;(0), and K(r1) with
those given by equations (449) and (450) for 7 = 0 and 7 = 71, we find, respectively,

= 2X, (1) Paar =581+ as+ WiB1 — Iads +3Q G2 —1) (43— By) ]

(459)
2V, (uo) By —v501 — Ba+ 1 A1 — IuBy + 30 Ga—»1) (42 —Bo) 1,
= 1 X0 (o) BBy =01 — Bak B dy — B F 30 6o —v) (4= B
+% VY (o) vaar —v3B1+ as+ %V1B1 - %VzAl + %Q w2 —w) (4. =By ],
')’(2) =3Xx, (#0) vsas —v3B2+ a) + v Br — V2A2+'%Q (s =) (A5 —Bs) | (461)
L TV b e it o = Bat 30 0 =) (43— By ],
an
51) T]_+ (2)

= - %Xl‘(,uo) vaBe —vzas— B+ 21 ds— 2vuBo+ 30 (o —v1) (43— By) 1 (62)
— 3V, (o) vsas —v3Ba+ a1+ 3Be— v2 Ao+ 30 wa—v;) (43 —By) 1.

It should, first, be observed that equations (459) and (460) are consistent with each
other; for, to be consistent,

s +v3) (a1 — B1) +az+B2— 3 Go4v) (41 —By) =0 (463)

‘must be true. With the abbreviations (421), equation (463) is equivalent to

a2 Watvs) + 20— by (wa+v1) =0. (464)

With the solutlons (443) and (444) for (vo + ») and (v4 + v3), it is readily verified that
equation (464) is indeed satisfied. We can accordingly combine equations (459) and (460)
to give

vi =3[ X (o) + Yi(ud {@a—rs) (a1 +B1) — 3 wo—v1) (A1 +By)
+a2_52+Q(V2_V1)<A2—Bz) I.

20 In the present context the relations of theorem 8 have to be used.

(465)
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The factor of Xi(uo) + ¥i(uo) on the right-hand side can be simplified considerably by
using equations (443), (446), and (448). Thus

6 (V4A—V3) (a1+B1) —3 a—v1) (A1 +By) + 6 (az— B2)

= )‘[al (wa—+us— 2Q) — by (wa+v1) +%]

A
=_— b1 — 2w.Py — 2a.P
-P202_2b2w2[al (dz . w1 o2 2Q) (466)
— b1 (a10y — 4@2) + 2@ (a1 — 2wlb1+45‘1P2Q]
2NPQ)
= Pras—2b, Gt iom)

= —2PQ (wo—v1) = —2Q wa—w1) [3 (Adg—Bo) — 8].
Inserting this result in equation (465), we have
v = =10 pa—)[3 (Ado—Bo) —8—3 (Ad:—Bo) [ X, (uo) + ¥, (wo)]. aom
Next, from equations (461), and (462) we obtain
’)’(11)7'1,'—‘ - % [X, (#0) + Y, (llo)] [(V4 —Vg) (a2+ B2) — % (Vz"l’l) (A2:+B,)

+ (0«1‘—31) +Q (va—w1) (A5 — Bs) 1.

Again, the factor of X;(uo) + ¥ i(uo) can be simplified by using equations (443) and
(446); we find

(468)

YW= =1 =) [3 (Ao— A2 +3 (Bo—Bs) — 8

- 6Q{ (Al—As) - (31—33)}][)(1(#0) + Yz(#o)]-

From equations (467) and (469) we now obtain
_ 3(Aog— A2 +3(Bo—By) —8—6Q[(4,— A3) — (B1—B;3)]

(469)

— . (470)
m Q13 (Ao— 4;) —3(Bo—Bs) — 8]
Solving this equation for Q, we have
' 0= 3 (Aog— As) +3(By—B,y) — 8 @)
[3(Ado— As) —3(Bo—By) —8]71+6 (Al_ As) —6(B1—Bj) -’
Introducing the notation (cf. eq. [10])
" =% /0‘1 (1—p) X, (p) " du (472)
and .
yr(f) =%fo (1—u) ¥V, (0) pdu, | (473)
we can re-write equation (471) in the form
() ()
Xy +yo —1 (474)

Q= [xér)—yér)— 1] Tl+2 [xl(r)__yl(r)] .
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In this form we recognize the similarity of the present expression for Q with equation
(202).

A similar consideration of the integrals (451) and (452) leads to the same value of ,
though the details of the calculation are somewhat more complicated.” However, it

may be of interest to note that the constant v in equations (451) and (452) has the

value (cf. eq. [467])

v = — 1013 (do— Ao —3 (Bo—Ba) — 8] [ (wa— us) { X, (o) + ¥, (no) }
— wsp0{ X, (n0) — ¥, (po) §1.

With the foregoing determination of Q in terms of the moments of X, () and ¥i(u),
we have completed the solution of the problem.

(475)

22. Concluding remarks.—The analysis of the various problems of diffuse reflection
and transmission presented in this paper has shown how problems of radiative transfer
in plane-parallel atmospheres of finite optical thicknesses can be solved exactly; for, in
every case considered, it was possible to reduce the complicated systems of functional
equations representing the problem to pairs of equations of the standard form

X (p) = 1+#£1\ZE::, [X (w) X () =YV () YV (u)]du (476)

and

V) = enbobn [ TNV () X W) =X W) VW) Tdw.

And, moreover, the expressions (155) and (156) for X(u) and ¥ (u), as rational functions
involving the points of the Gaussian division and the roots of the characteristic equation

a3 ()

— — RAUL
7=1 7

1=

provide approximate solutions of equations (476) and (477). Starting with these ap-
proximate solutions,?” we can solve equations (476) and (477) by a process of iteration.
Since the iteration will have to be performed for every required value of 71, the problem
of tabulating the X- and Y-functions is much more elaborate than in the case of the
H-functions. However, the existence of the differential equations (eqgs. [18] and [19]),

0X (u, 1 du!

__é‘:_lTi= V (i, 1) /0‘ :, ¥ (u) Y (W, 1) (479)
and Y ( ) v ) g

_7“;’1_“_: _'—“#,—Tl—'i-X (s 71) A Iﬁ ¥ ()Y (W, 1), (480)

simplifies the tabulation problem considerably, since corrections for small changes in 7
can always be found with the aid of these equations.??

2 Tn the reductions, use must be made of egs. (13)-(16).

2 For 71 — 0, a generalization of the method described by van de Hulst (4. J., 107, 220, 1948) in
the context of the simpler equations (172) and (173) can also be used with considerable advantage.
While the necessary generalizations of van de Hulst’s method will be considered in a later paper of this
series, it may be remarked here that the method is essentially one of solving equations (476) and (477)
by an iteration scheme which is started with the “trial solutions” X(u) = 1 and V(u) = e~ 7/~

23 Expressions for the second- and higher-order derivatives can be easily derived from eqs. (479) and
(480), so that Taylor expansions with as many terms as may be desired could be used.
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In view of the importance of the problem and its long-standing nature, it is worthy
of comment here that the basic problem underlying the theories relating to the illumina-
tion and polarization of the sunlit sky has now been solved exactly. The solution pre-
sented in Section V assumes that beyond 7 = 7 there is a vacuum (or, equivalently,
that there is a perfect absorber at 7 = 71). However, the solution for the case in which
thereisa “ground” can be reduced to the “standard problem” considered in this paper.?*

Again, while attention was concentrated in this paper on problems of diffuse reflec-
tion and transmission, it is evident that solutions for other problems in which there is a
distribution of external sources through the medium can also be reduced to the X- and
V-functions of this paper.?? We shall consider such problems in later papers of this series.

Finally, it should be remarked that, while the present paper solves the mathematical
problem of the transfer equations, the practical use of the solutions must await the
construction of tables of the X- and V-functions appropriate for the various problems.
The preparation of these tables is now being undertaken by Mrs. Frances Breen and
the writer.

24 Cf. van de Hulst, op. cit.

% E.g., a case in the theory of formation of stellar absorption lines leads to an equation of transfer
with an external source function which increases linearly with the optical depth (cf. Paper XX, 4p. J.,
106, 145, eq. [5], 1947). The exact solution for this problem can, nevertheless, be reduced to an H-
function and its moments (Paper XX, eq. [47]).
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