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ABSTRACT

In this paper the theory of diffuse reflection and transmission by a plane-parallel atmosphere of
finite optical thickness is considered under conditions of (I) isotropic scattering with an albedo & < 1,
(IT) scattering in accordance with Rayleigh’s phase function, (III) scattering in accordance with the
phase function A(1 4 x cos 0), and (IV) Rayleigh scattering with proper allowance for the polarization
of the radiation field. In all cases considered, it has'been possible to eliminate the constants of integration
(which are twice as many as in the case of semi-infinite atmospheres) and express the solutions for the
reflected and the transmitted radiations in closed forms in a general #th approximation. It is further
shown how a pair of functions, X(x) and ¥ (u), depending only on the roots of a characteristic equation
and the optical thickness of the atmosphere, play the same basic role in this theory as H(u) does in the
theory of semi-infinite atmospheres. The passage to the limit of infinite approximation and the determina-
tion of the exact laws of diffuse reflection and. transmission are thus made possible.

1. I'ntroduction—In the earlier papers' of this series, the theory of the transfer of
radiation in semi-infinite plane-parallel atmospheres has been developed to a point
that it is possible to obtain by a definite algorism exact solutions for the various prob-
lems. But the corresponding theory for atmospheres of finite optical thicknesses is in a
far less advanced stage. The difficulties confronting the development of this latter
theory do not lie in the system of linear equations which replaces the equation of trans-
fer in our scheme of approximation: they present, in fact, no problem which does not
already require solution in the semi-infinite case.? The difficulties actually lie in the
problem of eliminating the explicit appearance of the constants of integration in the
solutions and expressing the angular distributions of the emergent radiations in terms
of functions which involve only the roots of certain characteristic equations. This
problem of the elimination of the constants and the reduction of the solution to the
evaluation of a certain basic function (or a set of functions)? is of particular importance
for passing to the limit of infinite approximation and obtaining the exact solutions.
Thus, in analogy with the theory of semi-infinite atmospheres, we may expect that the
angular distributions of the emergent radiations can be expressed in terms of certain
functions which will be explicitly known in any finite approximation and which in the
limit of infinite approximation will become solutions of functional equations of a stand-
ard form. We shall see that this reduction can be achieved in spite of the greater
complexity of the problem arising from our present requirement of explicitly satisfying
boundary conditions on both sides of the atmosphere and of obtaining solutions in
closed forms for the expressions governing the radiation emergent from each of the
two sides.

In this paper we shall take the first of the two principal steps required for the com-
pletion of the theory of radiative transfer in plane-parallel atmospheres of finite optical
thicknesses. More particularly, in this paper, we shall carry out the elimination of
the constants for the basic problem of diffuse reflection and transmission under a variety

1 See particularly Papers XIV, XVI, XIX, and XX (4p. J., 105, 164, 435, 1947; ibid., 106, 143, 145,
1947.
2 Cf. Paper XTI (egs. [45] and [74]) (sbid., 104, 191, 1946).

3 We shall see that, actually, a pair of functions defined in the interval (0, 1) is involved in the solu-
tions for finite atmospheres.
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of scattering conditions and show how, in each case considered, the solution can be
expressed in terms of a single function defined in the interval (—1, 41). The passage
to the limit of infinite approximation and the exhibition of the relationship of these solu-
tions? to the functional equations derived in Paper X VII® are postponed to a later paper.

I. ISOTROPIC SCATTERING WITH AN ALBEDO &p < 1

2. The expression of the boundary conditions and the emergent intensities in terms of
two functions.—As we shall see, the consideration of the problem of diffuse reflection
and transmission by an atmosphere scattering radiation isotropically with an albedo
wo < 1 introduces us, in its simplest context, to a basic mathematical problem which
is characteristic of this theory and which requires solution. Considering, then, the case
of a plane-parallel atmosphere of a finite optical thickness, 71, on which is incident a
parallel beam of radiation of net flux «F per unit area normal to itself, at an angle
cos™! uo to the normal, we have?

_ L e_kaT ’YG_T/“O . . 6
I, —md*‘[Z o 1+m/uo] =1k, ()

for the solution of the intensities 7; in the nth approximation. In equation (1) the

LJs(a= +1,...., +n) are the 2xn constants of - integration, and the k.’s (a = +1,
, +nand k. = —k_.) are the 2 roots of the characteristic equation
l=m ) —5, 2)
" T (
which occurs in pairs (k. = —k_a), and

H (w2 — p)

y=H () H (— o) =p§‘”"2 = . (3)

[T a-#w
a=1

The boundary conditions appropriate to our present problem are
I_;,=0 at =0 andfor ¢=1,....,#n, (4)

and
I.;,=0 at =71 andfor =1,....,n. (5)

The equations which determine the 2» constants of integration are, therefore,

+n L ’Y
: = i=1,....,n 6
a;nl_ka“i—*-l—m/uo ( ) (6)
and
Lae ko, ’)’8_"1/#0 .
a;n 1 + ka#7, 1 —|— ﬂi/#o (7’ ’ ’}’L) ( )
4In the manner of Paper XIV. 5A4p. J., 106, 441, 1947,

6 In the summation over a« in this equation, the term a = 0 is omitted. We shall adopt this con-
vention throughout. It is, therefore, always to be understood that in all summations (or products) ex-
tended over a from —# to 4# the term with « = 0 does not occur.

)
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In terms of the functions

— Y
S (w) a__;__n = ka#—l— Ty (8)
and
a"l Ye 71/#0
T () = azz_,, S AT = oy el )

the boundary conditions can be expressed in the form
S (pe) =T (p) =0 G=1,....,n). (10)

In other words, the u’s (1 = 1,...., n) are zeros of both S and 7.

In analogy with the procedure adopted in the case of semi-infinite atmospheres, we
must now try to express the reflected and the transmitted intensities, 7(0, u) and I(71, — u),
(0 £ p £1),in terms of the same functions S(u) and 7'(w). It is, however, immedi-
ately apparent that 7(0, u) and I(71, —u) cannot, simply, be proportlonal to S ( w) and
T(— u), respectively, since these functions diverge for all those values of p = k;?! for
which £;! < 1(a > 0); in nonconservative cases (such as the present) divergence
from this source will occur for (# — 1) values of x in the interval 0 £ u < 1.7 Conse-
quently, a different procedure must be adopted for expressing the angular distribu-
tions of the reflected and the transmitted radiations. On consideration, it appears that
the procedure which should be adopted is the following:

For the problem of diffuse reflection and transmission under consideration, the
source function §(r7, p) is

+1 _
S(row) =%a [ I(r,u)du'+ i e, (11)
—1
or, in our scheme of approximation,
J(r, w) =3iweZa;l;+ tooF e /i . ‘ (12)

With the solution for I, given by equation (1), the foregoing expression for J(r, u)
reduces to

-
S (ry ) = oo | D Loehor yerin (13)

a=-—n

Since, in general, the outward and the inward intensities, I(r, +u) and I(r, —u),
(0 < u < 1), at any level 7, are derivable from the source function in accordance with
the equations

It = 73w eemn ! (14)

and TT J
I(r,—w) = [ 80— emonl - (15)

0 #

we find that in our particular case

I(r,4un) = %QOF e+f/u§ E [e"T(lJFkaﬂ)/# — 3_71(1+ku}‘)/l-‘] 16)

4 _ _
4+ [g (o tu)/uey — ¢ TI(#0+#)/##0] g
1+ I-L/#o

" In addition, 7'(— ) will also diverge for u = uo.
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and
N L
I(r,—p) = leFe—r/#ga;” 7 [er(—kam)/b — 1] an
+1——77/E [ rluo=sd o — 1] 2 :

For the reflected and the transmitted intensities we therefore have

.+_n
L, .,
1(0, ) = jmoFy D g [ et
a n (1 8)
Y _
_— 1 —_— Tl(ﬂu+l“)/ﬂ 0 %
+ 14/ o [ ¢ gl
and
% +n L }
I(r,—p) =ioFe /e ¢ [eri(—kaw)/u — 1] :
1 4 a.;" 1— ka.li (19)
Y el g — 1 }
+ 1—u/po Le i
or, somewhat differently,
< Y
=1 o
100, ) ﬂOF?a;,, 1 +kaﬂ+ 1+ /o
(20)
_ e_n/#[ LoeThars | yeTmilko ]%
o~ 1+ka# 14w/ o
and
..\’_‘n
La,G —kar ’)/6_"1/“0
I(ry,—u g
(73 az_nl—kau 1—u/mo
(21)8

N .
— e-n/ﬂ[a;n i f‘}ea#—l- 1 “’:‘/Mo] z .

According to our definitions of the functions S (u) and T (u), we can re-write the fore-
going expressions for I (0, + u) and I (71, — u) in the forms

I(0,p) =3woF [S(—u) — e /kT (1) ] (22)
I(r,—u) =3@F [T (—u) —e/mS(u)]. (23)°

Thus, in the case of finite atmospheres, as in the case of semi-infinite atmospheres,
there is a relationship of reciprocity between the equations which express the boundary
conditions and the functions which describe the emergent radiations. The present rela-
tionship is naturally not so direct as the one encountered in the case of semi-infinite
atmospheres. But it will appear that the relationship exemplified by equations (10),
- (22), and (23) is quite general and is precisely what is required to preserve the basic in-

and

8 These expressions, do not, of course, diverge for any value of p in theinterval, 0 € p < 1.

9 Since S(u;) = T(u) = 0,
I(O: I-"t) = %‘BOFS(—“IH) and I(T1, —/l.,;) = %c’doFT(—;l.‘) ;

and this is in agreement with the solution (1) for the intensities at the points of the Gaussian division.
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variances of the problem in all orders of approximation. And this last is, of course, an
essential requirement for passing to the limit of infinite approximation on our method.

3. The reduction to a problem in the theory of interpolation.—In addition to the func-
tions

n

P =] (w—w) and R =]]1—-kw, (24)

i=1

which we have extensively used in the earlier papers, we shall now introduce the func-
tions

+n n
W =RWR(—w) =[] 0=k = [T 1 =222 (25)
a=—n a=1
and
+n -
Woew) =[] (W=ksw)  (a=%1,....,25). (26)
o
Identities which follow from definitions (25) and (26) and which we shall find useful,
are
W (w) =W (—u) (27)
and
Waolp) =W_a(—p) (a=1,....,n). (28)

Now, from equations (8) and (9) it follows that -
swww(1-£) wd 7w (1+L), (29)

are polynomials of degree 2» in u; and, according to equation (10), the p’s (1 = 1,
., m) are zeros of both these polynomials. We may therefore write

1 P (p)

SW = Ewwma—s/m ¥ (30)
and .
T (W) =—— Py, (31)10

B2 wEW () (14 1/ po)

where s(u) and #(u) are polynomials of degree # in p.
Two relations which follow immediately from equations (3), (8), (9), (30), and(31)

are
1 P (po) P (— po) limit ( #)

= = 1——)S8

TEEE T W w—ow\ w0 W
S S LR
p2oo W (no) ’J
and
e~m/bo P (po) P(— o) limit ( #)

/g = = 1 —\T

e pEo...oul W (o) p— — Ho +uo () (33)
W2 W (ko) v
10 Tn egs. (30) and (31) the factor 1/4f .. .. u2 is introduced for reasons of convenience (see egs. [32]

and [33] below).
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Hence
s (po) =P (— o), (34)
and
t(— o) = e T/mP () . (35)
We next observe that, since (cf. egs. [8] and [9])
limit
La.:'u_)l/ka(l_kaﬂ)s(#) . (a=i_1:""7in): (36)
- and imit
: hr — imi _
L.e _p—>—1/ka(1+k““)T(“) (a=+1,....,4n), (37)

we must have

1 P(1/k)

Lo=
W 2 Wa (k) (1 — 1/ Fapo)

s(1/ka)  (a=4+1,....,+n) (38)

| and (cf. eq. [28])

1 P(—1/ky) _
R R W (1R (T =1 ey | 1/ R l (39)

(a=i1,....,in).J

Comparing equations (38) and (39), we conclude that

P('— 1/ka) '
= gkamy —— 1 77 —_ —
s(1/ka) = e P(+1/ka)t( 1/ka) (a=2x1,....,+n). (40)
Re-writing this equation separately for the positive and the negative values of a, we
have :
P(—1/ka)
= ckary — =
s(1/ka) =€ P(—I—l/ka)t( 1/ka) (a=1,....,n) (41)
and
P(—1/kd)

t(1/ka) = €kam s(—1/ka) (a=1,....,n). (42)

P(+1/ka)
An immediate consequence of equations (41) and (42) is
S(L/k) s(=1/k) =t (1/k) E(—1/k)  (a=41,....,4m). (43)
From this equation it follows that
s(w) s(—p) —2(u)t(— u) =constant W (u) , (44)

since the quantity on the left-hand side is a polynomial of degree 2# in yx and vanishes
for p= +1/ka(a=1,....,n).

Next, writing
F(p) =s(u) +1t(p) and  G(p) =s(u) —t(u), (45)
we find, from equations (41) and (42),
| F(1/ku)=+ekar‘x§§—%§%1«“(—1/ka> (a=1,....,n) (46)
and
G(1/ka)=—ekan%0(—1/ka) (a=1,....,7n). (47
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In § 5 we shall show how equations (46) and (47), together with equations (34) and (35),
just suffice to determine the polynomials F(u) and G(u) uniquely. The problem, as we
shall see, is essentially one in the theory of interpolation.

A more symmetrical way of writing equations (46) and (47) is

1 F(1/k) = 4+NF (—1/ka) (a=1,....,n) (48)
an .
G(l/k“)=—>‘aG(—1/kﬂ) (a=1,,n), (49)
where )
o P(=1/k
e = €k P(Y1/E) (50)

4. The solution of the basic mathematical problem.—The mathematical problem to
which we reduced the solution of S(u) and 7'(u) in § 3 can be formulated as follows:
To determine two polynomials F(y) and G(u) of degree n in u such that

F(xa)=+)\aF(—xG) (a=1,,ﬂ),(51)
and

G(xa)——--)\aG(—xu) (a=17"'°,n)7 (52)
where X., a = 1, . ..., n aren distinct values of the argument and Noy a = 1, ....,n,

are 1 assigned numbers, all different from one another.

As we have already remarked, this problem is essentially one in the theory of inter-
polation. It does not, however, seem to have been considered in literature before. But
it will appear that the problem is closely associated with the method of solution, in a
finite approximation, of a class of simultaneous pairs of functional equations of which
equations (119) and (120) of Paper XVII are typical. The problem would therefore
appear to merit a closer investigation than we can afford in this paper. We shall, how-
ever, give explicit solutions for F(u) and G(p) which satisfy the required conditions.

First, it may be noted that F(u) and G(u) are related by the identity (cf. eq. [44])

CF(WG(—p) +F(—p)G () =constant [ [ («2—u?), (53)

a=1

since the quantity on the right-hand side is a polynomial of degree 2% in u and vanishes for
p= tx.a=1,. , ).

Next it should be observed that in general the conditions stated determine F(u) and
G(w) uniquely, apart from a constant factor of proportionality. That this is the case can
be seen by writing F(u) (for example) in the form

F(w) =2 anum (54)
m=0
and noting that the conditions of the problem (eq. [51]) require that
Za [1+ (=D mH\Jar=0 (a=1,....,n). (55

The n + 1 coefficients, a.(m = 0, . ..., n), therefore satisfy a system of homogeneous
linear equations of order n. Moreover, if the x.’s are all distinct and none of the \,’s are
equal to each other (as we have, indeed, assumed), the rank of the system (§5) is also #
Consequently, the coefficients a,, are all uniquely determined apart from a constant
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factor of proportionality. The polynomial F(u) is therefore also determined apart from a
constant factor of proportionality. Similar remarks clearly apply to G(r) also.

The arguments of the preceding paragraph further establish that # is the lowest degree
of a polynomial (not identically zero) which will satisfy n conditions of the form (51) or (52).
On the other hand, polynomials of degree higher than # can be readily constructed in
terms of F(u) and G( w) which will satisfy conditions (51) or (52). For example,

aoF () + a1uG (), (56)
‘where g, and ; are two arbitrary constants, is the most general polynomial of degree

(n 4+ 1) in u which will satisfy the »# conditions (51); for, according to equations (51)
and (52),

aOF (xa) + alxaG (xu.) = aOXG.F ( - xa.) - alxakaG ( - xa) } (5 7)
= Na [aOF (/"') +01/J.G (I*")]#=—xa (a =1 gy oene yn)'
Similarly,
boG (k) + b1uF (p) (58)

where by and &; are two arbitrary constants, is the most general polynomial of degree
(n + 1) in u which will satisfy conditions (52).

The foregoing observations can be readily extended to construct polynomials of any
degree higher than # which will satisfy condition (51) or (52). We shall state the result in
the form of the following theorem:

Theorem 1.—The most general polynomials Frm™ (u) and G (u) of degree (n + m) in
g, (m > 0), which will satisfy the conditions

Frtm) () = G+ NFOFTm) (— 1) (a=1,....,%) (59
and

G(n-l—m) (xa) = —kuG("—I—m)(_xa) (a=1 g e e e ,ﬂ) ) (60)
are

Fetm (u) = D7 aw! e, even F (1) Fe1, 000 G (1)] (61)
, 1=0
and

Grtm () = D bt e 0aa F () +eteven G (W) ], (62)

=0

}uvhere ajand bi(l = 0, . ..., n) are arbitrary constants and

€l even = 1 iflisevenl €1, oaa = 1 if 7 is odd
} (63)

and
= 0if /is odd f =01f /is even

wmd F(u) and G(u) are polynomials of degree n in u which satisfy the same conditions as
Flatm) (1) and G (), respectively.

This theorem suggests that the polynomials F(u) and G(u) can be constructed by a
vrocess of induction; for, if polynomials F(*V(u) and GV (u) of degree (r — 1) in
+ which satisfy the (# — 1) conditions

FOD (x) = +NFOD (—2)  (a=1,....,2—1) (64)
und

GOV (%) = — NG D (— x0) (a=1,....,m—1) (65)
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are assumed known, then polynomials F () and G (u) of one higher degree satisfyin,
conditions (51) and (52) appropriate to polynomials of degree # can be constructed
Thus, according to theorem 1,

F® (p) =F®D (p) + a:pGD (n) , (66)

where @; is an arbitrary constant, will satisfy all the conditions (64) that are satisfies
by F(»=D(u). We therefore need to satisfy only the one additional condition,

F® (xn) =W(n) (—xn) . (67:
This condition can be used to determine ;. In this manner we find that, with the choice ¢

FO1 (2,) — MFOD (= )
%n [GO™D (%) + MG (— x,) ]

F™(u) defined as in equatioh (66) will satisfy all the required conditions. Similaﬂy,
G™ () =GV (u) + bipFD (u), (69,

GO (%) + NGV (—«,)
X [F(n—l) (xn) — }\nF(n—I) ( — xﬂ)] 1

aL= — (68

where

by= — (70,

will satisfy the # conditions (52). Thus polynomials of degree # satisfying the require
number of conditions can be constructed if polynomials of one lower degree, eac.
satisfying one less condition, are assumed known. On the other hand,

FO (p) = (1= ) + N (w11 w) (71,
G (u) = (1 — 1) — N (¥1+w) (72

clearly satisfy the conditions appropriate to polynomials of degree 1. With this we hav
established that the solution to our problem can, in fact, be found by a process of ir
duction.

While the construction by induction which we have outlined above solves our prol
lem in principle, it is still unsatisfactory, in that the solution obtained by following tk
construction literally will be excessively complicated. This apparent complexity must, i
part, be attributed to the fact that the manner of construction destroys the essenti
symmetry of the problem in the x.’s and the X.’s. It would therefore seem that the co:
struction of the polynomials F(ux) and G(u) by a straightforward process of inductic
is not a significant approach to the problem. The method was therefore abandone:
and the somewhat indirect method that we shall now describe has at least the merit
providing explicit formulae for the functions F(u) and G(u) which preserve the syr
metries of the problem.

From the form of the solution for the case » = 2, it appeared that F(u) and G(
must be expressible as linear combinations of the 2* polynomials of the form

and

I (et ), | (7¢
a=1

where in each of the # factors we have either a plus or a minus sign in the parenthes
Moreover, after some consideration, it also appeared that the coefficient of the term

i n—1
H rfi‘#) H (xsm_ )’ (7
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where 73, .. .., 7 and sy, ...., s, are selections of /, respectively # — I, distinct
integers from the set (1,2, . ..., n), must be ’

!

3
[

:N

(xsm + xri)
m=1 i=1
i k7‘1 >‘Tl . (75)
n—1 i
I 1 @, —2)
m=1 i=1

But the decision regarding the sign turned out to be a rather more delicate matter.
We shall, therefore, describe the method by which the decision was reached, as it will
establish at the same time that the expression which we shall obtain does represent
the solution to our problem.

According to our remarks in the preceding paragraph, we shall write

F(w = 3 €y .oorhy oo Ay
2nterms - ,
. X X,
m=1 ;[l (et 27 l n—1 = (76)
X — (%,,+ ) H (%s,, — 1) »
— i=1 =1
(xsm—— xri)
m=1 i=1 )
where |
... =1 (77)

but is unspecified, otherwise, for the present.
It should be particularly noted that, in the summation on the right-hand side of

~equation (76), terms with the various factors A, . . . . Ay, occur just exactly once.

Now if F(u), as given by equation (76), represents a polynomial which satisfies the

- conditions of our problem, then we must have

F(x,) =M\F(—2,). (79

According to equation (76), in F(x, ), there is one and only one term which occurs with

the factor ,
Asven My s (79)

l
H (xsm— xri) (80)

i n—1
X I @ri+w [] (®s, =) |
=1 m=1
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on the right-hand side of equation (76). The validity of equation (78) therefore re-
quires that the term in F(x,) arising from equation (80) must cancel the term in F(—zx, )

which occurs with the factor

A DV (81)

1 rj—1Mriyr c

and the only term on the right-hand side of equation (76) which occurs with this factor
is

67‘1 ... r]'_lfj+1 o e . Tl}\’l .. . )\"1‘—1>\"]'+1 . . >\7‘l
n—I1 1 1
11 G2 T @+ 20
m=1 i1=1 =1
it i (82)
S Z 1‘[<xr,+u>1‘[<xsm—n)<x, w.
H (xsm— xri) H (xrj—xri) z;é]
m=1 i=1 i=1
g ist]
Putting p = x,, in equation (80) and p = —x, in equation (82), we have, respec
tively,
n—1 1
11 ., +=.)
m=1 %=1 !
erl....f]-....rl>\r1'-")‘rj"")‘rl 1 H(xr,;_l_xrj) (83)
H (xam - x’i)
m=1 i=1
i
and
érl j—17j4+1 Tl)\"'l >\r7~ 1)\rj+1 . )\rl
n—1 1 1
| JREAE TN I HECRE
m=1 i=1 =1
ig i]
X—— H(x,z x,>H(xsm+x ) (%, 42,)
IT1I =) H (0= ) =
m=1 i=1
177 Z#J (84)
=€, Pi_1mi4 P A PN S S Gt L
n—1l !
| J EEAE M
m=1 =1 l
X H (2, +2,).
n—1 ! =1
| EEES
m=1 i{=1
i
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Comparing (83) and (84), we observe that the validity of equation (78) requires only
that
€y ... 1 =€rl B LS N B rl<— 1) =1, (85)
| Hence, :
L a1 (—1) ey . (86)

Letting €, = 1, we conclude from equation (86) that
=11, ="', 2=—1, =", ea=11,ctc (87)

The €’s which occur 1n equation (76) can therefore be arranged in a sequence which

- we shall denote by €. With this choice of the €’s, equation (77) does, in fact, represent

a solution for F(u). (Any constant multiple of F(u) will, of course, also be a solution. )
The solution for G(u) can be constructed along similar lines. Thus G(u) is also a linear

' combination of the 2" polynomials (73), with, in fact, the same coefficients as F(u) except

for the e-factor. And it can be verified that again e depends only on the number of fac-
tors, /, in (73) which occurs with the positive sign in the parenthesis. However, in view of

the minus sign in the conditions (52), we must now require that (cf. eq. [86])

a=g1(—1)°". (88)

The ¢’s in the expansion for G(u) therefore form the sequence

=+1. e1=(—1", e2=—1, e-3=(—1"1. e.=+1,etc., (89)

- which we shall denote by ¢/”. We have thus established the following basic theorem:

Theorem 2.—The polynomials

m=1 i=1 L n—1
F(w = > ¢ — TT>: Gt T (o0, = ) (90)
n n_ =1 m=1
2 terms H (xsm _ xri)
. m=1 =1
and
‘ n—I1

m=1 i= l
G = 3 0 [ G H (50, = 1) 5 (91)
2" terms H (xsm _ xri) =1
m=1 i=1

where €°) and € denote the sequences

=41, (=D, =1, (=D, +1, (=1, =1, (=D",....,(92)
‘and
=f1, (=07, =1, (=), 41, (=10, =1, (=)=, ..., (93)

‘satisfy the conditions
F (%) = NoF (— %) and G (%) = — NG (— %a) (a=1,....,m), (94)
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where Xa, o = 1, . ..., 1, are n distinct values of the argument and Ny a = 1,....,n,
are n assigned numbers all different from one another. Any other polynomial of degree n
which satisfies either of these conditions must be a simple numerical multiple of ¥(u) or
G(u) as defined.

By writing )

xa=—k;- (a=1,..‘.,n),(95)-

we can express the solutions (90) and (91) for F(u) and G(u) alternatively in the forms

1

3
|

l
IT11 i+t l
=1 m=1 l n—
Fw = 27 d)—— [T a+em [ A—k,m  (96)
n n_ =1 m=1"3%m
2 terms (kri—' ksm)
i=1 m=1
and
I n—1
ITII i trs)
i=1 m=1 ! n—1 1 _
Gw) = D ¢ 11 (L+ k) L[Ixam(l—ksmu). (97)

2n terms I_ZI ﬁ (kri"" ksm)
=1

=1 m=1

Now, examining the sequences (92) and (93), we observe that the terms »n, n—2, etc.,
agree, while the terms n—1, n—3, etc., are of opposite signs. We can, therefore, ex-
press F(u )and G(u) in the forms

F(u) =Co(n) +Cr1(n) (98)
and
G(p) =Co(u) —Cyi (), (99)
where
{ n—1
R H (k. T ks,) l l
T L el
Gw= 37 € —r g<1+kriu>£{1x3m<1—ksmu> (100)
2 terms H H (k,«l ksm)
=1 m=1
and
l n—1
l=n—1.n—3) +-.- ]Z;I m=1 (krb+ksm) l n—1 1
cl(p>=<—1>n—l_;‘ ) ——— guww 1’21 xsm“‘ks:n“)’ (1
2 term I—I H (kri—ksm)
=1 m=1
where

e{® = +1 for integers of the form » — 4/ 102)
(
= — 1 for integers of the form » — 41— 2

= 0 otherwise
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y . and
P

(103)

ell) = + 1 for integers of the form » — 47— 1
= — 1 for integers of the form » — 4/— 3 L

= 0 otherwise

. In our future work we shall adopt equations (96)—(103) as our standard definitions
* of the various functions, and it will always have to be assumed that functions defined
© in this manner are meant unless something explicitly to the contrary is stated.

Finally, some properties of the functions Co(p) and Cy(u) may be noted:

By virtue of equations (98) and (99), the identity (53) between F(u) and G(u) be-
comes, in our present notation (cf. eq. [25])

Co () Co (— u) —Ci1 () Ci(— p) = constant g (1 — E2ud) (104)
= constant W (u) .

- Since W(0) = 1, we can re-write equation (104) in the form
Co (1) Co (—p) —Ci(w)Ci(—p) = [C5(0) —=Ci(0) W (), (105)

a relation which we shall find very useful in our further work.
Again, according to equations (51) and (52),

d F(xu) +G(xa) =xa [F(_xa.) —G(_xa)]’ (106)
an
F(xa) —'G(xu) =ka [F(_xa> +G(_xu.)]- (107)

Expressing F and G as in equations (98) and (99), we find that the foregoing equations
are equivalent, in our present notation, to

Co(1/ka) =NC1(— 1/ka) (a=1,....,n) (108)
and \
Ci(1/ke) =NCo(— 1/ka) (a=1,....,n). (109)

"Equations (108) and (109) will be formally equivalent to each other if (again formally!)

1

Aa = )\—a.

(110)

For \. defined as in equation (50), this is actually the case.
5. Completion of the solutions for s(u) and t(u).—Returning, now, to the solution
for s(u) and #(u) at the point where we left it in § 3, we conclude that s(u) 4 #(x) and
s(u) — #(u) must be proportional, respectively, to F(u) and G(p) as we have defined
. them in equations (96) and (97), with A\, having the particular value given by equation
(50). Expressing F(u) and G(p) in terms of Co(p) and Ci(u), as in equations (100) and
(101), we can therefore write

s(u) = goCo (,u,) + ¢:C (u) (111)
and ’

£ (1) = q:Co (8) + ¢oCr () (112)
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where ¢o and ¢; are two constants. To determine these constants we make use of equa-
tions (34) and (35), which require that

N (,Uo) = Q()Co (,uo) + 91C1 (Mo) =P(— I-to) (113)
t(— po) = qoC1(— po) 4 ¢1Co (— wo) =P (o) e/ko . (114)

and

Solving these equations for go and ¢;, we find

_ P (= 10) Co (= po) — e~i/MoP (o) C1 (pho)
1= Gy (#0) Co (— o) —Ci (o) C1 (— o)
e~71/oP (o) Co (o) — P (— po) C1 (— i)

U= ) Co (— ) = Cr (i) Co (= o) (116)

The denominator in equations (115) and (116) can be simplified by using equation (105).
We thus find that

1
“= T =W o L

(115)

and

(— po) Co (— po) — e /P (po) Cr(mo)] (117)

and
1

N=TCT0) —C2(0) ] W (o)

[e_fx/“OP (IJO) Co (Mo) —P (— Mo) Ci(— I-’-O? ] . (118)

With this determination of the constants go and ¢, we have completed the formal solu-
tion of our problem.

6. The solution for the reflected and the transmitted radiations.—With s(u) and #(u)
given by equations (111) and (112), equations (30) and (31) for S(u) and 7'(u) take the
forms

1 P(u)  wo

SW) = o (o e L0060 () F 0C1 )] (119)
and
_ 1 P(u)  po
T () —'“'12""'“12;W(”‘) #0+“[91C0 (B) +qoCi(w) ] (120)

Substituting for S(u) and T(u) from the foregoing equations in equations (22) and
(23), we obtain, after some minor rearranging of the terms, the following expressions
for the reflected and the transmitted intensities:

1(0, ) =Ti“2 .w'o’F. #ZWE#) [qo{P (—u)Co(—p) — e /P (u) Cy (1) }
' " (121)
— Ho
— qi{e /P (u) Co(p) —P(—u)Ci(—p) }]#O_l_“
and
I(r,—w) =711 07 of pE: qu) [qi{P(— w)Co(—u) — e /mP(u)Ci(u) }
R,
. (122)
— gof e=n/mP () Co(w) — P(~ w)Ci(— p) } ] —2

Mo — M
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Substituting, next, for go and ¢; according to equations (117) and (118), we have

10, 4)= 1 woF 1 1 Lo
T T TR TG0 —CRH0) ] W (W (o) mot s
X [P (=) Col—u) — e=/eP(u)C () } {P(— o) Co (— o) — e=noP (o) Ca (i) } [ L2
- —{ e /P () Co(u) —P(—w)Cr(—p) } { e771/80P (110) Co (o) —P (— o) Cy (— o) } ]
‘and
’ 4 p2... w2 [C20)—C2(0)] W (k)W (ko) po— i
(124)

- X [{P(—H)Co(—ﬂ)— e~ /BP () Cr(p) |} { e7m1/kP (o) Co (o) —P (— po) C1 (— po) }
—{emn/wP(u)Co(p) —P(—u)Ci(—u) } {P(— po)Co(— o) — e m1/#oP (110) C1 (o) } ]

Now let
X(u =D ! L [P(= ) Col— ) — e~ P (W) Co(w)] (125)
i [CO) —C (O W () '
and
(— 1) 1 1
Y () = [e=n/P (1) Co () —P(— ) Gy (— )] (126)

P () R eI (OSER AP

It will appear that functions X(u) and ¥Y(u), defined in this manner, play the same
fundamental role in the theory of atmospheres of finite optical thicknesses as the func-
tion H(u) did in the theory of semi-infinite atmospheres.

In terms of the functions X(u) and ¥Y(u), equations (123) and (124) for the reflected
and the transmitted intensities take the following simple forms:

10, 1) = dmf 5 [X () X (o) = 7 (1) ¥ ()] (127)
and
I(r,=w) =}of 2 (X (W) ¥ (o) = ¥ (1) X (w) ] (128)

It will be seen that the solutions for (0, u) and I(71, —u) given by equations (127)
and (128) are of exactly the forms required by the functional equations satisfied by the
scattering and the transmission functions (Paper XVII, § 6); they further bring into
evidence Helmholtz’ principle of reciprocity.

Finally, attention should be drawn to the fact that there is nothing in the analysis
of the preceding sections which has depended on the k.’s being the roots of the particular
characteristic equation (2) except that it has 2% roots which occur in pairs (i.e., ko =
—k—). The method of solution and the reduction to the basic problem considered in
§ 4 has depended only on the single circumstance of the solution for the intensities being
of the form given by equations (1) and (3). Conversely, it follows that the expressions
for the reflected and the transmitted radiations can always be brought to the forms

~ (127) and (128), provided only that the intensities I; at the points of the Gaussian
- division are given by equations of the general form of (1) and (3) and the k.’s are the
. roots of an equation of the form

o~ iV ()
1=2 >R (129)
1= 7
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where the characteristic function, ¥(u), is an even polynomial, satisfying the condition
1
frwdn<y. (130)n

An obvious corollary of this observation is that for all equations of transfer of the form
considered in Paper IX, §4, the solution for the reflected and the transmitted in-
tensities can be reduced to the forms given by equations (127) and (128), in which the
functions X(u) and Y (u) are defined according to equations (24), (25), (100), (101),
(125), and (126).

II. ISOTROPIC SCATTERING WITH UNIT ALBEDO

7. The reduction for the case @y = 1.—The solution for the case of isotropic scattering
with unit albedo cannot be obtained by simply letting @o = 1 in the equations of the
preceding sections (§§ 5 and 6); for, in this case, the various functions become indetermi-
nate because two of the characteristic roots become zero. While there can, of course,
be no difficulty of principle in properly passing to the limit @, = 1 with due regard to
the 1ind«-‘:‘cerminateness we have mentioned, it appears simpler to treat this case sepa-
rately.

When @, = 1, the solution for the intensities I, at the points of the Gaussian division
is (cf. Paper VIII)

+n—1 —r/u
YD S P R AR Ay

- _nﬂl-l—ka Wi 14 pi/mo (131)
, _ G==x1,....,+%),
where the ks (a = +1,...., +# F 1, and k. = —k_,) are the (2n — 2) distinct
nonvanishing roots of the characteristic equation
1= A (132)
“et 1 — k242
and the LJ’s (a = 0, +1,. ..., +n F 1, n) are the 2» constants of integration and
1 P (o) P (— o)
=H H(— = 133
Y (mo) H (— po) PER: W () ( )
In terms of the functions
el /
S = — L Lyt ——— 134
() a=—2n+l 1= Lot Tt +1_u/“0 (134)
and
+n—1
.L e 1/}‘0
T<#>:Zn+11+ka + Lo (114 n) +L, +1+ T (135)

the boundary conditions requiring ‘
I_,=0atr=0 and I.;,=0at7=m7, for t=1,....,n, (136)

can be written as . ;
S(us) =T (u;) =0 G=1,....,n). (137)

1 Notice the exclusion of the equality sign here. This means that we exclude conservative cases
from this discussion (see Sec. II below).
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And, as in the case @y < 1 (§ 2), it can be shown that, in this case also, the reflected and
the transmitted intensities can be expressed in the forms (cf. egs. [22] and [23])

. I(0,u) =3F[S(—p) — e/l (u)] (138)
an ‘
I(ry,—p) =1F[T(—u) —e S (w)]. (139)

Returning to equations (134) and (135), we observe that, since the u/’s (z = 1, .. . .,
n) are zeros of S(u) and T'(u), we can write (cf. egs. [30], [31], and n. 10)

1 P (u) 1

SW = w e T=u/m W (140)
and
T =t PW 1, (141)

p2oooow W) 1+p/uo

where s(u) and #(u) are polynomials of degree » in p.
From equations (133)—-(135), (140), and (141), it readily follows that (cf. egs. [32]-35])

s (po) =P (— o) and t(~— o) = e~/ (ug) . (142)

But we now have only (2# — 2) relations of the form (cf. eq. [40])
P(—1/kd)
P(F1/k

Consequently, s(u) + #(u) and s(u) — ¢(u) satisfy only (» — 1) (instead of #) relations of
the forms (46) and (47), respectively. In accordance with theorems 1 and 2 (§4), we
therefore conclude that, in the present case, s(u) + #(u) must be a linear combination
of F(u) and uG(u) with numerical coefficients, where F(u) and G(u) are polynomials of
degree n — 1, defined in the manner of equations (50), (96), and (97) in terms of the
»n — 1 positive nonvanishing roots of equation (132).1? Similarly, s(u) — #(u) must be a
linear combination of G(u) and wF(u) with numerical coefficients. We can therefore
write (cf. egs. [98] and [99])

s () = (po+ gon) Co (1) + (p1— qip) C1 (1) (144)

s(1/ka) = ekams t(—1/k)  (a=+1,....,+nF1). (143)

and
t(u) = (p1+ i) Co () + (po— qop) C1 (1), (145)

where o, qo, p1, and ¢; are certain constants. Equations (142) provide two relations
between these four constants. Two further relations can be obtained in the following

manner:
According to equations (134), (133), (140), and (141), we have

-1
mp(#) s (u) =<1—f~0>W(#)S(I~L)
(146)

L L
= (- DR [ ;ﬂ"—(LO—I——") it
Mo Mo
12 We shall adopt this convention throughout. It is therefore always to be understood that W, W, F,
G, Cy, C1, X, and Y signify the functions defined asin egs. (25), (26), (50), (96)—(103), (125), and (126) in

terms of-the positive nonvanishing roots of the particular characteristic equation which is appropriate in
the context.
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and

——1———21’(#)t(#)'=<1+i>w(#)T(M)
T ) (147)
= (_1)"—1kf....k72t_[ 2n+(L +L L07'1>

o]

From equations (146) and (147) it is apparent that the coefficients of u™ in s(u) and #(w)
are the same. This requires that in equations (144) and (145)

go = ¢1 = a (say) . (148)
We can therefore write :
; s(u) = (po+aw) Co(p) + (p1— aw) Ci (1) (149)
an
t(p) = (pr+au) Co(r) + (po—ap) Ci (u) . (150)

With the foregoing forms for s(u) and #(u), it is readily verified that

P(u) s(p) =pr{a[ciD—c D]} +u2"‘13 alcrD — (2]
n (151)
+ Py D+ oD — (2 ui) aleg=—crb] f4....
=1 J
and
P ()t (6) = {a [ep) — 0] } 4w o Lo — c]
: n (152)
+ 0§+ 20— (D w) alop = 0] f o
i=1

where ¢V, ¢{*? and ¢{*~1, ¢*2 are the coefficients of the highest and the next high-
est powers of u in Co(u) and Ci(u), respectively.
Comparing equations (146) and (147) with (151) and (152), we conclude that

1 _ S S - N
W?cé D= (A= [pyef ™ +p,¢f “]2—;&- .
(153
= (7))
and
1 g (n—2) — ,(n— 2)+ [ (n—1)+ (n— 1) % Z
= oD “ bie Pot 4
- (154)

= +(m+E+n). |
Adding equations (153) and (154), we obtain
1

—1) — -1
C((]" ) an )

32 [cfr=D — ¢(n=D)] +P0 ;’;Pl[cé‘n—l) + c(r—1] % — 22 p,=7,.(155)
i=1
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Henee =0 (et ), (156)
where
0= N G . (157)
<T1+ 2 i ,ui> [efrD) — ¢r=D] =2 [¢rm2 — ¢r=D)]
i—1
Now, from equations (142), (149), and (150) we have

(po+ amo) Co (po) + (p1— amo) C1 (po) =P (— po) (158)
and (po+ aro) Ci (— po) + (p1— apo) Co (— po) = e~71/koP (po) . (159)

Solving these equations for (po + auo) and (p1 — aue), we have (cf. egs. [113]-{118])

1

po+ apo= [ [P(— w0)Co(— pmo) — €7 m1/meP (o) C1(mo)]  (160)

C3(0) — C2(O) IW (i)

and

1
Py @Ko = TER(0) —C2(0) W ()

[ e m1/mP (o) Co(po) —P(— po)Ci(— mo)]. (161)

And, finally, according to equations (156), (160), and (161)

__ Q — — — e~ Ti/k
a4 = Cror=c? T ) [P(=po)Co(—po) — e P (o) C1 (o) L (162)

1 e=m1/maP (g) Co (o) — P (— o) Ca (— o) ] - )

With this determination of the various constants, the solution of the formal problem is
completed. ’
8. The solution for the reflected and the transmitted radiations.—The angular distribu-
tions of the reflected and the transmitted radiations are given by
1 F 1 ' Ko

= — — — e /8
I(0, p) 4#?----#ZW(#)[P( p)s(—u) —e P(u)t(u)]#o_l_“

(163)

and

1 F
I (717 - /'L)

1 0
AT [P(—mt(—p) — e~mmP () s (0)] —=—. (164)

Bo— u”

On the other hand, according to equations (149) and (150),
P(—u)s(—p) — e /P (u)t(u)

= (po—aw) [P(—w)Co (—p) — e™n/eP (1) C1 (1]
— (pr+an) [e /P (1) Co () —P (— p) C1(—u)]
= (po+ auo) [P (— ) Co (— p) — e™m/mP (1) Cy (1) ] (165)
— (p1—apo) [e/BP (1) Co (u) —P (— ) C1(— w)]
—a (pot+u) [P(—u)Co(—n) — e /P (u) Cy (1)
+ emn/mP (u) Co (1) —P(—w)C1(—w)]. )
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Similarly,
P(—p)t(—p) — e /P (u) s (n)
= (pr— ap)) [P(— w)Co (— ) — e~ n/mP (p) C1 (1]
— (po+amo) [e=/wP (u) Co (u) —P (—p)C1(—w)] | (166)
+a(po— ) [P(—u)Co(—n) — e /P (u) Cy (1)
+ e /P (u) Co (u) —P (— ) Ci (—w)].

In the foregoing equations we can now substitute for (p o+auo), (p1 — amo), and ¢ in
accordance withfequations (160)-(162). In this manner we find

Py) =1 Ko -
I(0fru) =3%F no—l—u{X(“) X (po) — YV (1) ¥V (uo) } (em
—Q o+ m X (W) + YV (WX (ue) + Y (mo)]}

and
T(r,—p) =3F 2 {X () ¥ (so) — ¥ (1) X (n0) }
Mo — M (168)
FOo—w X (w) + 7V (WX (po) + ¥ (no)1}.

Equations (167) and (168) can be brought into forms analogous to solutions (127)
and (128) for the case @y < 1, if we introduce the functions

Y =X —Qu[X W +¥ W] (169)
¢(p) =YV (p) +0u[X (w) +V (W]. (170)

In terms of these functions, the angular distributions of the reflected and the transmitted
radiations take the required forms:

and

KMo
Bot i

I(0,p) =3F [¥ () ¥ (mo) — & (1) ¢ (o) ] (171)

and

I(ri,= 1) = 3F LY (0 6 () —¢ WY (w) . (172)

III. SCATTERING IN ACCORDANCE WITH RAYLEIGH’S PHASE FUNCTION

9. The azimuth independent term. The reduction of the solution.—In solving the equa-
tion of transfer appropriately for the problem of diffuse reflection and transmission by a
plane-parallel atmosphere scattering radiation in accordance with Rayleigh’s phase
function, we must distinguish three terms in the radiation field: an azimuth independent
term, a term proportional to cos (¢ — o), and a term proportional to cos 2(¢ — ¢o)
(cf. Paper IX, eq. [152]). Considering, first, the azimuth independent term, we have the
solution (cf. Papers III and IX, Sec. II)

s pl (3 — u2) ~ Lot 4 ) +L
I;= [ — i 5+ Lo (t+n, n
‘2‘3 e T

fye“‘r/l‘o ]

—Ay_rr T
TG 'u’)‘l‘f"m/#o
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where the ks (e = £1,...., 2 ¥ 1 and k;a = —k_,) are the (2n — 2) distinct
nonvanishing roots of the characteristic equation ;

1_3 N aj(s_p'?i)

358w (174)
8 1= B2
vy =H (po) H (— po) , (173)
and the rest of the symbols have their usual meanings.
In terms of the functions
L.
3 — u? - —ud) — 176
S () = ( #>E_Zn+11-—ka Lop+L,+ (3 u>1_“/#0 (176)
and
T =Gow) 3 L L b ALt G 2 ()
# H Hn+11+ka PR RS T+ u/m’

the boundary conditions determining the constants of integration and the equations
governing the reflected and the transmitted radiations can be written in the following
forms:

S (w) =T (p)) =0 (i=1,....,m), (178)
I(0,p) =ZF[S(—n) —e T (W], (179)

and
I(ri,—p) = FF[T(—p) —e S (n)]. (180)

By virtue of the boundary conditions (eq. [178]), we can write
1 P (u) 1

S (w) =u§-...u§W(u) 1__#/#08(11) (181)
an
T =t P Ly, (182)

pZoo o w2W (u) T+u/we

where s(u) and ¢(u) are polynomials of degree z in u .
From equations (175)—(177), (181), and (182), it now follows that

| s (b)) = (3= ud) P(—ny) (183)
and
t(—ny) = (3—pd) e7n/moP () . (184)

And again from equations (176), (177), (181), and (182) we have

1\, 1 P(+1/k) 1
(3 kg)L"“u;....ug W/ k) 1= 1 ° /5 (185)

(a==%1,....,202F1)
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1 1 P(—=1/k) 1
3——-) La -ka"l: I3 _1 ka.
( k2 ¢ p2o w2 Wa(1/ka) 1—1/kapo ( /ke) 1 (186)
, (a=4+1,....,+nF1).)
We therefore have the 2x» — 2 relations
P(—1/kd) —
= kaTI_—~ - = DY .
S(l/kﬂ-) € P(+1/ka) t( 1/ka.) (a __tl,- 7in+1) (187)

Since, however, s(u) and #(u) are polynomials of degree # in u, we conclude, in accord-
ance with theorems 1 and 2 (§4), that s(x) and #(u) must be expre551ble in the forms
(cf. egs. [144] and [145))

s(u) = (po+ qon) Co (1) + (p1— q1u) C1 (1) (188)
and

t(u) = (p1+ qin) Co (w) + (po— gom) C1 (1), (189)

where po, go, p1, and ¢ are certain constants to be determined and Co(r) and Ci(u)

are polynomials of degree # — 1 in u defined in the manner of equations (100) and (101)

in terms of the (» — 1) positive nonvanishing roots of the equation (174) (see n. 12).
From equations (183), (184), (188), and (189) we now have

(P04 qoro) Co (mo) + (p1— qato) Ca (o) = (3 — p) P (— po) (190)
and
(Po-l— 40#0) Cy(—po) + (P1 - qwo) Co(— ,uo) = (3— H%) e_n/mP (,U-o) . (191)

Solving these equations for po + qopo and p; — quuo, we have

3—#0

T =T Gy £ #ICH(— ko) — TP (u)Cin)] - (192)

po+ Qoo =

and

_ 3 — ui e _p(— _
Pi— Qipo= [Cg(O) —Cf(O)]W(p«O) [e=m/mP (po)Co(po) —P(— po)C1(— po)]1. (193)

Next, combining equations (179)—(182), (188), and (189), we find, after some re-
arranging of the terms, that the reflected and the transmitted intensities can be ex-
pressed in the forms

F 1
B2 pEW ()

1
— (p1— quuo) [e /P (u) Co (1) —P (— ) C1(— )]
— o (mo+w)[P(—u)Co(—p) — e /mP (u)Cy(u)]

— @ (woF W [P () Co () —P (=@ Ci (=W}

I(O, .U) = % { (Po+ qwo) [P(— M) Co (_IJ) — e~ n/vP (IJ) C, (#)]

(1
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and
F 1
TR S TR W W)

— (po+ qopo) [e77/BP (u) Co (p) — P (— p)Ci(— w) ]
+ g1 (uo— ) [P (— ) Co(—p) — e m/wP (u) Cy (u) ]

g0 (o — ) [P (1) Co () —P (= ) Ca (= )]} 2.

{(Pl— qpo) [P (—p)Co(—p) — e /P (p) Cy (1))

L (195)

It remains to determine the constants ¢o and ¢;.
10. The determination of the constants qo and qi.—Putting u = ++/3, respectively,
—4/3, in equations (176), (177), (181), and (182) we have

I PNV s(EV3) _ ooy s L

Wioow2 W(V3) 1T /3 (196)
M F \/3Lo+L,)
e ) L(GE V/3)
1 P(kv3) t(£V3)
pEowE W(V3) 1+ V3 =T(£V3) L (197)

M= (it V3 Lo+ )
The foregoing equations can be simplified by using the relation (Paper XIV, eq. [267])
1 P(+V3)P(—+V3)

W2 W (V/3) = -8 (198)
We find ‘
Ko
and
R ESvS 1o 1//2)) = (r1%+ v/3) Lo+Ls. (200)
Mo

From equations (199) and (200) we obtain the following set of equations:

8 s(EV3) H(FAVIT _
1;_\/_3 [P($ \V3)  P(+ \/3)]—L07’1, (201)
Mo
8 _1(++3) 8 (=3
Mo o
and s »
8 s(=wv3 8  s(++V3)
_1+;/_3P(+x/3)+1—_\§p(_\/3)—2\/3Lo. (203)
Mo o
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Now, eliminating L, from equations (201)—(203), we obtain the equations

(1+ s(+ V3) (= /3) (1 s(—\/S) 1(+ +/3)
P(—-\/S) <P+\/3) P(+\/3) TP(=/3)

] (204)

s(4/3) t(—\/s) S(—\/3) {4 V/3)
2v3 <1+ v P(+v3> +(1 lsvs —re vl

s(+ \/3) \/3) s(— V3, t(+V3)
5 (1 l§

el

(= /3) P<+ 73] P<+ VaTrvalip @

V3 3

=_2‘<1—;§)L07'1.
These equations can be further reduced to the forms
(V34+u) s (+V3IHP(+V3) —t(—=VIHP(—V3I)] } (206)

+ (\/3—uo)[8(— V3IIP(—V3) —t(+V3IP(+VIH]I=0
and
2V3{(V34p) [s(+VIHP(HV3I)—t(— V3IP(— V3)]— (V3—p0)
X[s(—+V3)P(— \/3)—t(+\/3)P(+\/3)]}=71{(\/3+no)[8(+\/3)1’(+\/3)l

(= V3)P(— V3) 1+ (V3= o) [s(— VIP(— V3 +t(+ VIP(+VI]}. )

We now have to substitute for s(++/3) and #(4+/3) in equations (206) and (207)
according to equations (188) and (189). For this purpose, it is convenient to write
s(£+/3) and ¢{(++/3) in the forms

s(F V3) = (po+ qowo) Co (£ V3) + (p1— quuo) C1 (£ V' 3) } (208)

; T (V3TF o) [ £ qCo (£ V3) FqCi(+ V3]
an

t(+ V3) = (po+ qoro) C1 (£ V'3) + (p1— qupo) Co (£ V'3) } (200)
+ (\/3iuo)[$40C1(i \/3) iQ1co(i \/3)]

Substituting for s(++/3) and #(++/3) from equations (208) and (209) in equations
(206) and (207), we find, after some lengthy but straightforward reductions, that

(o~ gono) (V' 3wi+wepe) + (p1— i) (— V/ 3wy wap0) } (210)

+ (3— o) wz (go— g1) =0
and

243§ (po+ qomo) (V' 3we +wipo) + (p1— qimo) (V 3ws — wipo)
+ B— ) w (go+ g1 } = 71{ (Po+ qoro) (V/ 3wy +wsu0) L (211)
F (pr— quo) (v 3ws—wee) + (B — D) ws (go+ 0 }, )
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where, for the sake of brevity, we have written
n=Co(V'3)P(V3)—=C1(V3)P(V3)+Co(— V3)P(— /3)—Ci(— V3)P(— V3),
12 =Co(V3)P(V3)+C1(V3)P(V3)—Co(— V3)P(— V3)=Ci(= V3I)P(—V3), 1 212)
13=Co(V/3)P(V'3) =C1(V'3)P(V'3) =Co(— V' 3)P(— V' 3)+Ci(— V3 P(— V3), J

15=Co(V/3)P(V/3)+C1(V3)P(V/3)+Co(— v/3)P(— V/3)+Ci(— V3)P(— V/3).

Equations (210) and (211) can be re-written in the forms

(3= ud) (o= 0 + (ot gomo) (ot /32
- ™ (213)
w1 _
+ (91— quwo) (= V32 =0
and v
243
(3= ) (@0 @) + (po-t qomo) | V30 |
243 (219
_ WeT1 — wWe _
+ (p1— qimo) [\/3 wrs— 2 3w, Mo] =0.
Solving these equations for go and ¢i, we have
4 (3—#(2)) go= — [(c1+ o) (Po+ qomo) + c2 (p1— q1n0) ] (215)
an
(3— ;u%) g1= — [c2 (po+ qoro) + (c1— po) (p1— qimo) 1, (216)
where V3 V3
_ WiT1— 2 W | Wi
‘= 2 [w371—2 \/37,01 'U.’)z] (217)
and v v
_ VI3 [wari— 2V 3w, w
2= 2 [71)37‘1_2\/371)1—-71)2]' (218)

Since (po + qopmo) and (p1 — quuo) have already been determined (egs. [192] and {193]),
the foregoing equations complete the formal solution for S(u) and T'(u).

11. The solution for the reflected and the transmitted radiations—Now, substituting
for (po+ qoro), (p1 — qura), ¢o, and ¢1 according to equatians (192), (193), (215), and
(216) in equations (194) and (195) and introducing the functions X(x) and ¥ (u), de-
fined as in equations (125) and (126), we have _

100, 1) = HF 2 (3= b)) X (1) X (wo) = ¥ () ¥ (o)]
+ (o4 1) X () [ (14 po) X (o) + ¢V (o] [ (219
4+ (mo+w) ¥V () [caX (mo) + (c1— o) ¥ (po)1}
and

I(r,—p) =g5F {B=u) [X (1) ¥ (k) — ¥V () X (mo)]
— (wo— 1) X () [2X (o) + (c1— po) ¥ (uo)] [ (220)

— (mo—m) YV (W[ (ciFpo) X (o) +c2¥ (o)1}

Mo — p
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After some rearranging, equations (219) and (220) can be brought to the forms

I (0, 1) = F o {X© () XO (o) [3 4 61 (mo+ ) + pusol
— YO (1) YO (40) [3— 1 (o+ 1) +pua] [ (221

4+ co (po+ ) [ XO (1) YO (uo) + YO () XO© (o) ]}
and :

FO (11, 1) = F (X0 () YO (1) [3 = 62 (o= 1) = puso]
— VO (1) XO (o) [3+ ¢1 (o — 1) — o] { (222)
— Ca (po— ) [X @ (1) X (o) + YO (1) ¥ (no)1}.

In equations (221) and (222) we have inserted a superscript “0’’ with the various func-
tions to emphasize the fact that these equations represent only the solutions for the
azimuth independent terms in the reflected and the transmitted intensities.

To complete the solution we need to find the remaining terms in the reflected and the
transmitted intensities which are proportional to cos(¢ — ¢o) and cos 2(¢ — @q).
The determination of these terms presents no difficulty, since the equations satisfied
by I®(7, u) and I®(r, u) (cf. Paper IX, eqgs. [154] and [155]) are of the standard form
considered in Paper IX, § 4, and the analysis of Section I applies without any modifica-
tions. We can, therefore, write (cf. Paper IX, egs. [190] and [194])

IM (0, p) = —%Fwo(l‘”z)”l“”g)%m_ﬁﬁ
X [X® (1) XO (o) — YO () YO (o)1,
 (223)
IO (ry,— p) = + $Fpp, (1—p2) 3 (1 —p2) 4 22
Mo — M
X[ XD (p) YO (o) — Y@ (u) XD (po) ],
and
I® 0, p) =ZF(1—p) (1 —pd) “0:0_# 1
XIX® (u) XO (g)) — VO (1) YO ()],
, N (224)
IO (r1, = ) = F (1= ) (1= u)
XX () YO (u)) — VO () XO ()],

where X, Y and X® ¥ are defined in terms of the characteristic functions
T (p) =3p2(1—u?) and ¥ (p) = F (1—p?)?2, (223)

In terms of the foregoing solutions (eqs. [221]-[224]), the reflected and the transmitted
intensities are given by

I (O: My @5 Ho, 500) = [ (07 IJ') +I(1) (05 .“') Cos (ﬂa_ ‘PO) } (226)
+ I® (0, u) cos 2 (¢ — ¢o)
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and
I(r1,=u, @; o, po) =IO (71,—u)+ 1M (71,—p) cos (¢— o)
(227)

+I? (71,—p) cos 2(o—¢o) -

IV. SCATTERING IN ACCORDANCE WITH THE PHASE FUNCTION A(1 + x cos ©)

12. The azimuth independent term.—In the problem of diffuse reflection and transmis-

~ sion by a plane-parallel atmosphere scattering radiation in accordance with the phase

function A\ (1 + xcos ©) A\ < 1,1 2 x 2 —1), we must distinguish between two terms
in the radiation field: an azimuth independent term and a term proportional to cos
(¢ — o) (cf. Paper IX, eq. [6]). Considering, first, the azimuth independent term, we

- can express the reflected and the transmitted radiations in terms of the functions

+n
S (w) =2L“[1+x(1_)‘) ¢/ kal 4y [14x(1—=27) ppol

228
2 T—Fu T— 5/ (228)
- and
+n
X La[l_x(]._x)‘u/ka]
T (p) = ¢ Fams
; 1A kap : S ] (229)
1—2x(1—N\) uuo
_"'1/ [
trer e )
- wherethe s (a = +1,. ..., tnand k. = —k_a) are the 2% roots of the characteristic
equation
~ai[1 4 (1= N) uj)
D e (230)
=1 7
v=H (po) H (— po) , (231)
. and the rest of the symbols have their usual meanings. We have |
I(0,p) =3NF[S(—p) — e /T (u)] (232)
and '
I(r,— ) =iNF[T(—p) —e S (p)]. (233)
Moreover, the boundary conditions at 7 = 0 and 7 = 7, require that
S (u) =T (p) =0 (i=1,....,n). (234)
In view of these boundary conditions, we can write
1 P(u) 1
S = 235
(1) poo wW(0) 1_“/#03(;;) (233)
and
1 P 1
T (w) = W 108 (236)

pioooopwEW () T+ p/po

where s(u) and #(u) are polynomials of degree # + 1 in u.
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From equations (228), (229), (231), (235), and (236) it follows that

s (o) = [14=2 (1 —N) po] P (— po) (237)
and
t(—po) = [14x (1 =N\) uo] /P (uo) . (238)
And again, from equations (228), (229), (235), and (236), we have
I 1 P(1/ka) 1 s (1/ka) }
R W (1/k) 1= 1 kape 1+ x (1 —N) /R2 L (239)
(a=+1,....,+n) J
and
I e—kar = 1 P(—1/ka) 1 t(—1/ka)
¢ w2 Wa(1 k) 1=1/kapo 1+2(1—N) /2 L (240)
(a=i1,....,in).J
We therefore have the 2# relations
_ - P(—l/ka) _ _
S(l/ka)—ekalmt( 1/ka) (a—il,....,in).(Z‘Il)

However, since s(u) and #(u) are polynomials of degree (# +1) in p, we conclude, in
accordance with theorems 1 and 2 (§ 4), that s(u) and {(u) must be expressible in the

forms
s(p) = (po+ qow) Co (u) + (p1— q1u) C1 (1) (242)
() = (p1+ q1w) Co (1) + (po— qow) C1 (1), (243)

and

where po, o, $1, and ¢; are certain constants and Co(u) and Ci(un) are defined as in equa-
tions (50), (100), and (101) in terms of the # positive roots of equation (230).
From equations (237), (238), (242), and (243) it now follows that

14+ a(1—N g

po+ qopo = [C2(0) —C2(0)TW (&)

[P(— 1o)Co(— po) — e™m/oP (po)Crpo) | (244)

and

T4 a(1—N)ps

P1— Qimo= [Cg(O) "Cf(())]W(#o) [ e /koP (1) Co (o) — P(— po)C1(— po) 1. (245)

It remains to determine the constants ¢o and ¢.
13. The determination of the constants qo and q.—Putting p = 0 in equations (228),
(229), (235), and (236), we obtain

SO = S rty=—"D" () (246)
=~ By - M
and
T (0) = iLaebkaTl—i——'ye_ﬁ/ﬂo =(——1)n t (0) . (247)
ML eenn i

a=—n
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Now, according to equation (239),

L P(1/ka) s(1/ka)
a;f“‘pl ;W /5 A =1/ ) (1 Fx (A=) /]

(248)
B 2 BDP (1/ka) s (1/ka)
pE.. 2W(uo) W, (1/k)[1 4+« (1—N) /k2]

a=—n

W, ()uO) .

 To evaluate the sum on the right-hand side, we introduce the function

_ kP (1/ko) s (1/ k)
TEED> W /By +a (-0 /&) "2 (249)

a=—n

" and express ZL. in terms of it. Thus

S po [ (po)
ZLa__#f----#ZW(uo)' (250)

As defined in equation (249), f(z) is a polynomial of degree (2= — 1) in z and takes

the values
kP (1/ka) s (1/ka) (251)
T+x(1—=N) /k?
forz=1/ks (a = +1,...., +n). In other words,
z[14+x(1—=N) 22 f(2) —P(2)s(z) =0 for z=1/ks
} (252)
and a=+1,....,+n.

Hence there must exist a relation of the form
z[14+x(1—N) 22 f(2) =P(3) s(z) +W (3)[Az2+Bz+ D] (253)

where 4, B, and D are certain constants to be determined.
Putting z = 0 in equation (253), we determine at once that

D=—(—=1)"....uns(0). (254)
Next, putting s = +14/4/2(1 — \) in equation (253), we find
P(£i¢) s(£i0) +W (@) [— Ag?+iBg+ D] =0, (2595)

- where, for the sake of brevity, we have written
' 1

(= ai—wn (256)
Solving equations (255) for 4 and B, we find
D 1 . ) _ .
A=F+W[P(ms(m +P(—if) s (—if)] (257)
and
b= 2§W( gy WP G0 s GE) =P (—if) s (—iD)]. (258)
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Returning to equation (253) and setting 2 = uo and remembering that
Ko
5 (1) =<1+§.—2)P(—#0) (259)
we obtain

W (u0)
po [1+2 (1 =) p2]

£ (o) =%P<MO)P<— wo) + (413 +Buo+D). (260)

Using the foregoing expression for f(uo) in equation (250) and inserting for 4, B, and D
their values given by equations (254), (257), and (258), we find, after some reductions,
that

+n — n
3 L=t (o)
Bi-eeo o

a=—n

2 (1—~N) uo . . . . (261)
T AN @G o ) sEHFP (=) s (=ip) ]

+ig {PGEE) s (i) —P(—ig) s(—if) {1

Similarly,
~n _— n
YV S o L
e M1 .- My
% (1—=N) o (262)

+ [— o {PEOILGEE) +P(—i8) ¢(—if) }

2p} - w12 (T=N) w1 GE)
Fif {PEO LGS —P(—if) t(—i) 1]

Equations (261) and (262) evaluate the required sums.
According to equations (246), (247), (261), and (262), we clearly have

(o +i) P (i) s 18) + (po— i) P(—if) s(—if) =0 (263)

(o= PEDtEE) + (Ro+i) P(—if) t(—if) =0. (264)

We now have to substitute for s(+4¢) and #(£14¢) in equations (263) and (264)
according to equations (242) and (243). For this purpose it is convenient to write
s(+4¢) and #(£1¢) in the forms

s(F18) = (po+ qoro) Co (£18) + (p1— qird) C1(£120) } (265)
F (o F 0 [ — qoCo (Fi8) +q:1C1 (£19)]

and

and
F(Ei0) = (po+ qomo) C1 (£ 18) + (p1— qrro) Co (F38) } (266)
) + (o) [— quCr (£458) 4+ uCo (+i8)].

Substituting from equations (265) and (266) in équations (263) and (264), we find,
after some minor reductions, that

(uo+ §2) (goao — gra1) = (po—+ qoro) (aomo =+ Bo)

} (267)
4 (p1— qipo) (a1pmo +B18)
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and

(o + 5'2) (goar— qia0) = (Po+ qomo) (arpo— B1§) } (268)
+ (p1— qiro) (aoko — Bo ) ,

where

ao=P (i) Co(i¢) +P(—if)Co(—if),
a1 =P (E{)Ci(G§) +P(—if)Ci(—ig),
Bo=i[PGE)CoGE) —P(—if)Co(—i0) ],
31=i[1>a§)cla§)-—1>c—i§)cl(—¢§)]-J

(269)

Defined in this manner, ao, a1, 8o, and B3; are all real constants.
Solving equations (267) and (268) for go and ¢1, we find

o (1=N)
PEIFrd N

[ (e1+ mo) (Po+ goro) =+ c2 (p1— qipo) ] (270)

and
1= 1 _i_xx(:l___)\))\) w2 [ca (po+ qomo) + (¢1— mo) (p1— qumo) ], (271)
where
_ 1 aofBo + a1f1
Cl—\/x(l—k)_ al—a? (272),
and
1 a0l31+a1l30. (273)

62=\/x_(1—)\) aZ— q?

0 1

With this, the determination of the constants is completed.

14. The solutions for the reflected and the transmitted radiations.—It is apparent that for
s(u) and #(u) given by equations (242) and (243), the equations governing the angular
distributions of the reflected and the transmitted radiations can be reduced to the forms

- (194) and (195) with N\/4 replacing “3/32.” With the expressions for (po+ gouo),
(1 — qro), qo, and qu given by equations (244), (245), (270), and (271), we therefore

have
I(0, ) =2AF{[1+x (1 =N ul[X (1) X (p)) — ¥ (1) ¥ ()]
—2 (1 =N (bo+p) X (W (1t m) X (m) + 2V (ro)] | (274)
—x (1 =N (mo+ ) V(@ [62X (o) + (c1— po) ¥ (o) ]} —n J
. Mo+
~an

CI(r,— ) =INF{[14a(1—\) 21X (0) ¥ () — ¥ (1) X (o) ]

F 2 (1 =N (po—w) X (p) [c2X (no) + (c1—po) ¥ (ra)] L (275)

Fo (1= (o= ) ¥ (0 [ (er i) X (o) + eV ()]} 2
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After some rearranging, equations (274) and (275) can be brought to the forms

TO 0, ) =INF{XO(u) XO (o) [1 =2 (1—=N) ¢1 (potn) —2(1—=N) pmuol
— VO (u) VO (o) [1+x (1 —=N) c1(pot ) — 2 (1—=N) ppo]

=% (1=N) ¢z (pot ) [XO (1) ¥ (o) + VO () XO (o) 1}

(276)
Mo

Kot 1 )

and
IO (71,—p) =INF{ X O (u) YO (uo) [142(1—=N) ¢1(mo—p) +x (1 —=N) ppol
— VO () XO (uo) [1—2(1—N) c1(po— ) +2 (1 —N\) puol (277)

3 (10 €a (o= ) [X O () XO (o) F T () YO ()] 2|

In equations (276) and (277) we have inserted a superscript “0” to the various functions
to emphasize the fact that these equations represent only the solutions for the azimuth
independent terms in the reflected and the transmitted radiations.

To complete the solution we must find the remaining term in the reflected and the
transmitted intensities which is proportional to cos (¢ — ¢o). The determination of
this term presents no difficulty, since the equation satisfied by IV(r, u) (Paper IX,
eq. [8]) is of the form for which the analysis of Section I is applicable without modifi-
cations. We therefore have

M (0, u) =LaNF(1— )t (1 —ptF
IM (0, w) =5xNF (1 —p) ¥ (1 —p) e (278)

X [XD (p) XD (o) — VO () YO (po) ]
and

IO (7, — p) = 22NF (1 —p2)d (1 — )} 20
Mo — M (279)

X [XO (1) YO (go) — YD (1) XO (o) ], )

where X®(u) and Y@ (u) are defined in terms of the characteristic function
T (p) =3xh (1 —u?). . (280)

In terms of the foregoing solution, the reflected and the transmitted intensities are
given by . : 7
10, i, ¢; po, @o) = [(oz (0, w) + 7MW (0, u) cos (¢ — ¢o) (281)
and

I(71,— 1y @5 oy o) =IO (71, — u) +IM (71,— p) cos (¢ — o) . (282)

V. RAYLEIGH SCATTERING

15. The formulation of the problem.—In a proper treatment of problems involving
multiple scattering we should take into account the fact that after the first scattering
even natural light becomes partially polarized. In formulating the equations of transfer
we must, therefore, include the polarization characteristics of the radiation and allow
for the dependence of the scattered light on these characteristics. As we have shown in
the earlier papers'® of this series, this can best be accomplished by considering the in-

13 See esp. Papers XI, XIIT, XIV, and XV (4. J., 104, 110, 1946; 105, 151, 424, 1947).
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tensities I; and I, in two directions at right angles to each other in the plane of the
electric and the magnetic vectors and the further quantities

U= (I;—1,)tan 2% and V= (I;,—1,)sec2xtan 28, (283)

where x denotes the inclination of the plane of polarization to the direction to which /
refers and —#/2 < B £ -+ /2 is an angle whose tangent is equal to the ratio of the
axes of the ellipse which characterizes the state of polarization. (The sign of 8 depends
on whether the polarization is right-handed or left-handed.)

For the case of Rayleigh scattering, the equations of transfer for I;, I,,** U, and V
have been explicitly formulated”® and exactly solved!® for transfer problems in semi-
infinite plane-parallel atmospheres. In this Section we shall be concerned with the
solutions of these same equations for the problem of diffuse reflection and transmission
by a plane-parallel atmosphere of finite optical thickness.

16. The solution for V and the azimuth dependent terms.—Considering the general
case of incidence of a parallel beam of partially elliptically polarized light on a plane-
parallel atmosphere in the direction (— uo, ¢o), we may recall that the equations of trans-
fer break up into seven independent sets of equations'” when the intensities I3, I,, U,
and V are expressed in the forms'®

I (7 py @) =IO (7, w) + 1PV (7, ) cos (o — ) + I{71 (7, w) sin (¢ — @)

) } (284)
+IP (1, w)cos 2 (p— @) + 17D (7, w)sin 2 (¢~ @),

I(r,u,0) =IO, w) +I?(r, u)cos 2(p— @) + 1D (7, wsin 2(e — @), (285)

U(r,u,0) =UWN (1, wsin (¢ — o) +UCY (1, p) cos (¢ — ¢o) } 286)
+U® (7, u)sin 2 (¢ — @o) + U (7, u)cos 2 (¢ — 00) ,

and
V(t,p,0) =VO(r,u) +VO (7, p)cos (¢ — ¢o) - (287)

Of the seven systems of equations which arise in this manner, the only one which re-
quires any detailed consideration is the first, which governs the azimuth independent
terms, 119 (r, u) and I{9(r, u). The other systems present no difficulties. Thus, Systems
II-V (Paper XIII, pp. 154-55) governing the various azimuth dependent terms in
I, I,, and U admit the first integrals

IM(r,w) =pUO (r,u); IV (r,u) = —pUCED (1, 0), (288)
4O (T) P") = - H2I$2) (T} l-‘) = +l/~LU(2) (T) /J-) )
and l ’ } (289)
I (ry p) = =IO (1, 0) = —3p U (7, 1) .

Moreover, the resulting equations for UW (7, w), UV(r, u), I (7, u), and I:"¥ (7, u)
are all such that the analysis of Section I applies without any modifications. Conse-

14 The symbols / and 7 now refer to the directions in the meridian plane and at right angles to it,
respectively.

15 See Papers X1 (§ 5), XIII (§ 2), XIV (§ 2), and XV (eq. [74]).

16 Cf. Paper XVI (4. J., 105, 425, 1947), where the functions and constants representing the exact
solutions are tabulated.

17 Paper X111, Systems I-V (pp. 153-54) and Paper XV, eqs. (78) and (79).
18 Paper XIII, egs. (4)—(6) and Paper XV, eq. (77).-
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quently, we can write down at once the solutions for the corresponding reflected and
transmitted intensities. We have (cf. Paper XIII, egs. [47]-{50}])

IN0, ) = +pUD(0, b

(290)
= — §F pp (1 — p)3(1 — pXO (1) XD () — YO () I’“’(#O)]le}o_#,
ID(0, p) = —pUEH(0, p)
=—3 1—ud)i(1 — )i X® )] — v (1) Ho (290
UL — )31 — p XD (u) XD (p) — YO (p) YO ()] ,
0 kot u
I (0, ) = —pI® (0, ) = +3pU® (0, p)
=8 (Fu2—F) p2[X® (u) X® () — VO () ¥O () ] L2 @92
16 A1) T 0 0 ”0+"“',
ICD (0, p) = — p2IED (0, p) = —3pUCD (0, p)
= 8 Uopo [XD () XD (po) — ¥ () ¥O (o) ] — (299
16 pot u’
Igl)(le" W) = —“U(l)(TU—lJ)
2904
= 3F up, (1 — u2)3 (1 — pd) X O () TO () — T (1) XD () ]—2 (299
47 0 0 0 0 ”0—#’
KD (r,—w = +pUN(r,— )
2935
= 3U,u(1 — p)(1 — w2 XD () TO () — O (1) XO () ]—2 (295
8™ 0 0 e — !
IO (r,—pw) = —w2I® (r,—n) = —FpUP (7, —u)
=& Fu2—F) w2 [XO (1) YO (u) — YO () XO () ]2 220
=S Fpl—F)u B Ko K Bol 1=
and
IO (1, —p) = = w2l (r,— ) = + 50002 (7, — p) L
=2 U 20 [X® (0) TO (1) — VO (u) XO (n) ] —2 (297)
- 16 DIJ' #‘0 [ (y' (IJ'O (# l‘LO #0_ #1 J

where X® (), Y®(u), and X® (), Y@ (u), are defined as in equations (50), (100), (101),
(125), and (126) in terms of the characteristic functions

YO (p) =3 (1—u?) (14247 and T (p) =3 (14+p)2, (298)

respectively.
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Similarly, the equations for V@ (7, u) and V®(r, ) also do not require any special
consideration. The solutions for the reflected and the transmitted intensities are of
standard form, and we have

VO (0, 4) = —32Voupo [ Xy (1) Xy (o) — ¥y (1) ¥y (o) ] m‘fﬁﬂ, (299)

VW0, u =+3V,0—pdid —pdHX (W)X (p) — ¥V (1) Y,(#U)]L, (300)
o+ 1

v (7'17 - lJ') = % VO/“LF'O [Xv (P-) Yv (I-/-O) - Y'p (,u.) Xq) ([lo) ] ”OI_L_O " , (301)

and

VO (r, = =V, (L= w3 (L= kMY, () V() = ¥, (0 X, () |2 (302)

where X, (1), V(1) and X,(u), V,(u) are defined in terms of the characteristic functions

Y, (1) =% (1—u?) and ¥, () =5ut. (303)

Finally, it may be noted that in equations (290)-(297) and (299)-(302) «Fi, «F,,
7U,, and 7V represent the fluxes in the four components of the incident beam.

17. The azimuth independent terms proportional to F.—In the preceding section we
have given the solutions for V' and the various azimuth dependent terms in the ex-
pansions (eqs. [284]-{286]) for I;, I,, and U. The azimuth independent terms, I{®
and I, remain to be considered.

Now in the equations (Paper XIII, System I) governing I{? and I®, the inhomo-
geneous parts consist of two terms proportional, respectively, to F; and F,. The solu-
tions for {® and I{® can therefore be expressed in the forms

(304)

IO (7, w) =1 (7, w) + IO (7, 1)
and }

I,(.O‘ (7'7 #) = If.(;) (1, /-‘) +I,(.(,).) (7'7 l-‘-) )

where I{ and I{) are proportional to F; and 7{® and I?’ are proportional to F,. Con-
sidering, first, the terms proportional to F;, we can express the corresponding terms in
the reflected and the transmitted intensities in the following forms:

Igg) (0: ,U') =% [S”(_/J) - e_Tl/p'T” (/J')]FZ1

IP(rp—w) =& [T, (=) — e S, (W) ] F,,
} (305)

I 0, w) =5 IS, (= w) — e T, (W]F,,
and

IO (rp—w =& T, (—w —emS, (W ]F,,
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where (cf. Paper XIII, eqs. [12] and [13])

+‘n_‘1 L
> = -Lu+tL l
B=—n+1 (306)

+a;nMa(1+ka#) +2(1—y>—~“—/—p;

S (u) (1—p?)

Ty (w) = (1— ) 2 T Lo (it w) + 1,

B——n-l—l

) (307)
Te 7/p
Ma. 1 - ka —'kaT] 2 1 -_— 2y
+u;n ( w eten 2 “)14‘#/#0’
+n 2
— Ma (ka - 1)
Sy (u) = — Lou +Ln_a;n-T_:kTr’ (308)
and
I Ma(ki_ 1) 3_—160.7-I
Ty (1) =Lo (T14w) +Ln—a; " (309)
In the foregoing equations the «kg’s (8= +£1,...., +n F 1) and ks (a = *1,
, =n) are the distinct nonvanishing roots of the characteristic equations
_ 3 a; (1 - lJ’J)
1—2 L (310)
=1
and
_3ai(l— N%)
=32 T (311)
=1
respectively, and
1 P P(—
['=H;(po) Hy(— po) =—; 5 (o) P #0), (312)
B pl Q (o)
+n—1 n—1
Q(u) = H (1 — kpu) = H (1 — kgu®) , (313)
B=—n+1 B=1

and the rest of the symbols have their usual meanings.
The boundary conditions at 7 = 0 and 7 = 7 require that

S”(}L,;) =Tzz(#i) =Srz(ll-i) =Trl(“'i) =0 (i=1 g oo ,n). (314)
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By virtue of these boundary conditions we can write
1 P (p) 1

Su (w) =#f----l~/«39(ﬂ') 1"‘#/#0 su (1) 5 (315)
_ 1 P(w 1
Ty (w) _“f""”’fbg(”) T¥u &, f (1), (316)
_ 1 P (u)
Srl (/4) _Nf----ﬂiw(ﬂ) srl(#); (317)
and : P )
_ M
Trl(/") _#f'o--ﬂZW(#) trl(/")’ (318)

where s;(u) and #;(u) are polynomials of degree # in u and snu(u) and #.4(u) are poly-
nomials of degree (z 41) in pu.
From equations (305), (306), (312), (315), and (316) it now follows that

suu) =2(1— @ P(—p) and  4,(—p) =2 (1= ud) e~nmP () . (319)

And again from equations (305), (306), (315), and (316) we have

1 1 P(1/«kg) 1
1——)L - 1
( )T B (1 k) 11/ ke $u (1/x0) (320)
B==x1,....,x0F1)
and
1 1 P(—1/«p) 1
1——>L —kET) = tu(—1
( ) pioooowk Qe (1/kg) 1—1/reno n(= 1w (321)
(ﬁ:il,,in?l).
We therefore have (2n — 2) relations of the form
P(—1 —
su(l/kp) = eB7s (= 1/x0) tu (— 1/ ke) B=x1,....,2nF1). (322)

P(+1/«xs)

However, since su(u) and #u(u) are polynomials of degree » in u, we conclude in accord-
ance with theorems 1 and 2 (§ 4) that (cf. egs. [144] and [145])

su () = @+ xom) Co, 1 (1) + (@1 — xap) C1, 1 (8) (323)
t (1) = @1+ xam) Co, 1 (1) + (@o— xom) Cr, 1 (1) (324)

where @, @1, X0, and x; are constants and Cy,; and Cy,; are polynomials of degree (# — 1)
in u defined in the manner of equations (50), (100), (101), (125), and (126) in terms of
the roots kg (8= 1,....,n — 1) of equation (310).

From equations (319), (323), and (324) we now obtain .

and

ok xopo = 2 (1— up) L
CTXROTNCT(0) —C2 (D) T2 () (325)

X [P(— #0) Co. z(— ,uo) — e"Ti/MP (IJo) Ci, z(l-to)] J
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and

= — _ 2 (1— up)
FTXRETCT 0 = ¢, (0) 19 (ko) (326)

X [e771/mP (o) Co, 1(10) — P (— po) C1, 1(— mo) ] -

Considering, next, equations (308), (309), (317), and (318), we have

— 1 P(1/k)
Ma—_"‘f“'-“ﬁWa(l/ka)(kZ—-l) sr1 (1/ka) (327)

and
1 P(—1/k)

ket = —
Mec W R (k) (=1

) b (—1/ka) . (328)

We therefore have 2# relations of the form

P(—1/k)

S (1/ka) = e iy

b (— 1/ ka) (a=x1,....,&£n). (329)

It will be recalled that s.(u) and ¢:(u) are polynomials of degree (z + 1) in pu.
However, it can be shown that s, (u) 4 #.4(u) is only of degree #; for, according to equa-
tions (308), (309), (317), and (318), we have

_—1.—;;}:1) () $p0(u) =W (1) Sy (1)

By } (330)
= (=" ... B[ — L L+ ... ]

and

. 1 .
——— P (W)t () =W (0) Ty (1)
#f----#f (k) try ( (1 1 (m }(331)
= (—1"2.... k2[+ L'+ (Lyr,+L) w2 +....].

And it is apparent from these equations that the coefficients of u**! in s,(y) and ¢.(u)
are of opposite signs. We may therefore write

Sp(u) = (potaw) Co, , (0) + (pr+au)Cr,» (1) (332)

and

by () = (p1—am) Co, » (1) + (po—aw) Cy, , (1), (333)

where po, p1, and @ are constants and Co, . and Cy, , are defined in terms of the roots of
equation (311).
With the forms (332) and (333) for s.;(x) and #;(1) we can readily verify that

P(w) s, (0) =+ale™ 4 cm]ur+t+ g a[cf D+ ]

= (334)
+2ye8,+ Plcl(’f),—(z F‘i) alef™,+ ¢, %u“’”—}-. e
=1
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and
P (), (w) = — a Lo, + o) w13 — a [ef D+ cfe0)

n (335)
360+ 2y A (o i) alef, 4 e fum b
i=1

where ¢, {7} and ¢V, ¢{*7? are the coefficients of the highest and the next highest
powers of u in Cy;» and Cy, ,.

From a comparison of equations (330) and (331) and (334) and (335) we now con-
clude that

- n— 1 n n L"
- E Kit c(ﬂ) + c(n) %C((ln ,1)+ 61(' TI)+E[p°C‘(”)T+p161(')’] %= " Lo (336)

and

- — 1 . ; L,
- 2 wit c(") + c(”) ; Cé? r1)+ C%, rl)—z [p16(§,),.+15061(,)7] ; =B+ T,. (337)

From equations (336) and (337) we readily find that

a=Q (po—pv, (338)
where
TN
Q= 0, r 1, r . (339)

n
(ret 220 i) Lefp, 4 ] =2 Lo+ D)
=1

It will be observed that among the seven constants—aw,, @1, Xo, X1, Po, $1, and a—
which occur in the solutions (323), (324), (332), and (333) for su, tu, sx, and ¢, we have
so far obtained only three relations (eqs [325], [326], and [338]). We therefore require
four more relations to make the problem determinate. To obtain these additional rela-
tions we proceed in the following manner:

Putting u = +1, respectively, —1 in equations (306) and (307), we have

+n
Su(t1) = FLo+L+ D M (1% k) (340)
and
+n
Tyu(x1l) =Ly(rix 1) +L,+ ZMa(l F ko) e Far1, (341)

Similarly, putting 4 = 0 in equations (308) and (309), we have

S, (0) =L, —ZMa (ka—1) (342)

a=—"n

and

+n
Trl (0) =L0Tl +Ln_ EMCL (kz— 1) g_ka‘f; ) (343)

a=-n
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Combining equations (340)—(343) appropriately, we obtain the following relations:

+n

IS, (D 48, (= DI1=5,(0) =3 M E, (344)
+n
YT, (+1) +T,(—=DI1=T,,(0) = D M k2e~*an, (345)

F[Su(+1) =Su(=D1+3[Tu(+1) —Tu(—-D]

+n +n
= > Mika— > Mokae™an,

a=—n

(346)

and

33 [Su(+ D =Su(= DI =} [Tu(+ 1D =T (= 1]

+n +n
> Mk - EMakae—kang - 23% [Su(+1) +Su (- D1 (347

a=—n a=-—n

+n +n
— 3T (+1) +Tu (= D] = D Mot I Mae | = — 2oy

a=—n a=—n

We shall now show how the foregoing equations provide the required additional rela-
tions between the constants @o, @1, X0, X1, Po, 1, and a. However, we must first evaluate
the summations

+n +n
Mpkr  and D MEkreton  (m=0, 1,2),(348)

a=—n a=-—n

which occur in these equations.
Considering the summation ZM k7, for example, we have (cf. eq. [327])

. 1 2 Pk s (1) k)
ZMaka - ,LLZ #2 k:—m (1 . ka_2) Wa(l/ka) . (34:9)

a=-—n 1°°"° Ppna=—n

In terms of the function

A P(1/ka) s, (1/kd)
NOEDY) F (= RO W (1/5) Wa (), (350)

a=—n

we can therefore express ZM %7 as
- 1
E Mk = ———-— f (0). (351)
a=-n My oo By

Now fm(x) is a polynomial of degree (2z — 1) in x, which takes the values

P(1/ka) 5,1(1/ ka)

B (- £ (352)
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for x = 1/ks (a = +1,...., £n). There must, accordingly, exist a relation of the
form

(1 =22 fo(x) =22 mP(x) 5,y (x) =W () gn (%) (m=0,1,2), (353)

where g,(x) is a polynomial of degree 3 — m in x. To determine g,.(x) more explicitly,
we must consider each case separately. We shall illustrate the procedure by considering
the case m = 0.

For m = 0, equation (353) becomes

(1—2?) fo(x) — 4P (%) s, (%) =W (x) (Ax3+Ba?+Dx+E), (354)

where 4, B, D, and E are certain constants to be determined. The constants 4 and B
follow directly from a comparison of the coefficients of x?**3 and x?*t? on either side of
equation (354). We find (cf. eq. [334])

(n) (n)
a[Conr‘l' lnr]

and
(—1rm (n—1) 4 ¢ (n=1) (n) ()
B=m ga [Co, R ‘1 r | +poco, r+P161, r
! " i (356)
~(X ) alep, +eml ] |
Next, putting x = 1, respectively —1, in equation (354), we have
—P(£1)sy(£1) =WQ)(£4+B+D+E). (357)
From this equation it follows that
1
B+E=——— —[P(+1) s, (+1) +P(=1) s, (—1)]. (358)
2w (1)
Hence
(_ 1)n n— n— n n N
o 0) = g fo leg el e, + e, — (2 m,) (359
1
Xa (e, + e ] =gy P (D) 5, (+1) +P (=15, (= D]

Inserting this value of f,(0) in equation (351) and making use of the relations (cf.
Paper X, eq. [143] and Paper XI, n. 16)

B2 R22....p2=1 (360)
and 1 P(+DP(—1)
=4 361
W WD ! (361)
we obtain

+n
DM, = (=02 {a e+ e + e, 4ok,

n (362)
— ( ; Mi> a [66’?, + e ] z +2 [ ;;l((j—ll)) + s;((;ll)) ] - ]

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1947ApJ...106..152C

T D106 C152C!

J

P

A7A

rT

194 S. CHANDRASEKHAR

The other summations can be similarly evaluated. We find

Srl(—l_]-) _ Srl(_l)
P(—1) P(+1)

+n
S Mk, = (=120 (o, +c] + 2] |, @63

a=—n

$,1(0) Srl(+1>+srl(—1)]’ (364)

EMk2‘< D P(—D T P(FD

a=—n

ekl
_'._.n
oM ehen = (= 112§ —a [efr 4 ] +,60, 4 2o,

(365)

+H(Gn) et e b2 B 5]

-+n _
DM et = (= 1)"2a of), 4] — Z[t}léff; ‘t}l<(+ 11>)]’ (366)
and
, iy 1 (0) b (+1) | Ly (= 1)
EM“ R Ty iy s of R CL

A relation which follows from equations (362) and (365) may be noted here. We have

& N e o[ S | sa(—1) (1) | ta(—=1)
D M= > Mee '"‘“_2[})(—1) TPED ]_Z[P(—1)+P(+1)] & 68

o=—n a=-—n

(=112 200ef Do DTy Leg,— e =2 (X, )ele 2] |

or, substituting for (po — p1) according to equations (338) and (339), we have

a=—n a=—n

srl(+1)‘ Srl(—]-) trl(—i_l) trl(—"l)
Jr2[1?(—1) TP ED ]‘Z[P(—U TP FD ]'J

Returning to equations (344)—(347), we first observe that (cf. egs. [317] and [318])

_'u_(_—.:.})_n Sr1 (O) and Trl (O) =_(:.1)—n

1 vees My 1 eeee My

+n +n
S S ateten = (= D20 1o+ o), |
(369)

From equations (344), (345), (364), (367), and (370) it now follows that

1Su(+1D) +8u (— )] = 2[51;1((_+11)) + S];l((_pll))] (371)
and
B0 (+0) 4T (- 01 =2 Dy D] (372)
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Similarly, from equations (346), (363), and (366) we have
3Su(+D =Su(—=DI+3[Tu(+1) —Ty(—1]

_ srl(+1) srl(— 1) trl(_l'_l) trl(_ 1)
_Z[P(—l) “P(FD ]‘”[

And, finally, from equations (347), (363), (366), and (369) we have

(D (=17
P(—1)  P(+D

b =2{31Su(+ D +8u(= DI = 3Tu(+ D +Tu(= D1 | (374

sra(+1) | s.,(—1) ta(+1) | 4,(—1)
“Z[P(—l)+P(+1>]+2[P<—1)+P(+1)]§'

P(—1) P(+1)

1 {3Su(+ D = Sul= D] = 3Tu(+ D ~Tu(= DI -2|

[trl(+1) trl(— 1)

PP T P(FD

But, according to equations (371) and (372), the right-hand side of equation (374)
vanishes (71 # 0). Hence

FSu(+1) =Su(=DI1=3[Tu(+1) —Tu(-D] .
] }(375)

_ Srl(+1) Srl(—l) trl(+1) trl(_]-)
_Z[P(—l) T P(FD ]_2[

From equations (371), (372), (373), and (375) it is now apparent that
sp(+ 1) ta (1)

P(—1) P(+1D

On the other hand, according to equations (315) and (316),
1 pP(x1) 1

Su(+1) = +1),

ll(_ ) I.Lf....ﬂfl Q(l) 1¥_1~Sll(—- )
Mo

and ) PlLD) 1 (377)
*

Tll(il):”f"""‘: o (1) 1+ihz(i1)-

T Mo

The foregoing equations can be simplified by making use of the relation (Paper XI, n. 16)
1 P(+1H)P(—-1)

IR Q (1) =—2. (378)
We thus find
2 su(x1) sn(x 1)
Su(+1) =— = 7
nEDV == T PED P PGRD (379)
Mo
and

14 LPFD T PGEFD
. Mo
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Hence
posu (1) =21 Fp) spu(1), (381)
and
potu (£ 1) =F2Axp)t(£1), (382)
or, alternatively, -
2
(14 wo) Szz(i1)=i%(1—'#g) s (1), (383)
and
_ _ 2 :
AFp)tu(+l) = +%(1—u3) ta (£ 1). (384)

We shall find it convenient to combine equations (383) and (384) in the followin{g forms:

+(1+po) su(+1) F(1 —#o)tll(‘l‘l):%(l — @) (s (1) + 40 (+1)] (383)
and
—(1—=po) su(—=1) £ (14wt (—1) = %(1—;13)[&;(* 1) £4:(—1)].(386)

We now have to substitute for sy(+1), tu(+1), su(£1), and £:(+1) according to
equations (323), (324), (332), and (333). For this purpose, we shall write these quantities
in the following forms:

su(£1) = @ +xom) Co, 1 (£ 1) + (@1— x180) C1, 1 (£ 1) } 87 |
+ (L F po) [+ x0Co, 1 (£ 1) FxaCr, 1 (£ 1],

tu (£ 1) = (@o+xop0) Cy, 1 (£ 1) + (@1— xam0) Co, 1 (£ 1) } (388)
+ (£ p) [ FxoCr i (£1) £x:Co, (D],

srl(i 1) =p0C0,r(i 1) +P1C1: r(i 1) i a[COyr(i— 1)+C1vr(i_ 1) ]7(389)
and

ti (£ 1) =pCr, - (£1) +:Co, - (£1) FalCo,,(£1) +Ci, - (£1)].(390)

Substituting from equations (387)—(390) in equations (385) and (386), we find, after
some lengthy, but straightforward, reductions, that

3(1—#(2)) ¢1 (po+pv) =W, (v +vir0) + B (— vo+ viro) }

o (391)
+ (1= ) y1 (0=~ x1)

2 (1= i) ey (potp0) = Uy (= v vom) + By (vt vamo)

1o (392)
+ (1“‘#(2)) ')’3(X0'—X1)>

2
Z (1= lex (o= p0 +200:) = (1= ) (cr+20:0) (po =0 0%

= ?Il (’)’1+’Y2l~lv0) + B, (71—72#«0) + (1- /.0(2)) Y2 (X0+X1) ’
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and
%(1 — D ea(po— p) — 2acy] =% (1— ) (ca— 26:0) (po = p) L s

=W (— s+ var0) + B (—vs— yaio) + (1 — u3) vs (xo+ x2) ,J

where we have used the following abbreviations:

A = @+ xomo and B =@ — X1ko (395)
and

v1=Co, 1 (+1) +Ci, (+1);  a=C, . (+1) +Cy, . (+1),
v2=Co, 1 (+1) =C1, 1 (+1);  c2=Co,,(+1) =C1, . (+1),
v3=Co, 1 (—1) +Ci,, (—1);  ¢;=Co,(—1) +Cr, . (—1),
ve=Co. 1 (= 1) =C1,:(—1);  ¢4=Co,,(—1) =Cy,,(—1).

(396)

Eliminating (xo — x1) from equations (391) and (392) and (xo +xu1) from equations
(393) and (394), we find

2 2 _MYa T reYs o
E(l—#a) (po+ 1) —m(%z Ay (397)
and N
2 2 - _ Y1Ya T YoYV3
T (1 — pp) (po— 1) (eavi— o) F20 (crratcavd) (B, +A). (398)

Similarly, eliminating (po + #1) from equations (391) and (392) and (po — p1) from
equations (393) and (394), we find

(I_Mg) (x1— x0) =ﬂl[#o+w]+%z[ﬂo—w] (399)

C3Y1— C1Y3 C3Y1— C173
and

(1— ) Gatx) = %[-uo-l—

cavi+ cavs— 2Q (c3v1— C1vs) ]

CoY¥s— C4v2+ 2Q (crva+ c572) (400)
cav1+ covs— 2Q (6371 — c1vs)
+ SBZ[#0+ CoYa— Cav2t+ 2Q (crya+ 6372) ] ) J

Finally, solving equations (397) and (398) for p and p; and equations (399) and
(400) for xo and x1, we find that these constants can be expressed in the following
forms:

Z (1= 1) po = =2 @0k o) 31 (1= xas0) (401)

;2‘0 (1= 1) pr= —n @0+ xora) +r2 (@ — x10) (402)

and (1 — 1) xo= — (ro~+7s) @0+ xoro) +vs (@1 — X180 , (403)
(1 — ) x1= 75 @0+ xoko) + (po—7s) (@1 — x1k0) , (404)
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where
1 . J
_1 405
v1=3 (V174 + v27s) [6371_ 61734_ Coya— C4va+2Q (crysa+ c3v2) 17 ( )
1 1 ]
1 _ 406
e =2 (7174+7273) [63')/1— C1Ys  CaYa— Cavat+ 2Q (c1ys+ 03’)’2) ' ( )
, _1 [0372-}- €174, Ca¥1+ cavs— 2Q (c3v1— C1v3) ] (407)
e A TS L TSR
an
) =1 [Cg’Yg‘I‘ €17s cav1+ c2vs— 2Q (371 — C17vs) ] (408)
YT 20— c1vs cava— Care 2Q (crvat C372)

Also, according to equations (338), (401), and (402) (or more directly from eq. [398)),
we have

—3—0(1 — 1) a =0 (=) [ @+ xom0) - (@ — xamio) | - (409)

Since (wo + Xomo) and (w; — ximo) are already known (egs. [325] and [326]), the fore-
going equations complete the solution of the formal problem.

Returning to equations (305) we first observe that, for sy(u) and #;(x) given by equa-
tions (323) and (324), the constants @o + Xomo, @1 — XiMo, Xo, and x; must enter the
equations governing the angular distributions of the reflected and the transmitted radi-
ations in the component / in the manner of po + gouo, p1 — qiro, o, and ¢: in equations
(194) and (195). With the expressions for @o + Xomo, @ — X140, Xo, and xi given by
equations (325), (326), (403), and (404), we therefore have

[(0, 1) = BF, 2_’;" (1= WD) [X0 (1) X, (o) — V0 () Vo (o)}
- _(#0+#) X (W) [ = (uotrs) Xy (po) +v3Y; (po)]

- (#o—l—u) Y, (M) 29 ¢ (Mo) + (.uo"V4) Y, (Mn)] }

(410)

and
IZZ(TIJ ,U) Fz 2”0 {(1—#«%)[—){1(#) Yz(#o) - Yl(#) Xz(#o)]

+ (o — ) Xy (1) 15X 1 (o) + (mo—v) ¥ (0)] j (411)
+ (ro— ) Yi(w) [ — (motwd) X1 (no) +vY 1 (ro)1},

where X;(1) amd Y;(u) are defined in terms of Co, ;(x) and Cy, ;(u) (cf. eqgs. [125] and
[126]). Equations (410) and (411) can be reduced to the forms

T 0, 1) = M X () X1 ) [ o ) + ] }

— V(1) Vi (o) [1 = s (o +p) +pmo] [ (412)
and —v3(po+w) [ X (w) Yi(po) +7,(0) X, (#0)
Ii(ry,—p) = Fz 2“0 { 1 (1) Vi(po) [1 —ws (o — 1) — wpo)

— V(1) X1 (o) [1 s (o — 1) ~ mapuo] %413)

+vs (po— ) [ X (1) Xy (po) + Y, () ¥y (#0)] J
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Turning, next, to the reflected and the transmitted intensities in the component 7,
we have (cf. egs. [305], [332], and [333])

_ (== 9 2 3
I.:(0, u) _%Fl_ul. : #ﬂ[CO,,(O) C: (0] (414)
X[(po—aw) X, (p) — (pr1—aw) Y, (u)]
and
Ln(ry—m) =2F V" 12 o) —c2 _(0)]»
rl 1, - 16 B e een Mn 0, r i, r (415)

X[(p1taw X, (u) — (potap) Y, (w)],

where X, (u) and ¥ ,(u) are defined in terms of Cy, ,(u) and Cy, (). Substltutmg for po, p1,
and ¢ from equations (401), (402), and (409) in the foregoing equations, we find, after
some minor rearrangement of the terms,

Cs, ,(0) —Ci, . (0)
C: ,(0) =C? ,(0)

3
I SO ATHES ABE AP
— vy [ X, () X1 (o) + ¥, () ¥y (uo)] [ (4106)
—Q(Vl"vz) M [Xr (,u) - Yr (#)] [Xz‘(,uo) + Yl (Mo)]}

I1(0, w) = &P

and

C[2)v r(O) _Ci. r(O)
C? ,(0) =CZ ,(0)

3
[E3AEAPRATSES AME ATSY
—o [ X, () X1 (o) + Y, () Vi(uo)l [ (417
FOi—v) [ X, (W) =V, (W)X, (o) + Yy (o)}

i (T,—p) = 1—36—Fz[

18. The azimuth independent terms proportional to F,..—In the preceding section we
completed the solution for the azimuth independent terms in the reflected and trans-
mitted intensities which are proportional to F;. We shall now consider the terms pro-
portional to F,.

The azimuth independent terms proportional to F, in the reflected and transmitted
intensities can be expressed in the forms

IO 0, w) = 3 [S, (=) — e=nhT, (u) 1 F

IO(r,—w) =S [T, (—pw) —e /S, (W]F
\ (418)

IO, p) =5 [S, (—p) —e T (u)]F
and

IQ(rp—w) =5 T, (=) — S, (W]F,

where (cf. Paper XIII, egs. [33] and [34])
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Lg

n—l1
Su(w) = (1—u) D7 7 — Ron+ L,
B=—n+1 +  KeM
o (419)
o (14 kap) — (1 i) 2
+a‘§_,_‘n9ﬂ (1t kaw) =C (14 i,
n”l —KBT,
Ty = (=) 3 B g (ritw) +8,
B=--n+1 1 + Kgu
in ) (420)
_ M _
3 M=k e —C (1= 2) e,
+n 2 2
Me(ka—1) |, C(1— wo)
Spr(p) = — — > 421
P~ e £y
and
+n 2 —k, 71 2 —7i/p
N Ma(ka—1) e C(1—ug) e V"
T, (1) = = > . (422
(W) = (r1+u) +2 ;_, T, T (422)
In the foregoing equations kg and k., have the same meanings as in § 18,
1 P (po) P (— o)
C=H, H,(— = ; 423
(ﬂo) ( ,Uo) pf T #3 W (,uo) ( )
further, we have used (8 =0, +1,...., +n T 1, n)and Mo (a = +1,...., +n)

to denote the constants of integration to distinguish them from the Lg’s and M.’s of the
preceding section.
The boundary conditions, as usual, require that
Slr (.uz') =Tlr (:uz') = Srr (.u"L) =Trr (:ui) =0 (7: =1 3 ey n) . (424)

By virtue of these boundary conditions we can write

1 P

Slr(/—") =Mfl“,2,,9(ﬂ) slr(:u)) (425)
_ 1 P(u)
Tlr(l-’«) "‘,u%...' MZQ(N) tlr(:u): (426)
N 1 P (u) 1 ‘
vSrr(ﬂ') IR AR T Ser (W) 5 (427)
and
Tow) = 2W 1, (428)

pioooo W () 14+ u/m

where si;-(u) and 4.(p) are polynomials of degree » — 1in u and s,(u) and ¢,.(u) are
polynomials of degree # 4 2 in u.
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From equations (421), (422), (423), (427), and (428) it follows that
Ser(po) = (L= p)P(—po)  and £, (—wo) = (1— ) e P (wo) . (429)
From equations (419), (420), (425), and (426) we now have

1 _ 1 P(1/«p)
(1—73) Y=g iy (/) (430)

" and

1 —car 1 P(—1/kp) _
(I—K—§>Bﬂe ﬁl_#f----#ﬁ % 1/ te (— 1/ k) (431)

We therefore have (2n — 2) relations of the form

P(—1/«kp)

sir (1/ kg) = exsm P(F1/%8)

tlr(__l/’cﬂ) (B=i17"yin$1)-(432)

~ Since, however, si(1) and £,(u) are polynomials of degree only # — 1, we can conclude,
in accordance with theorem 2, § 4, that

sir () =w0Co,  (0) +a@7Cy, 1 () (433)
and

tir(B) =1 Co, 1 (n) +w0Cy, (1), (434)

~ where @y and @} are constants and Co,i(u) and Ci,;(u) have the same meanings as in
§ 17.
. Turning, next, to equations (421), (422), (425), and (426), we have

1 P(1/ka) 1

= — ~(1/k
e R W AR G D T 17k, (R (433)
' (a==+1,....,+n)
and )
1 P(—1/k.) 1
—HaTy = — i (—1/k
M, e B uﬁWﬂ(l/kﬂ)(k:—l) l—l/kau0 - / “) (436)
(a==+1,....,+£%n).
We therefore have 2% relations of the form
P(—1/ka)
= gkary —_~ 7 7 —_ =
S (1/ka) = e P(F1/70 tr (— 1/ k) (a==+1,....,%n). (437)

It will be recalled that s,(u) and ¢.(x) are polynomials of degree (4 2) in u.
- However, it can be shown that s,,(p) — ¢,(u) is only of degree #» + 1; for, according to
equations (421), (422), (427), and (428),

1

o D) s () =<1———§0)W(u)5n(u)

M.
(438)

= (—1)"k2.... k{% u?’*?—(ﬂﬁ%) u2"+1+----]
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and

1 _ M ]
MY oo My Mo

(439)
= (‘“U"kf..._ kz[&’ 2n+2_|_(8 +8 +807’1> M‘n-‘rl_‘_...']-

And it is apparent from these equations that the coefficients of u"*? in s,,(u) and ¢,,(u)
are the same. We may therefore write

. Ser (1) = (P +qan+a*u®)Co, ,(w) + (pF — g u+a* > Cy, » (0) (440)
an

te () = (pT +qi u+a* ") Co, . (1) + (p5 — go u+a* 1) C1, , (1), (441)
where p5, p%, ¢5, ¢t, and a* are constants and C, ,(u) and Cy, () again have the same

meanings asin § 17.
For s,,(u) and ¢,.(u) given by equations (440) and (441) we can verify that

P (W) 5, () = a* [+ e 1wt fo* (o0 + o)

" (442)
+ g5 e, — ql*cl(i‘)r‘(E “")"* Leg?, 4 e 2 prtt )
=1
and
P(u)t, () =a*[cf +c( ] utrt2t g a* [efr D+ e M)
' (443)

3
+are,— g e, = (0 w) a* Lo, + o) fumri
=1

where ¢{), c§"2 and ¢{"7V, ¢{*71) are the coefficients of the highest and the next highest
powers of u in Cy, , and Cy, ..

From a comparison of equations (438) and (439) and (442) and (443), we conclude
that

- E K, —I-m{ R [qo oM, — g e} (14
Lo
= ~(wtg)
and '
"4 1
— - ("—1) ("—1) n) —_ n)
;Iuﬁ AOMESFY fepn+ o+~ L g cM,—gie™,]} (445)
=+ (#04‘%"‘ T1
0
From equations (444) and (445) we readily find that
=Q(qf+4¢", (446)

where Q has the same meaning as in § 17 (eq. [339]).
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'

Finally, from equations (429), (440), and (441), we find

(1 — )
C: (0) —C2 (0)IW (n) (447)

X [P (= o) Co, » (— po) — €7 71/m0P (o) C1, 4 (o) ]

by Tt atug= [

" and

* . g% * 2 (1—‘“?’)
4‘ P —afmtatug= [C2 (0) —C2 _(O)IW (1) (4438)

X [ e=m/keP (o) Co, » () —P (— po) Cr, r (— mo) ] -

Now it will be observed that, among the seven constants @, @y, o, P1, Gos 43, and a*
which we have introduced in the solutions for s, #,, s, and .., we have so far only
three relations (eqs. [446]-{448]). To obtain the four additional relations we proceed in
the following manner:

Putting u = +1, respectively —1, in equations (419) and (420), we have

+n
Si(£1) = FR4++ D Ma (L k) —C (16 £ mo) (449)

a=—n

and

+n
Tlr(i 1) ZQO(TIi 1) +8n+2 9)%(1 F ka) e_k”-fl_C(,U(Z)¢/.L0) e~ Ti/bo (450)

Similarly, putting 4 = 0 in equations (421) and (422), we have

“+n
Sm(0) =2— D Ma(Be—1) + (1—u)C (451)
- and

+n
T (0) = Corit Gum D Ma(Ba— 1) e (1= pd) Ce™™™.  (452)

a=—n

- Combining equations (449)—(452) appropriately, we obtain the following relations:

+n
FISu(+1) +Su (= DI =S,.(0) = > Maka—C, (453)

a=—n

+n
YTy (1) 470 (= DI =T (0) = D Makie ™ —Ce™, (454)
FISu(+ 1D =Su (= D1 +3 [T (+1) =T (= 1)]

< I (455)
= z Mok — Z Pakaeams —Cuo (1 — e~ 71/k) ,

a=—n
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and
+n
i3 [Se (41) =S, (= DI = F [T (+ 1) =T (= DI = D Meke
in a=—n
— 2 Makae ™ am1+Cpo (1 + e 7v/0) % = 23% [Si (+1) +S, (= D]
e=n (456)

+n +n
— HTu(+ D +Tu(= D1 = 3 Mot D Maeors +Cpf(1— emriie) |

= —2%7:.

We shall now indicate how the various summations which occur in the foregoing
equations can be evaluated. Considering the summation ZI.k7, for example, we have
(cf. eq. [435])

+n +n m—1
m __ Mo a P(l/ka) Srr(l/ka)
2 DR = e X R (U= R (T b .
~ BEP(1/Be) s (/R 3 ]

“+n
Mo
TR W (uo)a;n W_(1/k) (1 —E%

or, in terms of the function

A ERTIP (1) ka) $,e (1] k)
fm(®) =" 75 (=D Wa () , (458)

a=—n

+n
m Mo

alva = m . 459
;nsm B = ey () (459)

Now fn(x) is a polynomial of degree (2= — 1) in x, which takes the values

ke
1 1 —9\ a rr a 6
(1—k:2)P(1/k)s (1/ka) (460)
for x = 1/k, (@ = +1,...., £#). In other words, (1 — 2®)fn(x) — 2P(x)s,.(x)
vanishes for x = 1/k, (a = +1,...., +#); it must accordingly divide W(x). This

fact enables us to determine f,.(x). To illustrate this, we shall consider the case m = 0.
In this case, there must exist a relation of the form

(1—2) fo(x) =xP (%) s, (x) +W (%) (4%*+Ba?+ Dx+E), (461)

where A, B, D, and E are certain constants to be determined. The 'constants A and B
follow from the fact that the coefficients of x?"+3 and #2"*? on the right-hand side of
equation (461) must vanish. We find (cf. eq. [442])

_ (_. 1)n+1

d=w

a*{c™ +c™ ] (462)
0, r 1, r
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and
(—- 1)n+1 % (n—1) (n—1) * - (n) % . (n)
B=k2-...k2§a [co’r +61v7']+q060,1‘—q161,r .
1 " (463)
~(Zu) ot et
Next, putting x = +1, respectively —1, in equation (461), we have
| +P(£ 1) s (£ ) +W () (£ A+B+ D+E) =0. (464)

From this equation it readily follows that

1
B+E=—2W(1) [P(+1) s (+1) =P(—1) 5., (— 1] (465)
ind
1
A—I—D=~2W(1) [P(+1) s, (+1) +P(—=1)s,(—=1)]. (466)

Returning to equation (461) and setting x = uo and remembering that

Ser (o) = (1= ) P(— mo) s (467)
wve have

Jo (o) = poP (o) P (— o) — W (o) 3A”O+B__ (A4 D) po+B+E

— b, (468)

. Substituting for fo(uo) according to equation (468) in equation (459) and making use
f the relations (360), (361), (465), and (466), we obtain

~+n
2 M =Cui+2(~ 1>"§ a* [ + e ] pi+ [a* [e§r70) + ofr70)

+ggef, = are,— (X w) atle,+ o) Jm} t (469
i=1

- A EER BT R - ER

The other summations can be similarly evaluated, and we find

3 2 (—1)n
2 Makle =C b oo 50 (0) = 75 (b £), (470)
Zgygakge—kan=ce—n/~o+r——t (0 )———(n Mo 1, (471)

& n % (n) (n) 2#0
E:Sﬁaka=Cuo+2(—1) a” [eo, »tcih sl o —l_uz(&#o‘l‘fl); (472)
0

a=—n
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in: Mk, eFer =Cpyemnrat2 (= 1)ma* [c(M + ¢ ] u,
o | | (473)
+1—%_'%73(772Mo— ) )
+n
DM, =Cui42(~ 1)%% a* e, + M ] u2+ [a* e+ cfrh]
o . (474)
aze, = are, = (2o m) o0, + o0, uf - gt + £,

and

+n
D M, ehen =Cugeribot 2 (= D a* [, + e ] = a* [ef )+ cfr)]
a=-—n

(4
“ 2
+ ¢ Cé?)r— g5 C§7’r—<; p’z’) a* [Céf,‘)r_l— 01(7,1)7] ]”0% _1___’%3 (ny 1y = my) 5 J
where we have used the abbreviations
E_srr(—l—l)_l_srr(—l)_ s_srr(—l_l)_srr(—l)
TP TP(FD T ST P(-10)  P(+D
and (476)
—t"(_'—l)-f—trr(_l)‘ _trr(+1)_trr(_1)
MEPp(—D T P(FD  "TP(=D P(FD ) |

A relation which follows from equations (474) and (475) may be noted here. We hav

+n +n
S m, - Z M, eFars — Cp2 (1 — o=mufio) )

a=—n

= 2(= 1)7§20% (oD o) + (g3 + 92 Lo, — o]y (477

. L 2 Mo
_ 2(21 u.,-) a*[cfM + o] }uo—l—_—“g [(Em+£) — (npy—n)];
or, substituting for ¢s + ¢} according to equations (339) and (446), we have

+n +n
DM, — DM e —Cp (1= o) |
a=-"n a=—n ) (4:78
=2(—=1D"a*r, [Cé?)r+ Cl@r] '“‘0_1—__'@;5 [CEymy+ &) — (nymy— 772)] .

0

Returning to equations (453)—(456), we first observe that (cf. egs. [427] and [428])

_(=Dr (=D |
S,,(O)-—m“” S (0) and T,,(0) ————-—“”t,,(O). (479

n T es o
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From equations (453), (454), (470), (471), and (479) it now follows that

LISn (1) 480 (= 1] = —ﬂ@mﬂz) (480)

and
3Ty (+1) 470 (= 1)) = —1—2_"—"@(771”0—"2). (481)

0

Similarly, from equations (455), (472), and (473) we have
L[Sy (D) =S (= D1+ [T0(+1) =T (= 1)]
| } (482)

- 12“0 [(Eatto+ £ + (napo— 1)1

0

And, finally, from equations (456), (472), (473), and (478) we have

113 Sy (F1) =S, (= D] =3 [T0 (+1) =T4 (= 1))

+ 12”0 [(Eapo+ £1) — (?72H0—771)] £ g [Str (+1) +Su(=D1 L (483)
= 3T (+ 1) 70 (= DI+ 725 (Gt ) = (=21 |

But, according to equations (480) and (481), the right-hand side of the foregoing equa-
tion vanishes. Hence

IS (+1) +S, (D] =3 [T, (+1) +T,(—1)]
' }(484)

= — 12#0 [(52#0‘1‘51) — (m2mo0 — 7)1)]

From equations (480), (481), (482), and (484) it readily follows that

Su(+1) = 12“" (14 £2) (mo+1) = l‘ﬂ‘; j;’((fll)), (485)
4 (=
Si(=1) = =122 (f1= 8 o — 1) = e U as6)
0
Tur (1) = =25 o) (0= 1) = + £ bEY s
and
2 —1
Ty (=1) = =122 (=) (o 1) = =220 I L (agy)
0

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1947ApJ...106..152C

J © J10B- J152C!

P

Qi
~
&,
&

208 S. CHANDRASEKHAR

On the other hand, according to equations (378), (425), and (426),

__ 1 P(D _ s (£1)

Se(ED = pam wEV="2pEn . (48
and

Ty(e1) =t PED gy o _ple(£ 1) (490)

S PERT S N6 D IS
We thus find

1 (£ 1) = 220 (1% ) 5 (1) (491)

0

and

b (£1) = F 1220 (UF o) by (£1). (492)

0

We now have to substitute for s;,(+1), #,(3+1), s..(+1), and ¢,.(£1) according tc
equations (433), (434), (440), and (441). For this purpose it is convenient to write
sm(+1) and ¢,(£1) in the forms

St (£ 1) = (b5 + g0 po+ a10)Co, (£ 1) 4+ (pT — ¢ mo+a* p0)Cr, (£ 1) }
+ A Fu) [+ ¢eCo r(£1) F giCr, (£ DI+ ™ (1 —p0) [Co, (£ 1) +Co, (£ 1)]

and

t(£ 1) = (pa + g0 o+ a* w)Cr, (£ 1) + (7 — ¢F mo+a*ud)Co, (£ 1) \

(
+(1+p) [ F @aCr - (£1) £ ¢7Co, (£ )]+ a* A~ p) [Co, (£ 1) +Cy, (£ 1. f

We also have

s(+£1) =@0Co, 1 (£1) +a7Cr, (£ 1) (495)
and

te(+1) =w0Cy, (1) +a1Co, (£ 1). (496)

Substituting from equations (493)-(496) in equations (491) and (492), we find
after some lengthy but straightforward reductions, that (cf. eq. [446])

(@ +o1) 71=IZTM)”2[2L(M061+ ¢2) + B, (moc1— ¢2)
0

(497)
+ e (L—pg) { (g0 — q%) +2Q (g5 +q¥) o},
(wo +G-51)’Ya— 12 [QI (mocz— ¢4) + B, (ocs+ co) (498)
+ cs (1 — pd) { (‘10 _91) +2Q(q5k+qik)uo}],
(5 551)’)'2 12 [91 (Boce+¢1) +B,(— moca+ ¢1)
0 (499)

+ (1 "'ﬂo)(vz‘l“zle) (q3‘+qi'<)],
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"and
2
(w:*wik)74=Tf_Lg[2[r(#oc4—Cs) — B, (mocs+ c3) (SOO)
+ (1= o) (ca—2¢30) (g0 +a1) 1,

where 1, vs, v3, Y4, and c1, ¢a, C3, €4, have the same meanings as in equations (396) and

No=ps +gam+a*uy and B,=pF —gfm+a*ud.  (501)

Eliminating [(¢5 — ¢}) + 20(gt + ¢})] from equations (497) and (498) and (g5 + ¢
from equations (499) and (500), we find

of +af = Gt ot g _g) O (502)
— M C3v1— 13
and
ot — ot = 2 uo ci164+ Cac3 [, (1 = 20u0)

l—uo (Coryy— 64")/2) + 20 (c1vs+ c372) . ]} (503)
+ 9B, (1+20u0) 1. )

Similarly, eliminating (@j + @}) from equations (497) and (498) and (wj — @}) from
equations (499) and (500), we find

= ) [(gF — gF) +20 (g +¢F) o) = m,(ﬁlﬁiﬂ_m)

C3Y1— C17vY3

(504)
_ C2Y3+ Cama >
B <C3'Yl— 01’Ya+ Ko )
and
‘,(1 _'uz)<1+ 20 c1vs+ 63')’2>( gt = -1, <6174+ 6372 D)
; ’ Ca¥s = CaY ' Ca¥s — 04’)’2 (505)
| _® (6174+ 0372_#())
"\ 2ys— Cave )

Finally, solving equations (502) and (503) for @; and @} and equations (504) and
(505) for ¢g and ¢F, we find that these constants can be expressed in the forms

@y = “°M2{ A, [+ Q (w1 — t42) po] — B, [ +Q (ur—wa) wol },  (506)

wF = (U, = Q (1~ 2) o) — B, [s—Q (wr—wa) pal 3, (507)

1—pl

(1 - /‘L(z)) qg: = 2[7' (M"uwo +u6ﬂ(2)) - %r (ug—l‘uﬁﬂg) ) (508)
and

(L= ) qf = — U, (us+ugps) + B, (g ugno +ugul) , (509)
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1 1
— 510
(croat cacs) [0371“‘ C1’Y:s+ CaYs— Cav2t+ 2Q(51’Y4+ C37v2) ] » )
1 1
= (¢ — 511
e ( 104_+ e 63) [03‘)’1 — C1Y3  CoYa— Cayat 2Q (c1yvst+ C37Y2) ] ? ( )
17 covs+ cama C1vs Tt C37v2
Ug = — 512)
i 2[63‘)’1— c1ys  Cova— Cave+ 2Q (crya+ c3ve) ] (
17 cavs+ cama C1Ys T C3v2
! 2[03')/1’— C1¥s  Cava— Cave+ 20 (crva+ c37v2) ] ( )
CoY4™ €472
u 514
T = Cave T 20 (crvat Cama) (514)
and
Ug =Qu5 . (515)

Also, according to equations (446), (505), (514), and (515), we have
(1— ) a* = ——uﬁ[ﬂ <5174+ 0372_|_ )—l—SB (Cl’Y4+ Csv2 )] . (516)

Co2Ys™ C4Y2 CoYs ™ Cu2

It may be recalled that 9, and B,, which occur in the foregoing solution for the con-
stants, are defined in equation (501). According to equations (447) and (448) we may,
therefore, write

(1 — 1) X, (uo)

e () e () I

%r=P:+q§#o+a*#%= (_1)7',u1....

and

(1= p3) ¥, (ko)
“TCE 0 —C2 L (O

Br=pF —qfpotat = (—1)"u.... (518)

With this determination of the constants we have completed the solution of the formal
problem.

We now return to equations (418) and the angular distributions of the reflected and
the transmitted radiations.

It is first apparent that for s;(x) and #,(u) given by equations (433) and (434) the
reflected and the transmitted intensities in the component / are of the forms

10, 1) = 5 T 16 10 — ¢ (07} (88 X0 ) ot V1)) (519)

and

Litriy =) = 5 0 (G4 (0) = CL (01 [ X4 () —aif ¥1 (). (520)

Substituting for &y and @} according to equations (506), (507), (517), and (518), we
have

_ o [Ca(0) =CL i (0) 7
1,0, p) = %Ff[cg' L0 =¢C2, (0>]

X {Xl (M) [Xr(.U«o) []:u2 +Q (1 — Us) ﬂo]] -7, (No) [[u1+Q (2, — Us) ,uo]]]
-Y, (#) (X, (#o) [[u1 —Q (1 — Ug) Ho]] -7, (Mo) [[u2 —Q (ul-—u2) No]]] }

(521)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1947ApJ...106..152C

T D106 C152C!

J

P

A7A

rT

RADIATIVE EQUILIBRIUM 211

and

C2 ,(0) —C% ,(0) 1
— = 3
I (r1,—~ 1) mFr[cg, (0 —C? ,<0>] Ko

X {Xl (W [X, (Mo) [[M"‘Q(M"M) ,U«o]] -7, (Mo) [[uz—Q (ul—'u2) Mo]]]
= V() [ X (o) Lo +Q (w1 —u2) po]l — Yy (to) L2614+ Q (01— 1) polll }.

(522)

After some minor rearranging of the terms, equations (521) and (522) can be brought
to the forms

— 3
IZT(O, ”) 16Fr Cg, d (0) C%, T (0) Ko

X{—u [Xo(0) V(o) + Y, (0) X, (m0)] (523)
Fus [ X () X, (o) + V(1) Yy (0)]
+Q (w1 —ug) po [ X1 (w) + V(WX (o) — ¥V, (mo)]}

and

c2 ,(0) —Ck, 1(0>T
Cz . (0) —C2,(ol*™

X{—ua [ X0 (0) Ve (o) + V() X, (00)] § (524)
Fu [ X () X, (po) + V(1) V()]
—Q(ul—“2) Mo[Xz (,U«) + 7, (#)][Xr(,uo) - Yr(ﬂo)] }

L (1= w) = &F|

Turning, next, to the reflected and the transmitted intensities in the component 7,
ve have (cf. eqgs. [418], [427], [428], [440], and [441])

. 3 (=D i b Mo ' :
o (0,0 = T, =1 0 —CL O } 525)
X{ (o —qon+a*u’) X, () — (pf +qin+a*s’) ¥V, ()}

tnd
T (= = 2 F, V" 2 (0) =, (0]} l
ML oo oo My Mo M (526)

X{(pF— qtuta* )X, () — P +atuta* )V, (w ). )

We can re-write equations (525) and (526) in the forms

[ (0, p) = {%Fr#——'—

2 2 1 Mo
1....#,,[C°"(0) C1, +(0)] g
(527)

X { (po + g0 mo+a*ug) X, (n) — (pF — qF mo+a* 1) ¥, () J

— g0 (uo+ ) X, (1) — ¢f (o +w) Vo () —a™ (ud — b)) [ X, (w) — ¥, (w)]}

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1947ApJ...106..152C

T D106 C152C!

J

P

A7A

rT

212 S. CHANDRASEKHAR
and

D 2 o)~ o]

M1 eeeo My Lo — J l
X {(p1 — i po+a* 1) X, () — (ps + g6 po+a™ o) Y,.(p)J (528)

491 (o— ) X, (1) + g0 (mo— 1) ¥, () — 0™ (g — 6 [ X, () — Vo (w)1}.

I.(r1,—p) = %Fr

Substituting for g3, ¢5, a*, pt, + qome + a*u2 and pf — giu, + a*u? in accordance witl
equations (508), (509), and (516)—(518) in equations (527) and (528), we obtain

I.,(0, ) =P, (1= p) [ X, (1) Xy () — V(1) V(o)) )

el
= (ot u) X, (1) [ X, (o) (u4—u5,u0—l—u6u0) — YV, (o) (u3+u6ug)]
— (mo+w) V([ — X, (1) (“3+uaﬂg) + ¥, (mo) (u4—|—u5u0—|—ueu§)] } (529)

— g = 1) [ = X o) (ot SLEEN) 4 7 (1) (py — 2LE M) |

CoYs™ CqY2 CeYs ™ C4Ye

><[X,<u>—1f,<u>]§.

é,nd

I, (r,— ) =& g(l"ﬂo)[X () Vr(uo) = Y, (u) Xr (po)]

+ (o — 1) X, () [ — X, (o) (sh3+wo3) + ¥, (o) (sha+ th50 + %5115) |
+ (o — 1) Vo (1) [ X+ (o) (4 — tsiso + ugio) — ¥ (po) (5 +1su) ] } (530

— s (1 — 1) [ _ Xr(”0)<“0+ c1ve+ 63’)’2>_|_ v, (,uo)( c1vst Ca‘Yz)]

CaYq— C4Y2 CoYy ™ C4Ye

X [ X, (u) — Yr(,“)];.

After some lengthy reductions, the foregoing equations can be brought to the forms

L, (0, 1) = $Fy 20 (X, (0) X, (o) 11—ty (o + ) gl
— YV, (1) ¥V, (uo) [1+uy (pot+ ) +uspm]
+us (po+w) [ X, (0) Vi (po) + ¥, (1) X, (10)]
— Quspupo (ko + ) [ X, (1) — YV, (w11 X, (o) — Yy (00)]
—Q(uz—uy) p2[X, (0) — V. (W)X, (po) + ¥ (p0)]
—Q (g —ug) wo [ X, (8) + Vo (X, (o) — ¥ ()]}

(531
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and
I (71, — w) = fsFr {X () Yy (o) [1 204 (po+ p) — ta5papto]
=V, (p) Xy (po) [1 — 2g (uo — 1) — s 1.0
— g (o — ) [ X (1) Xy (o) + YV, (1) V' (p0)]
+Qusppo (po— W) [ X, (1) — Vo (W) 11X, (ko) — V7 (o) ]
—Q(us—uy) p? [ X, (1) — V. (W) 1[X, (o) + ¥V, (1) ]
+Q (s —us) wio [ X, (1) + Y, (W)X, (o) = ¥, (0]}

(532)

19. The scattering and the transmission matrices. The reciprocity principle—The
" solutions for the various terms given in the preceding sections can be combined to give
the complete distribution of the reflected and the transmitted radiations. The resulting
laws of diffuse reflection and transmission can be expressed in terms of a scattering (S)
and a transmission (T) matrix in the forms (cf. Paper X1III, § 4; Paper XIV, § 2; and
Paper XVI, Sec. 1)

1(07 My @) :U'OVSDO) _1—6/.LQS (:U'J§9’ #07¢0)F (533)
~and
3
I(1y;— u, @; Ko» ©o) =mQT(y,go; ko, @0) F, (534)
where
I=(,1,U) and F= (F,F,, U) (533)
~and
100
Q=<O 1 0>. (536)
002

In accordance with equations (284)—(287) and the solutions obtained in the preceding
sections, we can write

S (1, 03 soy 00) =S (w3 o) + (1 — @D (1= ) Y (u, 05 b0, 00) } (537)

+S® (1, 03 1o, ¢0)
, and

T (1, @; po, ¢o) =7 (m; mo) + (1 — WA — D) @ (ks @5 Moy @0)
’ (538)

(2)
+7 (:U') ©; Mo, QDO) )
where

(%+%) SO (5 o) =2 { X (1) Xy (o) [1 91 (o ) + o]
— Vi) Vi (o) [1 = (ot ) +umal [ (539
— V3 (Mo‘l—#) [Xl(ll-) Yz(#o) + Yz(#) Xz(#o)]},
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1, 1Y _ ,z<0)—c“;,l<0>*
() 5% (us ) C2 (O)_Cir(o)](#o-FM)

X{—=u [ Xi(w) V(o) + V() Xr(po)]
+ us [Xz(.U«) X, (.Uo) + v, (N) v, (.Uo)]
+Q (w1 —u) po [ X1 () + V()X (o) — ¥y (mo)1},)

2 ]

(1 1>S§(i) (15 ko) = C2’ Egg _gz ’Eg;] (ko + 1)
0, 1 1, 1

X Av [ X (1) YVi(po) + Y, (1) Xy (1)l
— [Xr (,u) Xl(#o) + 7, (#) Yz(/-to)]
—Qi—v) p[X,(#) =V, (WX (o) + Vi(mo)]},

(Gt ) S (5 o) = X () X, (o) 11—t (o + ) + g \
— YV, (1) V(o) [ 1+ (po+ 1) + usppo)

Fas (o + p) [ X, (1) Vi (o) + Vo (1) X, (10)]

— Qugiso (o + w) [ X, () — ¥V, (0) 11X, (o) — ¥ (10)]

~Q(us—uy) {2 [ X, (0) — ¥V, (W)X, (ko) + V()]

+ w0 [ X, () + Ve (11X, (ko) = Vo (o) 1}

(=) T a5 ) = 20X () T ) 11 = (i ) — o]

— V(1) X1 (o) [1+ws (po— 1) — puol
+rs (po— W) [ X1 (1) X1 (o) + Vi(w) ¥y (mo)l},

___>T§3) (4 po) = CO' jgg; :g? :Eg;]%(ﬂo—#)
X{ = [Xy (1) V(o) + Vi (n) Xy (10)]
Four [ Xy (w) Xi(po) + Vi (0) Y, (0o)]
—Q (uy— ) po [ X (w) + Vi (W)X, (o) = V. (po) 1},

G- LYo o =[SO =2 O (o=
X {va [ X0 (1) Vi(uo) + Y, (0) Xy ()]
~v [ X, () Xy (o) + V(1) Vi (p0)]

F Q=) p X, (1) =V, (WX (o) + Vi(ro)l},

(540)

(541)

(542)

(543)

(544)

(545)
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(0)

1 1
7;“170) T (5 o) = X, () ¥, (o) (1 + 204 (o — ) — thpianu]
=V, () X, (o) [1 — 2y (po— 1) — msppo)
— g (o — ) [ X, (1) X, (o) + V(1) ¥y (1t0) ] (546)
+Qusppo (o — w) [ X, (1) — V, (WX, (o) — ¥V, (1o) ]
—Qus—uyd) {p2[X, (1) — V. (WX, (o) + ¥y (0)]
— o (X, () + YV, (WX, (o) — Vs (o)1}
S =51 =S =S =S¢ =0 } 547
T =T% =T =Ts; =T4) =0;
1 1
(_l:+—,;-€_(;) S(l) (s @5 Moy @) = [X(l) (m) X(l) (o) — Y(l) (m) Y(l) (o) ]
—4ppocos(¢—¢) 0 —2usin(p— ¢y L (548)
X( 0 0 0 >;
— 2u sin (¢ — o) 0 cos (¢ — ¢o)
1 1
(TE) T (u, @5 o, 00) = [XP () TP (uo) — ¥ () X (o) ]
4o cos (@ — @o) 0  2usin(e — ¢o) } (549)
X( 0 0 0 );
— 2po sin (¢ — 400) 0 cos (¢ — ﬁao)
1 1
(;Jm) S® (u, @5 o, e0) = [ X2 (1) X% (w0) — ¥ (1) ¥ (o))
u2ul cos 2 (¢ — @) — pu2cos 2 (¢ — ¢o) u2uo sin 2 (¢ — o) (550)
X[ — uZcos 2 (¢ — ¢o) cos 2 (¢ — o) — o sin 2 (¢ — o) |;
ppksin 2 (¢ — ¢o) — wsin 2 (¢ — ¢o) — wao cos 2 (¢ — ¢o)
and
1 1
Z_ﬁ T (4, @5 o, 00) = [XZ () T (o) — ¥ (1) X (o) ]
prulcos 2 (o — o)  — pcos 2 (¢ — @o) u2po sin 2 (¢ — o) (551)
X| —wuicos2 (o= go) cos 2 (p— o)  — mosin 2 (¢ — o)
— pplsin 2 (¢ — @o) psin 2 (@ — ¢o) B po 08 2 (@ — @o)
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Now, Helmholtz’ principle of reciprocity as reformulated in Paper XIII (§4) re-
quires that the scattering and the transmission matrices have the following property for
transposition:

~and

S (1, @; Ko, ¢0) =S (o, @; Ky o) } (552)

T (uy ;5 oy w0) =T (po, @o; &) @) -

From equations (548)—(551) it is evident that the matrices S®, §® T® and T®
have the required symmetries. But it is not at once apparent that the matrices S
and T are in conformity with the reciprocity principle; for, though the diagonal ele-
ments of S and T(9 clearly satisfy the necessary conditions, for the nondiagonal ele-
men]t)s the validity of the principle requires that (cf. eqs. [540] and [541] or [543] and
[544

[cz, L(0) —C% ,(0) ]*m_

i
C: ,(0) —=C% ,(0) ]uf (i=1,2). (553)

- [Cg, 1(0) —C%, 1 (0)
ez (@ =C 0

From equations (405), (406), (510), and (511) defining the constants v; amd u,, it is
seen that the condition (553) is equivalent to

l[c%, (0) —C3, ,(0)]*( N )=_[c§, 1(0) —C2, 1 (0)
2 C02' Z(O) _C%, l(o) Y174 Y27Y3 Cg' T(O) “‘Cf' T(O)

or

3
| Ccrecteaca 559

"Y1’Y4+’Yz')’3 Cs, 1 (0) —C3, 1 (0)
AR LNLNR LR L P ) 555
croat caca C: ,(0) =C: (0) (555)

On the other hand, from the definitions of the various constants v, (eq. [396]), it readily
follows that

Y1vs+veys =2 [Co, 1 (1) Co, 1 (— 1) —=Cy, ( (+1)C1, 1 (— D]; (556)
or, using the identity (105) satisfied by the C-functions in general, we have

Yiva+v2vs =2 [Cs, 1 (0) —C1, 1 (0)]Q(1). (557)
Similarly,

6164+ 6263 =2[C5, ,(0) —C3, ,(0) 1W (1) (558)
Hence (cf. Paper XI, eq. [133]),

Yyt vavs _Co 1 (0) —CL ,(0) @(1) _ G5, 1 (0) —=Ci, 1 (0)
cresteacs CF L (0) —C2 (0) W(1) Cr ,(0) =C% ,(0)”

(559)

in agreement with equation (555). Thus our solution for Sand T is in conformity with the ‘
requirements of the reciprocity principle.
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