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ON THE RADIATIVE EQUILIBRIUM OF A STELLAR ATMOSPHERE. IX
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ABSTRACT

In this paper the problem of diffuse reflection by a semi-infinite plane-parallel atmosphere is con-
sidered along the lines of the earlier papers of this series. Explicit solutions are obtained for the cases
when the scattering of radiation by the atmosphere takes place in accordance with the phase functions
Ml4+xcos®), O<A<L1, —1<x2<1),and (1 + cos? ©). It is shown how simple, closed expres-
sions can be found for the angular distribution of the reflected radiation in a general nth approximation.
Only certain simple algebraic equations need be solved for their “characteristic roots” to bring the solu-
tions to their numerical forms.

Tables of certain constants and functions required for the practical use of the solutions are provided.

1. Introduction.—The phenomenon of diffuse reflection by a semi-infinite plane-paral-
lel atmosphere is of particular interest for astrophysics. It occurs in the study of plane-
tary illumination and of the reflection effect in eclipsing binaries. And it is basic for the
interpretation of reflection nebulae. While these various aspects of the phenomenon have
been the subject of numerous investigations, it is fair to say that, except in the context
of the reflection effect in binaries,! the fundamental problem in the theory of radiative
transfer has not received an adequately satisfactory treatment. However, interest in the
general problem has been revived by a series of recent papers by V. A. Ambarzumian ?
who has tried to eliminate the explicit solution of the equation of transfer by concen-
trating on the angular distribution of the reflected radiation alone. In this manner he
has been able to reduce the problem of characterizing the reflected radiation to the solu-
tion of a number of relatively simple integral equations, which he then seeks to solve
numerically by an iteration method. In this paper we shall show how, for the particular
cases considered by Ambarzumian, the method which has been developed in the earlier
papers of this series? can be successfully applied to yield explicit solutions for the angular
distribution of the reflected radiation. To reduce these solutions to their numerical
forms, it is necessary only to solve certain algebraic equations* for “‘characteristic roots.”
The method presented in this paper has, accordingly, an advantage over Ambarzumian’s
in that, in addition to reducing the necessary numerical work very considerably, it also
yields simple, closed expressions for the solution in a general #th approximation.

As we have already indicated, the basic problem is that of the radiative equilibrium
of a semi-infinite plane-parallel atmosphere exposed to a parallel beam of radiation of
flux 7F per unit area, normal to itself, and incident at an angle 8, normal to the boundary
of the atmosphere (see Fig. 1 in paper VIII). Moreover, in considering the general prob-
lem of diffuse reflection, it is necessary that we do not restrict ourselves to the case of
isotropic scattering but allow for the anisotropy of the scattered radiation in accord-
ance with a “phase function” p (cos ©). The meaning of this phase function is that

p (cos ©) Z—: )]

1 Cf. S. Chandrasekhar, Ap. J., 101, 348, 1945; also, C. U. Cesco and J. Sahade (in press).
2 J. Physics Acad. Sci. U.S.S.R., 8, 64, 1944, and references given in this paper.

3 See particularly 4p. J ., 100, 76, 117, 1944, and 101, 328, 348, 1945. These papers will be referred
to as “IL,” “IIL,” “VII,” and “VIII,” respectively. '

4 The degree of these equations depends on the order of the approximation in which the solutions are
sought.
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governs the probability that a pencil of radiation will be scattered in a direction inclined

at an angle O to the incident direction and confined to an element of solid angle dw. On

these assumptions, the equation of transfer, in a standard notation, is

al (7,0 ’SO)
dr

+sin & sin #’cos [ — ¢’] ) sin #'d¢'do’ — + Fe~e¢fp (— cos & cos 8

0s ¢ =71 (r,%,0) — / / I(r,d, ¢") p (cos® cosd’

(2)

—+-sin ¢ sin 8 cos ¢) ,

where it will be noted that we have assumed (as it entails no loss of generality) that the
radiation = F is incident along the direction ¢ = # — B and ¢ = 0.

In this paper we shall restrict ourselves to the consideration of the following two phase
functions:

p(cos®) =\ (1+xcos®)  (0<A<1,0< || <), (3)
where N\ and x are two constants and
p (cos©) =2 (14cos?0). | 4)

The phase function (4) corresponds, of course, to Rayleigh’s law of scattering. But the
phase function (3), in addition to introducing an asymmetry in the backward and the
forward scattering, allows also for the conversion on scattering of the radiant into other
forms of energy in terms of the “albedo,” X. The study of diffuse reflection with the phase
function (3) is particularly suitable for the analysis of planetary illumination.s This is,
moreover, also the case for which Ambarzumian has obtained some numerical results.
We shall, accordingly, study this case in some detail. In a later paper we shall outline
the method for solving the equation of transfer (2) with a general phase function and
relate our method to Ambarzumian’s.

I. DIFFUSE REFLECTION IN ACCORDANCE WITH
THE PHASE FUNCTION A(1 + x cos 6)

2. Theréduction of the equation of transfer—For a phase function of the form (3), equa-
tion (2) becomes

dI(T ,SD) A o ’ ’ ' . ’
N et SOy fﬂ I(r,d',¢)[1+x(cosd cosd )

~+sin & sin ¢’cos [¢ — ¢’] ) ] sin 0’d0’d¢’—§Fe—T sec 81 45 (— cos & cos B
4

os ¢
()

~+sin ¢ sin B cos ¢) | .
The form of equation (5) immediately suggests that we seek a solution in the form
I(r,8,¢) =10 (7,8 +ID (r,9)cose. (6)

Substltutlng this form for I(r, &, ¢) in equation (5), we find that the equation breaks up
into two equations for ¥ and IV, respectively. We have

dI® ‘
- =JO -1 (0) ’ r_1 (0 Nt
M dT I }\/;1 I (T,#)d# 2x>\/./¢/:1 I (T,[.L)Md/l } (7)

— LNFe=7%¢8 (1 — xu cos B)

5 See a forthcoming paper in which the solutions obtained in this paper are used to interpret the known
data on planetary illumination.
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and
arm
— (1)___ .2 () ’ —_ 2
e R XV BTl i CY MRV TR }(8)

— 1xNFe =B gin B/ (1 —pu?),

where we have written u for cos 4. We shall now show how the two foregomg equations
for (9 and 7™ can be solved.

3. The solution of equation (7) in the nth approximation.—As in paper II, we replace
the integrals which occur on the right-hand side of equation (7) by sums according to
Gauss’s formula of numerical quadratures and obtain an equivalent system of linear
equations. In the nth approximation this is

(0)
.dlio 0 __
?

=IO a2, 1® — LaerpZa I Y
dr

9
— L\Fe—rseeB (1 — xu; cos B) (i=i1,....,in),} '

where the various symbols have the same meanings as in paper II.
In solving the system of equations represented by equation (9) we first seek the gen-

- eral solution of the associated homogeneous system

dl;
s dr

=I;,—3N\2a;l;— o pZap;l;  G=%1,....,£n) (10)

and then add to it a particular integral of the nonhomogeneous system.
To obtain the different linearly independent solutions of the system (10), we proceed

as follows: Setting
I,=g;e’*® (1=j—_1,....,-__|—n) (11)

in equation (10), where the g;’s and % are constants, unspecified for the present, we obtain ‘
(1 4+ uik) g =3NTa;g;+ 30NwZau g, - (12)

Equation (12) implies that g; must be expressible in the form

_ A +Bu;
S =Tk

where A and B are two constants independent of 7. Substituting equation (13) back into
equation (12), we find

(i=’i1""- 1in)7 (13)

: iy @G A+Bu) 4 aiui (A +Buj) 14
. 4+Bﬂ1—2>\2 l—f—,u,k +2»x}‘ﬂtz 1+/.ljk . ( )
Siﬁce this equation must be valid for all 2’s ,we must require that
and
B=3%x\(AD,+BD,) (16)
;n'here we have introduced the quantity
D, =3 k" (17)

14puk
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These D,,’s satisfy the recursion formula (VIII, eq. [52])

1,2 |
o D= (% ensosa— Do) o a
in particular,
‘ 1 1 1
D1=Z(2—‘D0) and D2=_Z D1=——k—2(2—D0). (19)
Returning to equations (15) and (16), we can re-write them in the forms
- (2=XDy) A—ND:B=0 (20)
and. ' ,
*ND1A+ (xAD;—2)B=0. (21)
In order that 4 and B do not vanish identically, we must require that
(2—=ADg) (#ADy—2) + 2N’ Di=0. (22)
Using the recurrence relation (18), the foregoing equation can be reduced to give
2=)\[D0—f<1—k—)i Dl], (23)
or equivalently (cf. eq. [19])
' 2=N[Do+x(1—2X) D.]. ' (24)
In other words, & must be a root of the equation
2=)\2a,~[1—l—x(1—)\)p§]; (25)
1+ uik
or, since ¢; = a_j, and u; = — p—_j,
il e (1 =) uf] ‘
1_>\; — : - 29

This is the characteristic equation for 2. Equation (26) is of order » in £? and for X # 16
admits of 2z distinct nonvanishing roots, which must occur in pairs as

+ke (a=1,....,m). (27)
From equation (20) (or [21]) we now conclude that
2— 2Dy
=2 -7 2
B AND, 4, (28)
or, according to equation (23), that
B= _x_(lk—_)\) 4. (29)
Hence (cf. eq. [13]) ) (1= o)k
. — X - 1% .
. = = + 1 c oo .
g: = constant T Furk (i=+1, , £n). (30)
Thus the homogeneous system of equations (10) admits the 2% linearly independent
integrals 1 Fx (=) ik S N
_= Fo(L—=MN wpi/ka 5, <z=_ ,....,~n>
I, = constant e e a=1,.... . (31)

6 We treat the case X = 1 separately (cf. n. 8, p. 177).
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The general solution can therefore be written in the form

I =%)\F32M4[1—x(1—>\)u1/k] e

a=1 1+M’
[14 2 (1= N\ pi/Edl (32)
M_. 2 (1 —N) th . . ’
+E 1= aika e ; G==41,....,%n),
where M1, (a = 1,.. .., n) are 2n constants of integration.

To complete the solution of the nonhomogeneous system (9), we need a particular
integral. This can be found in the following manner:
Setting
IO = i \Fh e~ 7508 G==1,....,%n) (33)

in equation (9) (the A/s are certain constants unspecified for the present), we verlfy
that we must have

(14 u;secB) by =3INZahj+ Lo pZauki+1— xp; cos B . (34)
Equation (34) implies that the constants #; must be expressible in the form

oyt — '
k’—l—f—p,-secﬁ G==x1,....,+n), (35

where the constants v and & have to be determined in accordance with the relatioh
v+ wid = [3N (YEo+ 6E) + 1] +pi[3aN (YE1 + 8Ey) —x cosB], (36)

where we have used E,, to denote

E, = 5 @i 37
71 + jsec B
From equation (36) we conclude that the equations which determine v and § are
(2=NE)y—NE;6—2=0 (38)
and
ANEiy+ (xNE;—2) 6 —2xcos3=0. (39)
Solving these equations, we find |
1
" vaill+a (=04l | o
a; XY\L—=A)uj
1-A E 1-— ,u?. sec? 8
and
= —yx(l—2A)cosB. : , 41

" In reducing the solutions for v and § to the foregoing forms, use has been made of the

recursion formula (cf. eq. [18])

Em =COSB (% €m s odd —Em—l ) (42)
which the E,’s satisfy.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1946ApJ...103..165C

9T T TIOR3 TIB5C!

P

A

O
&
[=h

170 S. CHANDRASEKHAR

The expression (40) for v has a simple representation in terms of the roots k%, . . . . , k2
of the characteristic equation (26);” for, considering the function

gl ta (=N k) ’
T(z) =1—\ ; T (43)
~we observe that it vanishes for
2 = ki (a=1,....,n). (44)
Accordingly,
[Ta-uaT (), (45)

7=1

which is a polynomial of degree # in z, cannot differ from

n

IT G-k (46)

a=l

except by a constant factor. The constant of proportionality can be determined by com-
paring the coefficients of the highest powers. In this manner we find that

IT -

T(z) = (= 1)ngd.... (47)

[T 0-uo
i=1

Hence,

[T A= risect )
1 (=n

i

T T Ge?B) W2 i ’ (48)
(sec? B — &2)
a=1 -
or, somewhat differently,
(cos® B — u?)
(=)
= . 49
[T N T (49)
[ (1 —#2cos?B)
a=1 :
In terms of the functions (cf. II, egs. [58] and [59])
P =] (u—ud (50)
i=1
and 4 :
Rw =]] O ~tw, (s1)
a=1 :

7 The analysis which follows is similar to that in paper VIII, following eq. (40).
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we can express v alternatively in the form

_ 1 P (cos B) P (—cos B)
‘Y—pi.... p2R (cos B)R (—cos B)

(52)

When we return to equations (33) and (35), it is seen that the nonhomogeneous sys-

. tem (9) admits the particular integral (cf. eq. [41])

1—x2(1—N uscosf .
T sec B G=+1,....,+n). (53)

Adding to this particular integral the general solution of the homogeneous system which
is bounded for r — «, we have

IgO) — :1_ )\F e T secB,Y

$ — — . —kgr
10 = [ HlLZv QoM ikl e

pyy 1 +.U'ika (54)
vy[1—2(1—=2X) p; cos 8] e"fseca] ;
=4+1,...., %+
+ 1+ p;sec B (i=%1, £
where the constants M, (e = 1,....,n) have to be determined from the boundary

conditions at r = 0. .
At 7 = 0 we have no incident radiation derived from the material. Accordingly, we
should require that

I®=0 at 7=0 andfor i=1,....,n. (55)
Hence the equations which determine M, are
ZMa[l—{—olc(_l—-.k)\)m/ka] +7[1+016(_1—'?\)/Zc056] —0 } (56)
a=t pifte i S€€ G=1,....,7).

If we now let G(u) denote

_ N Mol =M p/k]  v[1+x(1 =N ucosB]
G(“)—; 1— k. + 1— psecB B0
then
G(u) =0 G=1,....,n). (58)

The angular distribution of the part of the reflected radiation corresponding to I®
(cf. eq. [6]) can be found from the source function

IO =1rZa IO +x uZa,pu IO +1Fe =8 (1 —xpcosf),  (59)
according to the formula

10 0 = [ 30 () e—f/n%{—. (60)

The quantities on the right-hand side of equation (59) can readily be evaluated in terms
of the solution (54). We find

IO (0,p) =3 NFG(—w). (61)

This is in agreement with solution (54) for = 0 and at the points of the Gaussian divi-

~sion, u = Ui
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We shall now show how an explicft formula for G(u) can be found without having to
solve for the constants M,.
Consider the function

(1 —p sec B)R(/-L)G(u) (l—u sec 8) H (1 = kap) G () . (62)

This is a polynomial of degree #» 4 1 in u which vanishes for p = p;,2=1,...., 7.
Consequently, there must exist a proportionality of the form

(1 —usec B)R (w) G () <P (u) (utc), (63)

where ¢ is some constant. The constant of proportionality can be found from a compari-
son of the coefficients of the highest powers of u on either side. On the left hand the
coefficient of u**!is

(-1)"k1....kﬂx(1—)\)[E‘Z—l:—zfsecﬂ—l—fycosﬁ], (64)

while on the right-hand side it is unity. Hence,

G =(—1)"k; .. kx(l )\)[E—k?secﬁ—}—ycosﬁ]

' a=1 "a (65)
><P(/u) ptc .
R(pw) 1—nsecB’

Now, according to equation (57),

limit (1—pusecB)Gw) =v[14+2(1 =N cos?g].

u—cos (66)

Substituting for v and G(u) from equations (52) and (65) in equation (66), we obtain

(—1)nk1....knx(1——>\)[i%secﬁ+ycosﬁ]§gc"sm( 0s f+¢)
a=1l "a ﬁ) (67)
_ 142 (1 —X)cos?B P (cos B) P(—cosf)
- Bl R (cosB)R(—cosB)’

or

(—1)nk1....kﬂx(1—x)[zz‘ki sec 8+ cos B
= (68)
_1+4x(1—=X\)cos? B P(—cosB) 1
- ,uf,ui R(—cosB) cosB+c¢’

In virtue of this relation, equation (65) becomes

G () = 14+2(1—N)cos?BP(—cosB)P (u) utc (69)

2

pio.u? R(—cosB)R (u) (cosB+¢c)(1—pusecB)’

Equation (69) spec1f1es G(p) completely except for the constant ¢, which remains to be
determlned
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From equatlons (57) and (69) it follows that
1—|—x(1—-)\)coszﬁP(-—cosB) c

G(O):‘;M“—!—’Y:(- D M1 e e fhn R(—cosfB) cosB+c¢” (70)
On the other hand, since (cf. eq. [57])
" [T+ =N E2IM, = limit (1—Fku)G(u),
' p— ko (71)
we have
. 1+xz(1—=Ncos?BP(—cosB) c¢+ki'
M. = B R(—cosﬁ) cos B+ ¢ (72)
where
—1
P(k.") (73)

e =TT Fs(A—N) &7 (1 — k_Lsec IR, (kD)

In equation (73) we have introduced the function R,(u), which is obtained from R(x) by
omitting the factor (1 — &.u) in its product representation. Thus (cf. eq. [51])

Ra(w) =] (1 —kap. (74)

67a

Substituting now for M, and v according to equations (72) and (52) in equation (70),
we obtain, after some minor reductions, the following equation, which, as we shall see,
determines c:

. _ Z _ 1 P (cos B)
c[(—l) BLees B ;m“ 1+x(1—>\)c0526R(cos,8)] 1(75)
E cos BB P (cos B)
= 1—I—x(1—>\)c0526R(cosB)

In order that we may use equation (75) to obtain an explicit formula for ¢, we have to
sum the two series

E Ma and iy (76)
a=1 a=1 ka
Considering first Zm,, we have to evaluate

P (kY

(77)

2 [T+2a(1—NE(A—Ektsec )R (7Y
We .re-write this in the form

n B n kn,P(ka_l

;’”“— _C"Sf’; [T+a(T—NE 1~k cos BR, (kD)
___cosB }7‘: kP (E2") Ra (cos B) ' (78)
~ RfcosB) ~t [1+x(1—N\) k2R (B :
_ cos B
= '—m f(COS 6) J

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1946ApJ...103..165C

174 . S. CHANDRASEKHAR

where -

: kP (k2 ') Ra ()
)= eIV W (79)

a=1

As defined in the foregoing equation, f(z) is a polynomial of degree » — 1 in z which
assumes for z = k' the values

ke ,
-1y — —1 =
f(ka)_1+x(;—>\>k:2P(ka) (a 1,....,n).(80),
Hence, ' ,

: z[1+2 (=N 22] f(2) —P(2) - (81)
is a polynomial of degree # + 2 in z which vanishes for z = £;! (d =1,....,n). There
must, accordingly, be a relation of the form :

z2[1+2(1—N) 2] f(2) =P(3) +R(2) ({22 +nz+¢), (82)

where £, 9, and ¢ are certain constants. These constants can be found in the following -
manner:
First putting z = 0'in equation (82), we conclude that

= (=D 1y oo uy ' (83)
Next, comparing the coefficients of z"*2 on either side of equation (82), we have
N _ N P (k)
—(=1D)ky ... R (1 )‘);[l—i-x(l—)\)ka—?]]{a(k;l) (84)
- = (= 1)k ... kot

or
P(ETYH

g:—x(l",')\);[1+x(1_>\)ka—2]Ra(ka—1>- (85)

And, finally, equating the coefficients of z**! on both sides of equation (82), we have

. "1\ & P (k)
(—1) x(l—k>k1----kn[<;k‘a);[1+x(1—>\)k;2]Ra(k;1)

3 3 8 (86)
Pk 1) = n—1 ( 1)
_;ka“+x(1“>‘)k22]R.,(k;1)]‘( D=tk by ;k_a ¢
| | F (= Dy by
Substituting for ¢ from equation (85) in the foregoing equation, we find
n —1
77=-—x(1—-)\)2 P(ka ) (87)

ElTx(A—NEIR (B

a=1

Returning to equation (78), we now have, according to equations (82) and (83),

}n:m - 1 P (cos B)
a=1 " 14+2(1—2N\)cos?B (cos B) ,(88)‘

+£‘ cos? B+ 75 cos B+ (—1)"*1;;.1....;;,,,],
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With this expression for Zm., the terms in the square brackets on the left-hand side of
equation (75) can be reduced to

cos B8
x(l_)‘)l—l—x(l-—)\) Cos2ﬁ(pcosﬁ+a), (89)
where
" P (k) .,
= T AN EAR G (T e 00)
and ’

-\ P (k")
o ;k;[wx(l—x) EIR (B o1

are two constants, depending only on the characteristic roots .
Considering next the summation Zm,/k. which occurs on the right-hand side of equa-
tion (75), we have to evaluate (cf. eq. [73])

a Pk
Z:k Ek [T+2(1—=N) k2 (1 —ktsec )R (BT ° (92)
We re-write this in the form (cf. eq. [78] )
' ZN M _cosB
;—EJ “Rcosp) ® (cos B) , | (93)

where

P (ke )Ra (2)

() = 2 T e =0 bR (o4)
is a polynomial of degree (» — 1) in z. It is seen that
P (k")
1
A VY Sk (95)
Hence,

[14+2(1—=)N) 2] g(2) —P(2) (96)
is a polynomial of degree # + 1 in z which vanishes forz = k;' (e = 1,...., n). We
conclude that

[1+2(1—N 2] g(z) =P(2) +R(2)(az+d), (97)

where @ and b are constants. To determine them, we first set z = 0 in equation (97) and
find ‘(cf. eq. [90])

: P (kY . )
b= Y T —w iR G T (7D = O8)

Next, comparing the coefficients of the highest powers of z on either side of equation
(97), we find (cf. eq. [91])

P (k")
a=—x(1— )‘)Zk 1+x(1_)\)k_2] a(k:1)=—x(1—)\)a. (99)
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We have thus shown that ‘
[14x(1—2) 2] g(z) =P(2) ~R()[e (1 =N oz—p].  (100)
Hence (cf. eq. [93]),

N Mo . cos B P (cos B)
< ko 17+x(1—)\) cos? B LR (cos'B)

—x(l—)\)acosﬁ—}—p]. (101)

Combining equations (75), (89), and (101), we now obtain

cos f8

14+2(1—N)cos2p

Cex (1= (p cos B + o)

_cos B[z (1—X\)ocosB—p]
142(1—2N)cos?B !

(102)

or

_ x(1—=N)ocosB—p
C——x(l—)\)(pcosﬁ'—}-a)’ (103)

which is our formula for ¢. With ¢ given by equation (103) we readily verify that

1+x(1—2N)cos?B
P2x(@—N(pcosB+o)

cosB+c=

- (104)
and

14+ x(1—X\)cos?B

cosB+¢ (utc)

=',1;[x<1—x><pcosﬁ+v>u—xﬂ**)”COS“”] (105)

=71;{p—x(1—)\) {o (cos B—u) —pucosB}].

Accordingly, equation (69) becomes

1 P(—cosB)P(u) p— (1 —N)[o(cos B—pu) — pu cos B]
o uZp R(—cos B)R(u) 1—pusecp

which is our formula for G(u).
The angular distribution of the reflected radiation correspondlng to the part 7(® is
given by (cf. eq. [61])

Gw) =— , (106)

K-

I® (0, u) =i NFG(—u). (107)
With G(u) given by equation (106) we can express 71(”(0, u) in the form
cos B
I (0,) = INFHO () HO (cos ) 5 op 7 o8
X [1=2(1=2) {2 (cos p+) +u cos B}],
- where we have introduced the function H® (u) defined by
HO (4) = (=1 P(—p) (109)

B1eee g RO (—p) "
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In equation (109) we have added a superscript 0’ to R to emphasize the fact that this
function is defined in terms of the characteristic roots appropriate to the system of equa-
tions governing I{?. ,

For A = 1 the solution (108) for the angular distribution reduces to

cos 8
cosB+u’

and it may be readily verified that this is identical with the solution found in paper VII1
for the reflection effect in eclipsing binaries.?

4. .The solution of a general type of integrodifferential equation of which equation (8) isa
special case—Equation (8) is typical of a large class of equations which occurs in this
theory. It is of the general type

d[ +1
po—=I—d (1) f1 I(r, p)¥(p')du’ —eFemsB (cos B)¢ (u), (111)
where € is a constant and y¥?(u) is a polynomial of degree 2m in u. It will therefore be
convenient to have the solution of this general equation appropriate to the conditions
of our problem.
Since ¢2(u) is rational, it suggests that we express I(7, u) in the form

I(r,u) =¢(r,uw)y¥ () (1117

'

IO (0, p) =3FH®O (u) HO (cos §) (110)

and obtain for ¢ the equation
d +1
B8y f o (r, wY W dp B eTeoRy (cosB) . (112)
T —1

To solve equation (112) in the n#th approximation, we replace it by the system of 2%
linear equations

'y (Zt“: ¢i~é2a1¢2 (/J,]) ¢j_€F6—rsecﬂ¢ (COS B) (7/= ily sy i_n) ’ (113)

where ¢; denotes ¢(7, u;) and the rest of the symbols have their usual meanings. In this
connection, it should be noted that, in order that we may be consistent in our scheme of
approximation, it is necessary that the order of the approximation

nzm, (114)
where it may be recalled that 2m is the degree of the polynomial ¥?(u). »
Considering first the homogeneous system

d¢s
#i dr

=¢; —eZay? (u;) ¢; (i==%1,....,+n), (115)

8 Tt should, however, be pointed out in this equation that for A = 1 the characteristic equation allows
only # — 1 distinct nonvanishing roots for k2. (In fact, the characteristic equation [26) reduces to the one
considered in paper 11 independently of x for X = 1.) Accordingly, in this case there exist only (27 — 2)

independent integrals of the form _
constant _ t=x1,...., n

I; = eFkar ’ ’
1+ pika , a=1,....,n—-1

for the homogeneous system (10). On the other hand, when A = 1, equation (10) admits the further
integral.

I;=b(r+ﬁ;m+@) G=+1,....,%n)

with two arbitrary constants b and Q. Nevertheless, it can be shown that the procedure of formally put-
ting A = 1in eq. (108) actually leads to the correct solution.
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associated with equation (113), we readily Verlfy that it admits 2» linearly independent

integrals of the form
b = constant o Fhar <¢=il,....n,in>,(116)

1+ u;ra a=1,
where t ko, (e = 1,....,n) are 2n distinct® nonvanishing roots of the characteristic
equation
_ ap? (u;)
1=2e 2 13—#27;2 NS V)

To find a particular integral of the nonhomogeneous equation (113), we set
= ey (cos B) h;e7sech G=+1,....,+n), (118)

where the /#’s are constants unspecified for the present. Inserting this form for ¢; in
equation (113), we find that

hi (1 4u;secB) =eZa;hpl? (u;) +1. . (119)

The constants /; must therefore be expressible in the form

b 1+4+pu,;secB’ / (120)
the constant # in turn being determined by the condition
_ a? (uj)
¥ 672——'_—1+p,~sec,3+1' (121)
or
1
Y= .
_ ay? (NJ (122)
1= 2 Z 1—u%sec’B — 2sec 8

By arguments similar to those adopted in the reduction of analogous equations (VIII,
eq. [40] and eq. [40] in the preceding section) it can be shown that the formula for y can
be reduced to the form
_ 1 P(cos B) P(—cosB)
FY‘_,uf....pﬁR(COSﬂ)R(—COSB)’ (123)

where it should be noted that

R = [ (1= kaw) (124)
a=1

has to be evaluated in terms of the characteristic roots of the system under consideration.
9 An exceptional case may arise if
“ 1
D a(uy) = 70
3 €
j=1

when k2 = 0 will be a root of the characteristic equation. However, this is not likely to happen in prac-
tice. And, even if it does, it can be shown that our final solution (141) for the angular distribution of the
emergent radiation will continue to be valid.
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When we return to equations (118) and (120), it is seen that equation (113) admits
the particular integral
__eyFy (cos B) .
" 1+ p;secB

Adding to this particular integral the general solution of the homogeneous system (115)
which is compatible with the boundedness of the solution for 7 — « , we have

bi —rsecB (t=4+1,....,+n). (125)

n Mae—kar ,-Ye—-rsecﬁ ] .
;= =41,....,+ 126
0¥ eFtP(COSB)[ﬁz_;H_Mka-l-1_,_msecl3 ,Q +1, , xn), (126)
where the M,’s (a = 1, ...., n) are » constants of integration, to be determined from
the boundary conditions at 7 = 0, namely, that here
¢—; =0 (1=1,....,n). (127)

In terms of the function

N M. v
G (w) —Ll—uka-l_l—p,secﬁ’ (128)

a=1

the boundary conditions are
G(u;) =0 t=1,....,n). (129)

The angular distribution of the emergent radiation can also be expressed in terms of
G(uw), for (cf. egs. [111] and [126])

I(0,p) =eFd (cos B)¥ (w)G(—p). (130)

We shall now show how an explicit formula for G(u) can be found without having to
solve for the constants M,. /
When we consider the function

(I—psec B)R(u)G (u), : (131)

it is seen that it is a polynomial of degree # in u which vanishes for u = u; (@ = 1,
., #). It cannot therefore differ from P(u) except by a constant factor, and the con-

stant factor can be found from a comparison of the coefficients of the highest power of u.

In this manner we find that ,

— — n < Ma P(,u) 1
Gw) =(—=1)rky.... k, [;k—asecﬂ-l-'y]]a(#) [—psech (132)
On the other hand, since (cf. eq. [128])
| © limit ‘ |
'y=#_)cosﬁ(1—use06)G(u), (133)
we have, according to equations (123) and (132),
1 P(—cosB)P(cosB) _, ... M.
u?....u2R (—cosfB)R (cosfB) = (=Drkr.oo by [; k. Secﬁ+7] (134)
P (cos B)
'XR (cos B) -
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In other words,

M 1 P (—cosB) ( (135)

(= 1)k ""k”[;—HSCC‘B—*—’Y]:pf....p.f‘R(—-COSﬁ) ’
In virtue of this relation, equation (132) becomes
G( )= 1 P(u)P(—cospB) 1
B B RWR(—cosB) 1—psecB’ - (136)

Consequently, the formula giving the angular distribution of the reflected radiation can
be expressed in the form (cf. eq. [130])

100, ) =¥ (cos B) ¥ (u) H () H (cos §) =52, (137)
where (cf. eq. [109])
H () = (=1 P(:.u). (138)
cun R(—u)

5. The solution of equation (8) in the nth approximation.—To apply the results of the
preceding section to the solution of equation (8), we have only to set

LN and  ¢Y2P(p) =1—p?. (139)

€ =

N

Moreover, according to equation (114), solutions must be sought in approxxmatlons
higher than the first.
The characteristic equation is (cf. eq. [117])

a; (1—ud)
xz ’1_”%; : (140)

and the angular distribution of the reflected radiation corresponding to the part I of T
is given by
cos 8

cosB+u’

In equation (141) we have added a superscript “1” to H to emphasize the fact that the
R(u) occurring in the definition of H (u) (cf. eq. [138]) has to be evaluated in terms of the
roots of the characteristic equation (140).

6. Angular distribution of the reflected radiation: numerical results. —Combining the
results of the preceding sections, we can express the angular distribution of the reflected
radiation in the form (cf. egs. [90], [91], [108], and [141])

IM (0, u) =L1xNFsin & sin BHD (u) H® (cos B) (141)

TG0, w) = PAF[H® ) BO ) §1= 2 (1= (S +a) +u')}

) (142)
Fa(l—p)t(1—p) s HO (u) HO (1) cos ¢] L
+u
where we have written u’ for cos 8. For specified values of x and A the solution becomes
determinate in terms of the positive nonvamshlng roots @ and kP (a = 1,....,n)
of the characteristic equatlons . o
Naill4a(1—N)u)
1=>\Z; e H (143)
= 7
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and |
a; (1—pd
R (144

i=1

respectively. In particular, the functions H?(u) ( = 0 and 1) have the representation
IT 4w
=1
H® (p) = (1=0,1). (145)
M1 ey g
[J]a-row

a=1

For the purposes of the practical evaluation of the roots £{) and {9 it is convenient
to transform equations (143) and (144) in the following manner (cf. VII, p. 336, n. 6):
Letting

2ai (142 (1 =N pll uim a; (1 ud) uim
Agg:;’ — Lk and AQD = Y‘ g ;kz’ , (146)

we readily establish the recursion formulae

A= Al - o 20D Comy 14

k? 2m—1 2m+1
and
w_1T.w 2
Bom =73 [Azi,.~2 T = 1] (m < 2n); (148)
these, together with the relations
1 2
(0) == _ (1) = —
A N and  Af o~ (149)

determine the A’s very simply. And in terms of these A’s the characteristic equations
are expressible in the form

Z Afpon = | (150)

where the psn’s are the coefficients of u?” in the Legendre polynomial Pa,(u). It will be
noticed that, in contrast to equations (143) and (144), equation (150) does not require
an explicit knowledge of the Gaussian weights and divisions.

In Tables 1 through 8 the functions H® (u) and H® (u) are tabulated for various
values of the parameters which enter into them. Certain other auxiliary quantities, such
as the characteristic roots, are also tabulated. Except for the case x = 0, all the quan-
tities tabulated are those in the second approximation. However, for the case x = 0,
the solutions have also been found in the third approximation. It would appear, from an
inspection particularly of Table 4, that the solutions in the second approxunatlon pro-
vide an accuracy of 1-2 per cent over the entire range of the variables.

A comparison of our results with Ambarzumian’s tabulation for the case x = 1 indi-
cates that his method of solving his integral equations leads to errors which exceed 5 per
cent over certain ranges of the variables.
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TABLE 1

THE CHARACTERISTIC ROOTS £{® AND &{”’ AND (1—\)/p FOR VARIOUS VALUES OF & AND A

x=1.0 £=0.5 x=—0.5 x=—1.0
A .
B0 | RO fa-na/p| B0 | B0 [1-0a/6| B0 | O [1=nasp]| £ | &0 |1-Na/s
0.9......... 0.4401| 2.0534| 0.1348 | 0.4847| 2.0543| 0.1259 | 0.5633| 2.0561; 0.1129 | 0.5987| 2.0571| 0.1079
0.8......... 0.6114| 2.139%4 L1477 | 0.6637] 2.1426 .1402 | 0.7567| 2.1491 .1285 | 0.7987| 2.1525 .1238
0.7......... 0.7346| 2.2299 .1438 | 0.7864| 2.2358 L1380 | 0.8794| 2.2481 .1286 | 0.9215| 2.2545 .1246
0.6......... 0.8313| 2.3243 .1318 | 0.8785! 2.3327 L1277 | 0.9640| 2.3503 .1206 | 1.0029| 2.3595 L1175
0.5 ........ 0.9103| 2.4219 L1153 | 0.9507| 2.4322 L1124 | 1.0246| 2.4535 .1074 | 1.0585| 2.4645 .1053
0.4......... 0.9765| 2.5223 .0956 | 1.0090| 2.5333 .0938 { 1.0691| 2.5559 .0906 | 1.0970] 2.567S .0892
0.3.:0...... 1.0328| 2.6249] .0738 | 1.0570| 2.6352| .0728 | 1.1023| 2.6564| .0710 | 1.1237| 2.6672| .0702
0.2......... 1.0815| 2.7291 .0503 | 1.0972| 2.7375 .0499 | 1.1275| 2.7544 .0491 | 1.1420| 2.7629 .0487
0.1......... 1.1239] 2.8347| 0.0256 | 1.1315] 2.8396| 0.0256 | 1.1466| 2.8494| 0.0253 | 1.1540] 2.8543] 0.0253
TABLE 2
THE FUNCTION HO®(u) FOR VARIOUS VALUES OF A AND FOR
2=1.0 IN THE SECOND APPROXIMATION
u A=0.9 A=0.8 A=0.7 A=0.6 A=0.5 A=0.4 A=0.3 A=0.2 A=0.1
Ot 1.000( 1.000| 1.000| 1.000| 1.000| 1.000| 1.000] 1.000 | 1.000
0.1........... 1.148 1.121 | 1.100 | 1.082 1.066 | 1.051 1.037 1.024 | 1.012
0.2........... 1.275 1.221 1.180 | 1.145 1.115 1.088 | 1.064 | 1.041 1.020
0.3........... 1.387 1.306 | 1.246 | 1.197 1.155 1.117 1.084 | 1.054 | 1.026
0.4........... 1.488 | 1.380 | 1.302 1.240 | 1.187 1.141 | 1.100 | 1.064 | 1.0631
0.5........... 1.579 | 1.445| 1.350| 1.276 | 1.214| 1.160 | 1.114| 1.072 | 1.034
0.6........... 1.663 1.503 | 1.393 1.307 1.237 1.177 ) 1.125 1.079 | 1.037
0.7........... 1.739 1.555 1.430 | 1.334 | 1.257| 1.191 1.134 | 1.084 | 1.040
0.8........... 1.810 | 1.602 1.463 1.358 1.274 ) 1.203| 1.143| 1.080 | 1.042
0.9........... 1.876 | 1.645 1.493 1.380 | 1.289 | 1.214 | 1.150| 1.094 | 1.044
1.0........... 1.937 1.684 | 1.520 | 1.399 | 1.303 | 1.223 1.156 | 1.097 | 1.046
TABLE 3
THE FUNCTION H©®(x) FOR VARIOUS VALUES OF A AND FOR
2=0.5 IN THE SECOND APPROXIMATION

3 A=0.9 | A=08 | A=0.7 | x=0.6 | A=0.5 | A=0.4 | A=0.3 A=0.2 | A=0.1
| 1.000 | 1.000| 1.000 | 1.000 | 1.000| 1.000 | 1.000 | 1.000 | 1.000
0.1........... 1.143 1.115 1.094 1.077 1.061 1.047 1.034 1.022 1.011
0.2........... 1.265 1.209 | 1.168 | 1.135 1.106 | 1.081 1.058 | 1.037 | 1.018
0.3........... 1.371 1.288 1.229 1.182 1.142 1.107 1.076 1.048 1.023
0.4........... 1.465| 1.356 | 1.280 | 1.220 | 1.170 | 1.128 | 1.091 1.057 | 1.027
0.5........... 1.551 1.416 | 1.323 1.252 1.194 | 1.145 1.102 1.064 | 1.031
0.6........... 1.628 | 1.468 | 1.361 1.280 | 1.215 1.159 | 1.112 1.070 | 1.033
0.7........... 1.698 | 1.515 | 1.394 1 1.304 | 1.232 1.172 1.120{ 1.075| 1.036
0.8 .......... 1.763 1.557 | 1.424 | 1.325 1.247 | 1.182 1.127 1.080 | 1.038
0.9, 1.823 1,595 1.450 | 1.344 | 1.260 | 1.192 | 1.133 1.083 | 1.039
1.0........... 1.878 | 1.629 | 1.474 | 1.361 1.272 1.200 | 1.139 | 1.087 1.041
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TABLE 4
THE FUNCTION HO(u) IN THE SECOND AND THIRD APPROXIMATIONS
FOR VARIOUS VALUES OF A AND FOR x=0.0*
A=0.95 A=0.9 2=0.8 A=0.7 A=0.6
u | Second | Third | Second | -Third | Second | Third | Second | Third | Second | Third
Ap- Ap- Ap- Ap- Ap- Ap- Ap- Ap- Ap- Ap-
- proxi- proxi- proxi- proxi- proxi- proxi- proxi- proxi- proxi- proxi-
mation | mation | mation | mation | mation | mation | mation | mation | mation | mation
O.............. 1.000{ 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 { 1.000 | 1.000 | 1.000
0.1............ 1.158 | 1.171 | 1,138 ] 1.150 | 1.110 | 1.120 | 1.089 | 1.097 | 1.072 | 1.078
0.2............ 1.297 | 1.314 | 1.255 | 1.270 | 1.199 | 1.211 | 1.158 | 1.168 | 1.125 | 1.133
0.3............ 1.421 |1 1.439 | 1.356 | 1.373 | 1.272 | 1.285 | 1.214 | 1.224 | 1.168 | 1.176
04............ - 1.533 | 1.552 | 1.445 | 1.462 | 1.335 | 1.348 | 1.260 | 1.270 | 1.202 | 1.210
0.5............ 1.636 | 1.655 | 1.525 | 1.541 | 1.389 [ 1.401 | 1.299 | 1.309 | 1.231 | 1.242
0.6............ 1.731 | 1.749 | 1.597 | 1.612 | 1.437 | 1.:448 { 1.333 | 1.342 | 1.256 | 1.269
0.7............ 1.819 | 1.836 | 1.662 | 1.677 | 1.479 | 1.490 | 1.362 | 1.371 | 1.277 | 1.292
0.8............ 1.901 | 1,918 | 1.722 | 1.736 | 1.517 | 1.527 | 1.388 | 1.396 | 1.295 | 1.312
0.9............ 1.978 1 1.994 | 1.777 { 1.790 | 1.551 | 1.560 | 1.412 { 1.419 | 1.311 | 1.329
1.0, ... 2.050 | 2.065 | 1.828 | 1.840 | 1.582 | 1.591 | 1.432 | 1.439 | 1.326 | 1.345
A=0.5 A=0.4 A=0.3 A=0.2 A=0.1
© Second | Third | Second | Third | Second | Third | Second | Third | Second | Third
Ap- Ap- Ap- Ap- Ap- Ap- Ap- Ap- Ap- Ap-
proxi- proxi- proxi- proxi- proxi- proxi- proxi- proxi- proxi- proxi-
mation | mation | mation | mation | mation | mation | mation | mation | mation | mation
O, 1.000 { 1.000 { 1.000 { 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.1............ 1.056 { 1.062 | 1.043 | 1.047 | 1.031 | 1.034 | 1.020 | 1.022 | 1.009 | 1.010
0.2............ 1.098 | 1.104| 1.074 | 1.079 | 1.052 | 1.056 | 1.033 | 1.036 | 1.016 | 1.017
0.3............ 1.130 | 1.136 | 1.097 | 1.102 | 1.069 | 1.072 | 1.043 | 1.045 | 1.021 | 1.022
0.4............ 1,155 [ 1,161 | 1.116 | 1.120 | 1.081 | 1.084 | 1.051 | 1.053 | 1.024 | 1.025
0.5............ 1,176 | 1.182 | 1.131 | 1.135| 1.092 | 1.094 | 1.057 { 1.059 | 1.027 | 1.028
0.6............ 1.194 |} 1,199 | 1.143 | 1.147 1 1,100 | 1.103 | 1.062 | 1.064 | 1.029 | 1.030
0.7............ 1.209 | 1.214 | 1.154 | 1.157 | 1,107 | 1.110 | 1.067 | 1.068 | 1.031 | 1.032
0.8, ........... 1.222 11.227 | 1.163 1 1.166 | 1.113 | 1.115| 1.070 | 1.072 | 1.033 | 1.034
0.9............ 1.234 1 1.238 | 1.171 | 1.174 | 1,119 | 1.121 | 1.074 | 1.075 | 1.034 | 1.035
1.0............ 1.244 | 1.248 | 1.178 | 1.181 | 1,123 | 1.125 | 1.076 | 1.078 | 1.036 | 1.036

* The characteristic roots for this case are those which have been tabulated in a different connection by C. U. Cesco, S. Chan-
drasekhar, and J. Sahade (4. J., 100, 355, 1944; esp. p. 358, Table 1). However, it should be noted that A, as used in the present
paper, is 1 — X, as used in the paper just quoted.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1946ApJ...103..165C

9T T TIORC TIB5C!

A,

[{e]]
&,
[=h

184 S. CHANDRASEKHAR
TABLE 5
THE FUNCTION H((u) FOR VARIOUS VALUES OF A AND FOR
#=—0.5 IN THE SECOND APPROXIMATION
M A=0.9 | A=0.8 | A=0.7 | A=0.6 | A=05 | A=0.4 | A=0.3 | A=0.2 | rx=0.1
1 1.000| 1.000| 1.000{ 1.000| 1.000{ 1.000} 1.000 | 1.000 1.000
0.1........... 1.134 { 1.105| 1.084 | 1.067 | 1.052 | 1.039 | 1.028 | 1.018 | 1.008
0.2........... 1.246 | 1.189 | 1.148 | 1.116 | 1.090 | 1.067 | 1.047 { 1.030 | 1.014
0.3........... 1.343 § 1.258 | 1.199 | 1.155}| 1.118§ 1.088{ 1.061 | 1.038 | 1.018
04........... 1.427 | 1.316 | 1,241 | 1.186| 1.141 | 1.104 | 1.072 | 1.045; 1.021
0.5........... 1.502 | 1.366 | 1.277 | 1.211 | 1.160 | 1.117 | 1,081 | 1.050 | 1.024
0.6........... 1.570 | 1.409 | 1.307 | 1.233 | 1.175{ 1.128 | 1.088 | 1.055| 1.026
0.7........... 1.630 | 1.447 | 1.334| 1.252| 1.188 | 1.137| 1.095| 1.058 | 1.027
0.8........... 1.686 | 1.482 | 1.357 | 1.268| 1.200| 1.145] 1.100| 1.061 | 1.029
0.9........... 1.736 | 1.512 1.377 | 1.282}{ 1.210 ] 1.152 | 1.104 | 1.064 | 1.030
1.0........... 1.783 | 1.540 | 1.395| 1.294 | 1.218 | 1.158 | 1.108 | 1.066 | 1.031
TABLE 6 .
THE FUNCTION H®(u) FOR VARIOUS VALUES OF A AND FOR
2#=—1.0 IN THE SECOND APPROXIMATION
M A=0.9 | A=0.8 | A=0.7 | X=0.6 | A=0.5 | A=0.4 | A=0.3 | A=0.2 | A=0.1
O............. 1.000| 1.000| 1.000| 1.000| 1.000| 1.000| 1.000| 1.000| 1.000
0.1........... 1.130 | t1.101 | 1079 | 1.062| 1.048| 1.036| 1.025| 1.016 | 1.007
0.2........... 1.238 | 1.180 | 1.139| 1.107 | 1.082 | 1.060 | 1.042 | 1.026 | 1.012
0.3........... 1.330 | 1.244 | 1.186| 1.142 | 1.107 | 1.079 | 1.054 | 1.034| 1.016
04........... 1.411 ) 1,208 | 1.225| 1.170 | 1.128 | 1.093 | 1.064 | 1.039 | 1.018
0.5........... 1.482 | 1.344| 1.257 | 1.193 | 1.144| 1.104| 1.071| 1.044 | 1.020
0.6........... 1.545 | 1.384 | 1.284 | 1.212 | 1.157 | 1.113| 1.077 | 1.047 | 1.022
0.7........... 1.601 | 1.419| 1.307 | 1.229 | 1.169 | 1.121| 1.083 | 1.050 | 1.023
0.8........... 1.653 | 1.450 | 1.328 | 1.243 | 1.178 | 1.128 | 1.087 { 1.053 | 1.024
09........... 1.700 | 1.477{ 1.346 | 1,255 | 1.187 | 1.134| 1.090| 1.055| 1.025
1.0........... 1.743 | 1.502 1 3621 1.266| 1.194 | 1.139 | 1.094 | 1.057 | 1.026
TABLE 7
THE CHARACTERISTIC ROOTS k£1) AND kgl) FOR VARIOUS VALUES OF #\
. k](.l) kél) oy k%l) kél) s kl(.l) kél) 2 k](_l) kél) -
1.0 | 1.1212] 2.4875|| 0.5 | 1.1454] 2.7222|] —0.1 | 1.1638| 2.9835|| —0.6 | 1.1742| 3.1866
0.9 | 1.1270] 2.5357|] 0.4 | 1.1491| 2.7672|| —0.2 | 1.1661| 3.0251|| —0.7 | 1.1759| 3.2259
0.8 | 1.1323] 2.5833|] 0.3 | 1.1525}] 2.8116]] —0.3 | 1.1683] 3.0662|| —0.8 | 1.1775| 3.2646
0.7 | 1.1370| 2.6302|| 0.2 | 1.1556| 2.8554{] —0.4 | 1.1704] 3.1068|| —0.9 | 1.1791| 3.3030
0.6 | 1.1414| 2.6765|| 0.1 | 1.1585| 2.8987|| —0.5 | 1.1723| 3.1470|| —1.0 | 1.1805| 3.3409
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TABLE 8
THE FUNCTION H®(u) FOR VARIOUS VALUES OF x\ IN THE SECOND APPROXIMATION

M aA=1.0| 2A=0.9 | 2A=0.8 | 2A=0.7 | 2A=0.6 | aA=0.5 | 2A=0.4 [ 2A=0.3 | 22A=0.2 | 2A=0.1
O.......... . 1,000 { 1.000 { 1.000 { 1.000 [ 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.1............ 1.040 | 1.035]1.031 | 1.027 | 1.023 ] 1.019 | 1.015 | 1.011 | 1.007 | 1.003
0.2............ 1.067 | 1.060 | 1.052 | 1.045 | 1.038 | 1.031 | 1.024 | 1.018 |-1.012 | 1.006
0.3............ 1.088 | 1.077 | 1.067 { 1.058 | 1.049 | 17040 | 1.031 | 1.023 | 1.015 | 1.007
0.4............ 1,103 1 1.091 | 1.079 | 1.068 | 1.057 | 1.046 | 1.036 | 1.027 | 1.018 | 1.009
0.5............ 1.115 | 1.101 | 1.088 [ 1.075 | 1.063 | 1.052 | 1.040 | 1.030 | 1.019 | 1.009
0.6............ 11,125 1.110 [ 1.095 | 1.082 | 1.068 | 1.056 | 1.044 | 1.032 | 1.021 | 1.010
0.7............ 1.133 1 1.117 | 1.102 { 1.087 | 1.073 | 1.059 | 1.046 | 1.034 | 1.022 | 1.011
0.8............ 1.140 | 1.123 | 1.107 [ 1.091 | 1.076 | 1.062 | 1.049 | 1.036 | 1.023 | 1.011
0.9............ 1.146 | 1:128 | 1.111 { 1.095 | 1.079 | 1.064 | 1.050 | 1.037 | 1.024 | 1.012
1.0............ 1.151 | 1.133 | 1.115 | 1.098 | 1.082 | 1.067 | 1.052 | 1.038 | 1.025 | 1.012

I’ A= 2A= A= aA= A= aN= A= A= | a\= A=

—0.1 —02 | —03 ] —04 | —05 | —06 { —0.7 | —0.8 | —0.9 | —1.0

0. v 1.000 | 1.000 | 1.000 { 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.1............ 0.997 { 0.993 | 0.990 | 0.987 | 0.983 | 0.980 | 0.977 | 0.974 | 0.971 | 0.968
0.2............ 0.994 | 0.989 | 0.983 | 0.978 | 0.973 | 0.968 | 0.963 } 0.958 | 0.954 | 0.949
0.3............ 0.993 | 0.985 | 0.979 | 0.972 | 0.966 | 0.960 | 0.954 | 0.948 | 0.942 | 0,936
0.4............ 0.992 | 0.984 | 0.976 | 0.968 | 0.961 | 0.954 | 0.947 | 0.940 | 0.933 | 0.927
0.5............ 0.991 | 0.982 | 0.973 | 0.965 | 0.957 { 0.949 | 0.941 | 0.934 | 0.927 | 0.920
0.6............ 0.990 | 0.980 | 0.971 | 0.962 | 0.954 | 0.945 { 0.937 | 0.929 | 0.921 | 0.914
0.7............ 0.989 | ¢.979 | 0.970 | 0.960 | 0.951 | 0.942 | 0.934 | 0.925 | 0.917 | 0.909
0.8 ........... 0.989 | 0.978 | 0.968 | 0.958 | 0.949 | 0.940 | 0.931 | 0.922 | 0.914 | 0.906
0.9............ 0.989 | 0.978 | 0.967 | 0.957 | 0.947 | 0.938 | 0.928 | 0.920 | 0.911 | 0.903
1.0............ 0.988 | 0.977 | 0.966 | 0.956 | 0.946 | 0.936 | 0.926 | 0.917 | 0.908 | 0.900

II. DIFFUSE REFLECTION IN ACCORDANCE WITH RAYLEIGH’S PHASE FUNCTION

7. The reduction-of the equation of transfer—For Rayleigh’s form of the phase function
the equation of transfer appropriate for the problem of diffuse reflection is (cf. eq. [2])

dI((Ty 07 ﬁo) _

os ¢ 7

1 sin? ¢ sin? ¢’ 4 2 cos ¢ sin & cos ¢’ sin ¢’ cos (¢ — ¢’)
3 sin? & sin® ¢’ cos 2 (¢ — ¢’) | sin ¢'d¥'de’ — B Fe—rsech

X [14cos? & cos? B+ 1 sin? & sin? B — 2 sin & cos ¢ sin B cos B cos ¢

The form of equation (151) suggests that we seek a solution in the form

% sin? & sin? 8 cos 2¢] . /

3 T 2%
I(T,Y?,so)—l—@’r‘/o‘/; I(7, 9, ¢)[14cos?d cos?d’ )

I(r,d8,0) =IO (7,8) +I0 (7,3 coso+I® (r,d)cos 2¢ .

r (151)

(152)
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- Inserting the foregoing form for I(r, ¥, ¢) in equation (151), we find that it breaks up

into three equations, one for each of the functions I®, I® and I®. These are

dIo 3 +1
= J(O) (0) / — 2 !
=10 =15 [ [, 10 k) G —w d

+1 (153)
+ut IO (r, 1) B = 1) du’ |~ Fer=e8 [ (3~ cost §)
—1
_ +p2(3cos?Bp—1)],
(1 +1
WY =I“)—%#(1-u2)*f IO (7, p") p' (1= p") tdp’
r 1 ‘ (154)
4+ 2F sin B cos Be7secBy (1 — pu2)t
and
dI® +1 .
p——=1I® — g% (1 —p?) IO (r,u) (1 —p™) du' '
dr ’ L, } (155)
— E%F sin? ‘ge—-rseeﬂ(]_ __'u2) LV

8. The solution of equations (153), (154), and (155) in the nth approximation.—Con—'
sidering equation (153) first, the equivalent system of linear equations in the nth ap-
proximation is '

(0)
dl;
pe = 1 — (20,3 — u) I +uBa; (35— 1) ]

— 2sFe %8 [(3—cos?B) +uZ(3cos?B—1)] G=4+1,...., +5n),

(156)

where the various symbols have their usual meanings.

It is seen that the homogeneous system associated with equation (156) is the same as
that considered in paper III, §§ 3-5. Accordingly, the complementary function of
equation (156) is the same as the general solution (III, eq. [36]) of the homogeneous sys-
tem. Accordingly, to complete the solution we need only find a particular integral. This
can be found in the following manner:

Setting

IO = B Fh e (i=+1,....,+n) (157)

" in equation (156) (the ks are certain constants unspecified for the present), we verify

that we must have :
hi (14 pisec B) = [FZazh; (3—p3) +3 —cos’ B] } (138)
4 +ui[f52aih; (Bu—1) +3 cos’ B—1] .

The foregoing equation implies that the constants /; must be expressible in the form

6 — pf'y .
pom D Y =+1,....
b=t G=F1...,En), (159)
where the constants vy and & have to be determined in accordance with the relation
2 ) _ _ _ 2 .
8§ —uiy={% [6 (B3E0—Ey) —v(3E;—E,) | +3 —cos 8} \ (160)

4 u2 {3 [6(3Es~Fo) —y (3Es—E) | +3cos’8—1} J
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and where the E’s have the same meaning as in equation (37). From equation (160) we
conclude that the equations which determine vy and § are

=% [0 BB —Ey) ~y(3E:—E) ] +3—cos?8 - (161)
and ,
v=75 [y (BE,—Ez) — 8 (BE;—Ey) | — (3 cos*f—1). (162)
Solving these equations, we find that
1
" = n 2
13N a3 —p)) (163)
- 8].=1 1—pu2sec? B
and .
6=37. , (164)

In reducing the solutions for v and § to the foregoing forms, repeated use has been made
of the recursion formula (42) which the E’s satisfy.
It is seen that the formula (163) for v bears the same relation to the characteristic

equation (III, eq. [30]) 7

3 ai (3 —pd)

4=t 1 —pulk?
as the v defined in paper VIII, equation (40), bears to the corresponding characteristic
equation (10) of the same paper. We can, accordingly, express v in the form (cf. egs.
[52] and [123])

1 P (cos B)P (—cos B)

7=”‘f"--Mf.R(COSB)R(—cosB)’ (166)
where
n—1
R(p) = H (1 — kou) (167)
a=1

has naturally to be evaluated in terms of the (# — 1) nonvanishing positive roots of the
equation (165).
Returning to equation (157), we now express the particular integral in the form

2
1o = g&fpe—wecﬂﬁ{;{éc—g G=41,....,4n). (168)

Adding to this particular integral the general solution of the homogeneous system which
is compatible with the boundedness of the solution for 7 — =, we have

n—1
(0) = 2 __;ﬁ’_ —rsecﬁ]
19 = #F| (3= )E1+ k+X+71+ “sec B ° (169)
t=41,....,+n),
where the constants M, (a = 1,....,#n — 1) and X have to be determined from the

boundary conditions at r = 0.
At 7 = 0 we must require that
\ I" =0 t=1,....,n,7=0). (170)
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In terms of the‘ function
n—1
Ma. Y
G = (3 —pu? —t X+ @ —pt) — 171
() = ( p>;1_#ka+ + G- s (171)
the boundary conditions are

Gu) =0 (t=1,....,mn). (172)

The angular distribution of the reflected radiation corresponding to the part I(® of I
(cf. eq. [152]) is also expressible in terms of G(n). We have

I (0,u) = FHFG(—p). (173)
As in the earlier cases, we shall now show how an explicit formula for G(u) can be

found without having the necessity to solve for the constants M, and X.
Consider the function

n—1
(1—psecB)RWGMw) = (L—psech) [[ 1 —kap)G(n). (174)
a=1 .

This is a polynomial of degree # 4+ 1 in u which vanishes for p = us, 2 =1,...., n.
Consequently, there must exist a proportionality of the form
(1—psec BIR(u)G(p) «P (u) (p+c), - (173)

where ¢ is some constant. The constant of proportionality can be found from a compari-
son of the coefficients of the highest powers of x on either side. In this manner we obtain

n—1 /
Gu) =(=1)rk, .... kn_l[secﬁ;k—:—l- y]R (1;)(51) 8‘:_522’6) , (176)

On the other hand, since
limit
—cos 8

73 —cos’ ) = (1—psecB)G(n), Q7T

we have, accbrding to equations (166) and (176),
3—cos? BP(cos B)P (—cosB) . .\, AM, /
p2 ... p2R(cos B)R(—cosB) (=D)rkse. kn_l[sec '3%{—7;_!_7]

P (cos B)
R (cos B) (co

(178)

X sB+c¢).

In other words,

R M, _3—cos?BP(—cosB) 1
(=D kl""k”—l[seCB;%:—l_y]—yi,...nyR(—cosB) cosB+c¢” (179)

In virtue of this relation, equation (176) becomes
1 P(u)P(—cosB) (3—cos?B)(u—+c)

e = . 180)
() 2o uRm)R(—cosB) (1 —pusecp)(cosB+c) (180)
It remains only to determine c.
From equation (171) it follows that
X=G(++V3) =G(—+V3). (181)
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With G(u) given by equation (180), the foregoing equation reduces to
P(++3) c¢++3 P(—+3) ¢—+3

R(+/3) w0sB— V3 " R(=~/3) cosB+ V3" (182)
Solving for ¢, we find :
_ \/BA(\/3+cosB) —~B(/3 —cos B) (183)
- A(V34cosB) +B(+/3—cosB)’
where we have written v v
__P(+ 3) _P(—+3)
A=mivs o B=R U (184)
With this value of ¢ we verify that
_ (4 —B) (3 —cos®B)
; COS B+ ¢ = = V3 +cos ) +B (/3 —cos B) (183)
an
_ pte _
(3= cot B) o= =[4435 (V3 +eos B (V3-w) | 56
2 (V3—cos B) (V3 ) |
The formula (180) for G(u) becomes ‘
G (w) = [£(V/3+cos B) (V3 — )
| +<1”—1”>.<‘5;— 0s B) (V3 )] x BLZCos BIP () 1 e
— £ ¢ K R(—cosB)R(u) 1 —pusecB’
where y

With G(u) given by equation (187) the angular distribution of the reflected radiation
corresponding to I(® can be written in the form

cos f3

cos B +u (189)
X [E(V34cosB)(V3+u) + 1 =8 (V3—cosB)(V3—u)].

This completes the solution of equation (153).
Turning our attention next to equations (154) and (155), we observe that both these
equations belong to the general type considered in § 4. We can, therefore, write down at

once the expressions governing the angular distribution of the emergent radiations
IV, u) and 1P (0, u). We have (cf. eq. [137])

IO (0,p) = 5 FHO® (u) H® (cos B)

cos f3

() = —3Fg ; () (1) _cosp
IM (0, u) 3F sin B cos B sin & cos SHD (u) H™ (cos B)cos T (190)
and
I®) (0, 4) = o sin’ § sin® SH () HO (cos ) b, (191)

where H® (u) and H® (u) are to be evaluated in terms of the positive nonvamshmg roots
of the equations

42“3?1_]221)“] (192)
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and
a; (1— I‘J) '
162 Tt (193)

respectively.1

9. The angular distribution of the reflected radiation: numerical results.—Combining
the solutions (189), (190), and (191) in accordance with equation (152), we obtain the
angular distribution of the reflected radiation. We have

1(0,p) =55F[H® (u) HO (u) {E(V3+w)(V3+u) + (1 -8
X (V3= (V3=pu)} —dpp’ (1= pH1 —pP HO W) HO (w)cos ¢ | 494,

4

+ (1 =pH (1 —u') H® () HO (u') cos 2¢] —E—;,
ptu'l

where we have written u’ for cos .

TABLE 9

THE CONSTANTS OCCURRING IN THE FORMULA FOR THE ANGU-
LAR DISTRIBUTION OF THE RADIATION REFLECTED FROM A
SEMI-INFINITE PLANE-PARALLEL ATMOSPHERE IN ACCORD-
ANCE WITH RAYLEIGH’S LAW IN VARIOUS APPROXIMATIONS

Second Approximation Third Approximation Fourth Approximation

£{0) =3.08624 B0 =4 337235
k<0>—1 20629 k<0)—1 562180
k<0>—1 096117

£ =1.870829

£ =0.29926 £ =0.29646 £ =0.29561
B{V) =2.86760 BV =4.15155
E§Y =1.13000 kY =1.46094
kY =1.06316
2P =2.79728 B =4.02457
E{?) =1.15840 k<2)—1 49449
k(2> 1.07209
10 Tn terms of the quantities
a;(1 — phpimt? @ v sl - #,)2#2’"
7=1 7 1= J'

the equations (192) and (193) can be reduced to the form (cf. eq. [150})
n
Z Aé;‘,,? bom =0,
m=0 .

where the p.,,’s have the same meanings as in eq. (150). The A’s themselves can be evaluated simply from
the recurrence formulae
2

1) — 2| A1)
Bam = kZ[A‘m-? Om + D(m + 3)] ’

AL — }_[A(2) — 8 ]
mo | T2 O — 1DC2m+ D2m + 3) )’
and the relations
Aél) =% and Aéz) = 18,
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In Table 9 the various constants which occur in the foregoing solution in the first
four approximations are collected together. In Table 10 the function H(”(u) in the
second, third, and fourth approximations is tabulated, while in Table 11 the functions
H®(u) and H®(u) are tabulated in the second and the third approximations. An in-
spection of these tables reveals that the accuracy of the third approximation is within 1
per cent over the entire range in which the functions are defined.

TABLE 10

THE FUNCTION H{®(u) IN SECOND, THIRD, AND
FOURTH APPROXIMATIONS
(Rayleigh’s Case)

u Second Third Fourth
Approxi‘mation Approximation | Approximation
O . 1.000 1.000 1.000
0.1........ ... ... 1.217 1.233 1.242 .
0.2, 1.424 1.448 1.460
0.3......... .. ... 1.626 1.653 1.665
04, . ... ... 1.823 1.853 1.864
0.5 . 2.018 2.048 - 2.060
0.6................. 2.210 2.241 2.252
0.7l 2.401 2.432 2.443
0.8 oo 2.591 2.622 2.632
0.9................. 2.779 2.810 2.820
1.0 i 2.967 2.998 3.008
TABLE 11
THE FUNCTION H®)(u) AND H®(u) IN THE SECOND
AND THIRD APPROXIMATIONS
(Rayleigh’s Case)
HO (u) H®) (4)
# Second Third Second Third
Approxi- Approxi- Approxi- Approxi-
mation mation mation mation
0. .. 1.000 1.000 1.000 1.000
0.1................. 1.008 1.008 1.011 1.013
0.2................. 1.014 1.014 1.019 1.021
0.3........... .. .... 1.019 1.018 1.024 1.026
0.4................. 1.022 1.022 1.028 1.030
0.5, .. .. 1.025 1.024 1.031 1.033
0.6................. 1.028 1.027 1.033 1.035
0.7, .. 1.029 1.029 1.035 1.037
0.8, ... ... ... ... 1.031 1.030 1.037 1.038
0.9................. 1.033 1.032 1.038 1.040
1.0 ..l 1.034 1.033 1.039 1.041

As stated in the introduction, applications of the solutions obtained in this paper to
the problem of planetary illumination will be found in a forthcoming paper.

I wish to record my indebtedness to Mrs. Frances H. Breen for assistance with the
~ numerical work. :
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APPENDIX

The methods used in §8 enable us to complete the explicit solution of the constants of in-
tegration and the law of darkening for the problem considered in paper III. Thus, considering
the function (I1L, eq. [55])

\ n—l1 La
| S(u)=(3—u);m+Q—u, | (1)
we have already shown that (cf. III, egs. [59] and [60])
" _ P _
where ,
o= (=h k(1= 2F) (3)

is a constant and P(u) and R(u) are defined as in III, equations (57) and (58). In paper III the
constant ¢ was left undetermined. We shall now show how o can also be determined.
Setting » = ++/3, respectively, —+/3 in equations (1) and (2), we have (cf. eq. [186])

P(+v3)

0= V3=oRFva =4 e
and
0+ \/3=UH§—=JB. | (5)
Solving these equations, we find
0= v3zte, (6)
and .
r=2Y3. 1%

With o thus determined, the constants L, also become determinate according to III, equation
(63). ‘
The law of darkening takes the form

343 P(—u)

=3 —_y) =
or, introducing the function H(”(u) as in equation (189), we can write
I(0,p) =NFHO (4), (9)
where v
3vV3
7\—(—1) #1'“.”"2_(._3_‘__—147. (10)

In the second, third, and fourth approximations A takes the values

AN=0.42064 (second approximation) ,
=0.41950 (third approximation) (11)
=0.41916 (fourth approximation) .
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