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ON THE RADIATIVE EQUILIBRIUM OF A STELLAR
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ABSTRACT

In this paper the general equations of transfer for an atmosphere scattering radiation in accordance
with Rayleigh’s law and allowing for a partial elliptic polarization of the radiation field are formulated.
It is shown that, under these conditions, we must consider, in addition to the intensities I; and I, in
two directions at right angles to each other in the plane of the electric and the magnetic vectors, the
two further quantities

U=, — I, tan 2x and V = (I, — I,) tan 28 sec 2x,

where x denctes the inclination of the plane of polarization to the direction to which / refers and —#/2 <
B < + =/21is an angle, the tangent of which is equal to the ratio of axes of the ellipse characterizing the
state of polarization. (The sign of 8 depends on whether the polarization is right handed or left handed.)

It is found that the equations of transfer for I, I,, and U are of exactly the same forms as in cases in
which only partial plane-polarization is contemplated and that the equationfor Vis independent of others.
On Rayleigh’s law, V is scattered in accordance with a phase function, § cos 6. -

The solution of the equation for ¥ appropriate for the problem of diffuse reflection by a semi-infinite
atmosphere is also given.

1. Introduction.—In earlier papers! of this series the general equations of transfer
valid for an atmosphere scattering radiation in accordance with Rayleigh’s law? and
allowing for a partial plane-polarization of the radiation field have been formulated and
solved for the case of an electron-scattering atmosphere and for the problem of diffuse
reflection of a partially plane-polarized beam by a plane-parallel atmosphere. In this
paper we shall extend this discussion to include the case of partial elliptic polarization
of the radiation field.

2. The parametric representation of partially elliptically polarized light and its resolution
into lwo oppositely polarized streams. The composition of elliptically polarized streams with
no mutual phase relationships—The most convenient characterization of an arbitrarily
polarized light is due to Sir George Stokes,® and his representation with slight modifica-
tions will be used in this paper. However, in view of the general inaccessibility of Stokes’s
considerations, it may be useful to have them presented in a form suitable for our pur-

oses. ‘
P Consider, first, an elliptically polarized beam with the plane of polarization* inclined
at an angle x to a certain fixed direction,’ / (say). Let 8 denote the angle whose tangent
is equal to the ratio of the axes of the ellipse traced by the end-point of the electric
vector, the numerical value of B being supposed to lie between the limits 0 and 7/2 and

14p.J., 103, 351, 1946; 104, 110, 1946; and 105, 151, 164, 1947. These papers will be referred to as
“Papers X, XI, XIII, and XIV,” respectively. We shall also have occasion to refer to Paper IX (4p. J.
103, 165, 1946).

2 As in Papers XTI, XITI, and XIV, we shall include under “Rayleigh’s law’’ only that part of it which
pertain's to the state of polarization and the angular distribution of the scattered radiation.

3 Trans. Cambridge Phil. Soc., 9, 399, 1852; or Mathematical and Physical Papers of Sir George Stokes
(Cambridge, England, 1901), 3, 233-51.

4 We shall take this to coincide with the plane of vibration of the electric vector.
8 These directions are referred in the plane containing the electric and the magnetic vectors.
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the sign of B being positive or negative according to whether the polarization is right
handed or left handed. Finally,let £ denote a quantity proportional to the mean ampli-
tude of the electric vector, whose square is equal to the intensity of the beam:

I=[t0]%. (1)

Then, for the elliptically polarized beam with the specified characteristics, the ampli-
tudes & and £y1xpe in the directions x and x + 7/2 can be represented in the forms

£ = £ cos B sin wi and Extnrz = £ sin B cos wi , (2)

where w denotes the circular frequency of the light considered.
From equations (2) it follows that the amplitudes &; and £, in the direction / and in
the direction 7 at right angles to / are
£,= £ (cos B cos x sin wi— sin B sin x cos wi) (3)
and
£, = £ (cos B sin x sin wé+sin B cos x cos wi) . (4)

We can re-write the foregoing expressions for £; and £, in the forms

(0)

gr=£" sin(wi—e) and £ = £ sin(wi—e), (5)
where ]
£ = £ (cos? B cos? x +sin? B sin? x) /2, } ©
£ = £ (cos? B sin? x +sin® B cos? x) /2,
and
tan ¢, =tan x tan (8 ; tanes = —cot xy tan 8. (N
The intensities I; and I, in the directions / and r are therefore given by
I,= [£®]2=1T(cos? B cos? x +sin? B sin? x) (8)
and
I = [§®]2=T (cos® B sin? x +sin? B cos? x) . (9)
Furthermore, from equations (6) and (7) it follows that
280 £® cos (e, —¢,) =1 cos 28 sin 2x (10)
and
26" sin (e —e) = I'sin 28. (11)

Thus, whenever the amplitudes of an elliptically polarized beam in two directions at
right angles to each other can be expressed in the form (3), we can at once write the rela-
tions

I=I+1,= [+ [, (12)
Q=1I,—1I,=TIcos2Bcos2x= [£"]*— [£”]%, (13)
U= (I,—I)tan2x =TI cos 28 sin 2x =2£"¢Y cos 5, (14)

and
V= (I,—I,)tan 2B sec 2x =1 sin 28 = 2£" £ sin 4, (15)
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where
5 = €1 € - (16)

denotes the difference in phase with which the components of the electric vector vibrate
in the directions / and 7.

It will be observed that, according to the definitions of the quantities Q, U, and V
for an elliptically polarized beam,

I= @+ Ur+vye. | (17)

Now Stokes has shown that any elliptically polarized beam (and therefore, as it will
appear, any partially polarized beam) can be resolved into two other elliptically polar-
ized beams of specified states of polarization. Thus, a beam of intensity I polarized in
the direction x and of an ellipticity corresponding to 8 can be expressed as the result of
superposition of two beams polarized in the directions x; and x», and with ellipticities
corresponding to B, and ., and of intensities

sin? (B — B) cos? (xe — x) +cos? (B2 4 B) sin? (x2 — x)
sin? (Bz — B1) cos? (xe — x1) +cos? (B2 + B1) sin? (x2 — x1)

I, = I (18)

and
__sin® (81— B) cos® (x1 — x) +cos? (8, + B) sin® (x1 — x)
27 sin? (B; — B1) cos? (xz — x1) +cos? (Bz + By) sin? (xz — x1)

I, (19

respectively. Of these various modes of resolution, the one of greatest interest is the
resolution into oppositely polarized beams when

Bo=—py and xe=x1t+=, (20)

i.e., when the ellipses described are similar, their major axes perpendicular to each other,
and the direction of revolution of one contrary to that in the other. The importance of
this concept of opposite polarization arises from the fact that oppositely polarized beams
cannot interfere with one another.

For the case of resolution into oppositely polarxzed beams, equations (18) and (19)

become .
I, =T [sin? (B; + B) sin? (x1 — x) +cos? (B1— B) cos? (x: — x)] (21)
and

= I [sin? (B, — B) cos? (x1— x) +cos? (B:+ B) sin? (x: — x)]. (22)

When B; = 0, we have the resolution of the beam into plane-polarized components
at right angles to each other, and equations (21) and (22) become equivalent to equations
(8) and (9).

The expression (21) for I; can be expanded into the form

I.=31[I41 cos 2B cos 2x cos 283, cos 2x1+ I cos 28 sin 2 cos 2B, sin 2x; } (23)
+ I sin 28 sin 284] ,
or, in terms of the quantities Q, U, and V defined as in equations (13)—(15), we have

=2 [I+Qcos2B8icos 2x1+ U cos 2B sin 2x;+ V sin 28) . (24)

The corresponding expression for I, can be obtained by simply changing the sign of 8,
and replacing x; by x1 + 7/2. We have

=1 [I—Qcos 2B, cos 2x;,— U cos 2B, sin 2x;— V sin 284] . (25)
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Turning, next, to the consideration of the result of the superposition of a number of
independent streams of elliptically polarized light, i.e., of polarized streams which have
no phase relationships, we start with the following principle enunciated by Stokes:
“When any number of polarized streams from different sources mix together, after hav-
ing been variously modified by reflection, refraction, transmission through doubly re-
fracting media, tourmalines, etc., the intensity of the mixture is equal to the sum of
the intensities due to the separate streams.”

From this principle it follows, in particular, that, if each of the separate streams is
resolved into two states of opposite polarization, the resultant mixture will have intensi-
ties in the two states which are the sum of respective intensities of the separate streams.
Thus, if 7™, x™ and B™ define the intensity, the plane of polarization, and the el-
lipticity of a typical stream and if I{® and I'{™ are its intensities in the states of polariza-
tion (B1, x1) and (— B4, x1 + 7/2), respectively, then

=3I and I,=3Ip (26)

where I, and I, refer to the mixture.
Using equation (24) to express the intensities of the various streams in the component
(B1, x1), we have

I =% [ZI™ 420™ cos 281 cos 2x: +ZU™ cos 2B, sin 2x; +ZV ™ sin 28,]. (27)

The intensity of the resultant mixture in the state of polarization (x;, 8:) can therefore
be expressed in the form

I,=31[I4Qcos 2B, cos 2x;+ U cos 28, sin 2x,+ V sin 28,],  (28)

where
I=ZI"; Q=220 ; U=xum - V=zZVm, (29)

We have, of course, a similar expression for I».

From equations (28) and (29) it follows that a beam resulting from the superposition
of a number of independent streams of elliptically polarized light can again be character-
ized by a set of parameters, I, Q, U,and V, which are the sums of the respective param-
eters characterizing the individual streams. Moreover, any two polarized beams char-
acterized by the same set of parameters, I, Q, U, and V, will be optically equivalent in
the sense that ‘‘they will present exactly the same appearance on being viewed through
a crystal followed by a Nicol’s prism or other analyzer’’ (Stokes). On the other hand, it
should be noted that, for a polarized beam obtained in this manner, the relation (17)
(derived for an elliptically polarized beam) will not, in general, be valid, indicating the
fact that the mixture of a number of independent streams of elliptically polarized light
will, in general, lead to a beam which is only partially polarized. However, it is clear
that, under the circumstances of partial polarization, we can regard the light as a mix-
ture of an unpolarized beam of natural light, of intensity

I9=1— @+ U+ V)2, (30)

and a polarized beam, of intensity
I® = (Q*+ U2+ V212, (31)
the plane of polarization and the ratio of the axes of the ellipse of this polarized part

being given by
4

(CENESOIEN

An alternative way of regarding a partially polarized beam, defined in terms of the param-
eters I, Q, U, and V, is to express it as the resultant of two streams in the states of

tan 2x =g and sin 28 = (32)
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opposite polarization (8, x) and (—8, x + 7/2), where x and 8 are given by equations
(32). The intensities of the component streams in the two states can be readily written
down when it is remembered that unpolarized, or natural, light is equivalent to any two
independent oppositely polarized streams of half the intensity. The unpolarized part
(30) of the beam is, therefore, equivalent to a mixture of two independent polarized
beams, each of 1nten51ty 11 in the states of polanzatlon (B, x) and (=B, x + 7/2).

Combining the former w1th the polarized part I® (eq.[31]) in the same state of polar-
ization, we conclude that a beam characterized by the parameters I, Q, U, and V is
equivalent to two independent beams of elliptically polarized light, of intensities

IM =3 [T+ (Q+ U+ V?2)172] (33)
and

IO =3[I- @@+ U +VH], (34)
in the states of polarization

60 ad (- Bx+5), (35)
respectively, where

U .

x = 1 tan~ 16 and 6=%51p (Q2+U2+V2)1/2 (36)

The particular imPortance of this resolution arises from the fact that we may regard
the two streams I and I'™) as independent.

3. The source functions 3, I, Ju, and Jv.—From the discussion of Stokes’s rep-
resentation of partially polarized light in the preceding section, it follows that, for the

. purposes of formulating the equation of transfer, we may uniquely characterize the

radiation field at any given point by the four intensities I.(d, ¢), I.(8, ¢), U(¥, ¢),
and V(9, ¢), where ¢ and ¢ are the polar angles, referred to an appropnately chosen
co-ordinate system through the point under consideration (see Fig. 1 in Paper X), and
I and r refer to the directions in the meridian plane and at right angles to it, respectively.

To evaluate the source functions, (¢, ¢), 3:(9, @), Sv(d, ¢), and v (I, ¢), ap-
propriate to any point in the atmosphere, we shall first consider the contributions to
‘Ehgse /s)ource functions arising from the scattering of the radiation in the direction

¥, ¢).

The radiation in the direction (¢, ¢’) will be characterized by the intensities I;(¢,
o), I.(¢, ¢), U, ¢), and V(¥, ¢’). Equivalently, we may also characterize it by
the intensities

IN W, ) =3{0L+ 1+ [(Li— L)+ U+ V2] 2} o, (37)
IOV, o) =3{L+1L,—[I;— 1)+ U+ V2]V o, 0r (38)

in the states of opposite polarization,

6,0 ad  (=8x+]), (39)

and

respectively, where
U (¢, ¢')
I (¥, ") — I, (¥, ¢")

tan 2y =
(40)
V (&, o)
VILG@, o) — L@, NP+ U@, 0") + V2@, ¢) "
And, as we have already explained in § 2, in this type of resolution the polarized com-
ponents I (¢, ¢’) and I (¢, ¢') may be regarded as uncorrelated in their phases.

and sin 28 =
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We may accordingly consider the scattering of the radiation in the direction (¢, ¢')
as the result of scattering of the two independent, oppositely polarized components,
IN(Y, ¢') and ICN(¥, ¢’). Each of these polarized components will give rise to polar-
ized scattered beams, which will again have no correlation in phases. In other words, the
radiation scattered in the direction (¥, ¢) from other directions can be considered as a
mixture of a very large number of independent, elliptically polarized streams and can,
therefore, be combined according to the additive law of composition of the parameters
I, I,,U,and V.

Consider, then, the scattering of the elliptically polarized component I (¢, ¢’) in
the direction (¢, ¢’) and confined to an element of solid angle, dw’, into the direction
(3, ¢). Introducing the qualities, £’s, as in § 2, we may express the amplitudes £ and
£1)/, in the forms

+) = £(+, 0 i T
g}(( ) = £+ 0 cos B sin wi and E,ﬁ.w),

/2=g(+,0) sin B cos wi, (41)

where £ ¢ 9 is so defined that (cf. eq. [1])
IH (¢, o) = [gH 0]2, (42)

The amplitude, £{), when scattered in the direction (&, ¢) will lead to amplitudes
in the meridian plane through (¥, ¢) and at right angles to it which are proportional,
respectively, to (cf. Paper X1, egs. [31] and [32])

£ [, 1) cos x + (7, D) sin x] (43)

and
g [, r)cos x + (7, 7)sin x], (44)

where (cf. Paper X1, eq. [33]),
(I, I) =sin & sin &’ +cos & cos &’ cos (¢’ — @),

(r,0) = 4cos¥sin (¢’ —¢),
(45)
(I, r) = —cos ¢ sin (o' — o),

(r, 7) =cos (¢’ — o).

Similarly, the amplitude £}, will lead to scattered amplitudes in the directions,
parallel, respectively, perpendicular to the meridian plane through (&, ¢) of amounts
proportional to

£ ,[— (4, Dsin x + (7, 1) cos x] (46)

and
;I,)r/z[— (l7 7’) Sinx+ (7’, f)COS X]' (47)

The phase relationship between £(*) and £}/, will be maintained in these scattered
amplitudes and must, therefore, be added as amplitudes with the correct phase differ-
ences. Therefore, the elliptically polarized component, I (¢, ¢’), of the radiation in
the direction (¢, ¢’), when scattered in the direction (¢, ¢), will give rise to an elliptical-
ly polarized beam, the amplitudes of which in the meridian plane and at right angles to it
will be proportional, respectively, to

£ = £ 0 (4 cos Bsinwi+ A ., sin B cos wi) (48)

and
gla) =g+ 0) (Bx cos B sin wi? —I—Bxﬂ/2 sin B8 cos wi) , (49)
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where, for the sake of brevity, we have written
Ax=~+ (, D) cos x + (r,D)sinx,
By=+ (I, r)cos x + (7, 7)sin x ,

Ax+ﬂ'/2 = - (l> l) sin X + (7; l) CoS X ,

(50)

Bytasz=— (I, rYsin x + (7, #) cos x .

We can now re-write equatioﬁs (48) and (49) in the standard form (cf. eq. [5]),

£() = g0 0 gin (wt —¢,)
i l 1 ’} (51)
£ = £l 0 sin (wt —¢,) ,
where )
E( 0 = g(+,0) (Ai cos? B+ A3+1r/2 sin? B) /2 , } , 52)
(e O = £+ 0 (B! cos® B+ B2, sin? ) 1/2,
and y 3
tan g = — =Xt/ tan 8 ; tan e = — =X tan 8. (53)

Ax

With the amplitudes of the scattered radiation expressed in the form (51), we can
write down the contributions, d3{+) (&, ¢; &, &), A (3, ¢; ¢ &), dIE (D, ¢; ¥ &),
and d3F (3, ¢; ¥, ¢'), to the source functions, 3i(&, ¢), 3-(, ¢), Jv(?d, ¢), and
Sv(9, @), arising from the scattering of the elliptically polarized component, I (¢,
¢"), of the radiation in the direction (¢, ¢) and confined to an element of solid angle,
dw’, in the following forms (cf. egs. [8]-{15]):

A3 (9, g3 8, o) = m [ £ 0] 2de,
8
IS (B, 5 9, ¢/) = o[£ 0]

. - (54)
a3 (3, o; ', 0") =3 [2£(s O£ 0) cos (e — €2) | do”,

I3 (9, 039, ¢') = o (26 O£ O sin (0~ ) ] de’.

The various quantities which occur on the right-hand sides of the foregoing expressions
can be evaluated according to equations (50)—(53). Thus '

(£ 0] 2= [g(+ ]2 (Af( cos? 8+ Afﬁﬂ sin? B)
= J(H) (¢, ") { (I, I) 2 [cos? x cos? B +sin? x sin? B] (55)

+ (7, 1) 2 [sin? x cos? B +cos? x sin? B] + (I, 1) (7, 1) sin 2x cos 2B}; J
or, using equations (8), (9), and (14), we have
[£6 012 = (1, DTN (W, o) + (7, D2IH (W, o) + 1, ) (1, DU @, 0) . (56)

Similarly,
g 0]2= (1, N2ID, ") + (r, 1) D, )+ U, 1) (7, N UMD, 0. (57)
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Again, according to equations (50), (52), and (53),

- or

250G 0 cos (6 —€) = 21N (¢, @) (AyBy €08? B+ Axtr/oByta/zsin? B) )
=21 (¢, o) { (I, ) (I, ) [cos? x cos? B +sin? x sin? B] (58)
+ (r, ) (r, 7) [sin? x cos? B -+ cos? x sin? B]
+ [ D (r, r) + (7, D) (1, 7)]cos x sin x cos 28}
28080 0cos (61— e) =2, D, ) I, ) +2(r, 1) (r, ) IN(F, o) } (59)
+HLGD(r, )+ (r, DU, N]UD @, ).
And, finally,
2 558' 0)££8' 0) sin (e — €) = I[(+) (19,; ®) (AxBx+T/2 — By Ax+a72) sin 28 \
(60)

= I &, NG D (r, 1) — (1, D, N]sin 28, )
or

28 g O sin(a—e) =V @, )W D(r, 1) = (r, (1, n]. (61)

Equations (54) now become

X (0, 630, ¢) = o (L, D2IED (0, ¢) + (r, D2IED (8, ) } )
+ @D (r, ) UD (¥, ¢ }do',

I, @3 9, ¢) = { U NIEH (W, @) + (1, 12O (@, o) } .
+ (1, 1) (7, 1) U (S, ) Jdo'

I @, 030", ¢) = o= 1260 U DID @', ) +2(r, ) (r, NI W, ) } s

+L@G D (r, N+ (r, D), N]UD @, @) } do’,
and ,

435 @, 050, 0) = o [ D (r, 1) = (1D N1 VW @, ¢) du’. (69)

The corresponding contributions to the various source functions arising from the
scattering of the other polarized component, I (¢’, ¢), in the opposite state of polar-
ization, (—B, x + 7/2), can be obtained by simply writing (—) in place of (+4) in the
foregoing equations. And, since the intensities I, I, U, and V are simply additive
when streams of polarized light with no correlation in their phases are mixed, it is clear
that the contributions to the various source functions arising from the scattering of the
radiation [I,(¢, ¢'), [.(¢, ¢'), U(¥, ¢’), V(¥#, ¢')] in the direction (¢, ¢') and con-
fined to an element of solid angle, dw’, are

131, 05 0, &) =gl G DLW, @) + (r, DAL, (8%, ) }
4 (66)
+ U, D(r, DU (¥, @) } do’,
4,8, 99", ) =g (b NP1 @) + (r, N2, (8, ) } -
' + U, ) (r, U (@&, o) }dw, ’
30, 65 ¥y ) =t 2B D U D T @) +2(r, D (5, 1) L, ) } 9
B B LIRS IR L AC A ORE
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and
a3 v (&, ¢; ¢, ©") =§37; LG, D(r, ) = (r, DI, N]V (¥, ¢) do’. (69)

Integrating these equations over the unit sphere, we obtain the required source functions.
We have :

3 +1 2 ) , , , ,
Siw o) =ge [ LTT@GDLW, ) + (1 DL o) } 0
, + D, DU (W) o) }d:“',dﬂol’
3 + .21r ’ ’ 2 ' ’
8w o) =gz [ TG D, @) + (1 D ) } -
+ (4 (r, DU W, o) fdw'de
3 +1 2 , , , ,
Solme) =g [ [T120D0 DLW, ) +2(r D (r, r)L(u,<p)} .

+{LD(r, )+ (r, DU NIU W, ¢') }dr'de’,
and
3

+1 27
Svlwe) =g [ [ LADG 7 = (n DA NV W, ) dw'de!, (73)

where the direction cosines, p and u’, have been used in place of cos ¢ and cos .

Comparing equations (70)—(72) with the corresponding equations obtained in Paper
XTI (egs. [49]-[51]) for a partially plane-polarized radiation field, we observe that they
are of identical forms. The intensities I;, I, and U, therefore, satisfy the same equations
of transfer as in cases in which only partial plane-polarization is contemplated. The
equations of transfer for I;, I,, and U can therefore be expressed quite generally in vector
form as in Paper X1V, § 2. However, when elliptic polarization is contemplated,® an
additional equation for V' must be considered. This equation is, however, independent
of the others and is given by (cf. eq. [73])

dV(Sy M, ‘P) —

3 +1 27 ]
pO‘dS —V(S; My ‘P) +§7F‘/_:1 ‘/0' [(la l)(?’, r) — (77 l)(l7 1’)] % (74)

XV (S, .U',J ‘P’) dp/dgpl ’ J

where s measures the linear distance in the direction (¥, ¢) and ¢ denotes the mass-
scattering coefficient.
Finally, we may notice that, according to equations (45),

6D = (r, DU r) =pp'+ (A=) (1= u?)cos(p—¢'). (75)

The intensity V is therefore scattered in accordance with a phase function $ cos O.

4. The solution of the equation of transfer for V for the problem of diffuse reflection by
a semi-infinite plane-parallel atmosphere—In the problem of diffuse reflection we dis-
tinguish, as usual, between the part of the incident radiation which penetrates to vari-
ous depths and the diffuse scattered radiation. Similarly, we also distinguish between
the contributions to the source function arising from the scattering of the reduced inci-
dent radiation prevailing at any level and from the scattering of the diffuse radiation.

If 7Vodenotes the flux in V incident as a parallel beam on a plane-parallel atmosphere

6Tt is, of course, evident—and it is, indeed, required by the equations of transfer—that, on Rayleigh
scattering, partial elliptic polarization in the radiation field can be induced only by the direct incidence
of such radiation.
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at an angle cos™ ug normal to the boundary, the equation of transfer (74) can be re- -

written in the following form:

d
“_Y_(:Z’—W)_=V(T, 4 )
T

3 +1 2
S e = ) (= w) i cos (0 — ) 1V (W, @) du'de’ [ (T0)

8oy Uy
— § Vol = muo+ (1= 1) V2 (1 = ) 12 cos o] e/
From equation (76) it follows that the solution V(r, u, ¢) must be expressible in the

form
V(rywe) =VO(r,u) +VO(r, p)cos e, (77)

where, as the notation implies, V(@ and V® are functions of 7 and u only. Equation
(76) now breaks up into the following two equations:

dV© +1
m VT =VO— %uf V (r, u) p'dpu’ 4+ Voum e ko (78)
—1
and . :
@ +1

W2 yw —3 (1 =) V“’f vV (r, w) (1 —p)2dp

dr -1 } (79)

=3V (1 —p) V2 (1 — p2) e/,

Equations (78) and (79) are of the standard form considered in Paper IX, § 4. We
can therefore write down at once the angular distribution of the radiation reflected
from a semi-infinite atmosphere. We have

VO (0, p) = — 3 VoupoH, () Hy (o) —22 (80)
. p+ o

and

VO (0, w) = 3Vo (1 — )2 (1= ) VEHO (u) HO () 22— (81)
v v pt
where, in the nth approximation of the method of solution of the earlier papers, H, and
H(Y are H-functions (cf. Paper XIV) defined in terms of the roots of the character-
istic equations, :

PR QW (82)
241 — k2
and
3x~a;(1— #3)
== =" (83)
4oy 1—R2p2
respectively.

It will be noticed that the characteristic equation defining H{V is the same as the one
defining H,(x) in Papers X and XI. Hence H{"(u) is identical with H,(u).

Combining solutions (80) and (81) in accordance with equation (77), we have the
law of reflection:

V (ks @; to, 00) =2Vol — nuoH, (1) H, (o)

+ (1= )2 (1 — ) 2H, (1) H, (o) cos (¢ — o) | M_‘;_OHO.

(84)
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A table of the function H,(u) in the third approximation will be found in Paper XTI
(Table 3). A similar tabulation of the function H, is now provided (Table 1).

TABLE 1
THE FUNCTION H,(x) IN THE THIRD APPROXIMATION

73 Hoy() ® Hy(u) " Hy(u)
Ol 1.000 0.35............. 1.107 0.70............. 1.168
0.05.............. 1.021 A0 - 1.118 0.75............. 1.175
A0 1.039 ;. S 1.128 0.80............. 1.182
A5 1.055 S50 1.137 0.85. .. ccovnnnn. 1.188
2000 1.070 S5 1.146 090............. 1.193
25 1.084 60, 1.154 0.95............. 1.199
0.30.............. 1.096 0.65............. 1.161 1.00............. 1.204

k1 = 0.8540755; k2 = 1.3690329; k; = 4.1105114 .

Finally, we may remark that, according to the ideas developed in Paper XIV, the
exact solution for V' (u, ¢; mo, qoo) can be obtained by simply redefining the functions
H, and H,, which occur in equation (84) as solutions of the functional equations,

H,(u) —1+4uH ( )f 7, (”) widy’ (85)
and

B =143l 0 2 (e aw . (86)

Tables of solutions of these and other functional equations will be found in Paper X V1.
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