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ABSTRACT

In this paper a detailed theory of the radiative equilibrium of an atmosphere in which the Thomson
scattering by free electrons governs the transfer of radiation is developed. In particular, allowance has
been made for the polarization of the scattered radiation; and the equations of transfer for the intensities
I;and I, referring, respectively, to the two states of polarization in which the electric vector vibrates in
1Ehe rgeridéan plane and at right angles to it, are separately formulated. The equations of transfer are

ound to be

al,

3 +1 ' +1 +1
r=li—g3g sz I(r, w)(1 = p)dp’ + u2f I(r, ) @p? — 2)dp’ + u? Iy(r, #')dl"g
-1 -1

-1
and

dI' 3 + ! ’ + n,,r 1
ME=I,--—§§ Ir(‘T,#)d{.L +f Li(r, W) u'%dp %
-1 —

These equations have been solved in a general #nth approximation, and their explicit numerical forms have
been found in the second and the third approximations.

It is found that the theory predicts different laws of darkening for the two states of polarization dis-
tinguished by I; and I,. The emergent radiation is therefore polarized, and it is further predicted that the
degree of polarization must vary from zero at the center of the disk to 11 per cent at the limb.

1. Introduction.—It is now generally recognized that the Thomson scattering by free
electrons must play an important role in the transfer of radiation in the atmospheres of
the early-type stars.! Thus, it has been suggested by J. L. Greenstein? that the absolute-
magnitude effect among the early-types stars shown by the discontinuity at the head
of the Balmer series is probably to be attributed to the increased importance of electron
scattering as we go to the more luminous stars. But it does not seem to have been ob-
served so far that, if electron scattering is as major a factor as there appears to be evi-
dence for, then there is an associated effect which should be detectable, namely, the po-
larization of the continuous radiation. It is the object of this paper to analyze this effect
theoretically and to show that it is within the possibilities of detection. The detailed
theory of radiative transfer in an atmosphere in which electron scattering plays the
principal part, developed in this paper, predicts a degree of polarization to the extent of
11 per cent at the limb. In practice, this effect may be partially masked by other sources
of continuous opacity; but it would seem, from all the available evidence, that the
effect is probably present in detectable amounts in the early-type stars. Moreover, it
would appear that the most favorable conditions under which the phenomenon could be
observed are during the phases close to the primary minimum in an eclipsing binary, one
component of which is an early-type star. .

On the theoretical side, the problem discussed in this paper provides the first example
in which the equations of transfer for the two states of polarization have been explicitly
formulated and solved.?

LA, Unsold, Zs. f. 4p., 21, 229, 1942; M. Rudkjgbing, Zs. f. 4., 21, 254, 1942,
2Ap.J., 95,299, 1942,

3 The method of solution adopted is those of the earlier papers of this series. Familiarity with papers
IT and III (4. J., 100, 76, 117, 1944) is necessary to follow the analysis of this paper.
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2. The equations of transfer for the two components of polarization in an atmosphere in
which the scattering by free electrons governs the transfer of radiation.—We shall consider
the radiative-equilibrium of a semi-infinite plane-parallel atmosphere with a constant
net flux of radiation and in which the transfer of radiation takes place in accordance
with Thomson’s laws of scattering by free electrons. It is apparent that under these
conditions we can characterize the field of radiation by the intensities I;(z, ¢) and
I.(z, 9) at height z and inclined at an angle ¢ to the positive normal and referring to the
states of polarization in which the electric vectors vibrate along the principal meridian
and at right angles to it, respectively. And we require to write down the equations of
transfer for the two components separately. For this purpose we shall first formulate the
laws of scattering in the form we shall need them.

According to Thomson’s classical theory* of the scattering by free electrons, the
amount of radiation (initially unpolarized) which is scattered (per unit time) in a di-
rection inclined at an angle © to the direction of incidence, and confined to an element of
solid angle dw’ and per free electron, is given by

8 4 dw’
i I (1o o) 2, (1)

where I denotes the intensity® of the incident radiation, e the charge of the electron, m its
mass, and ¢ the velocity of light. Moreover, the scattered radiation is polarized with the
direction of the electric vector perpendicular to the plane of scaitering.® For our pur-
poses, however, we need a more detailed formulation of the law of scattering which will
allow us to take into account a partial polarization of the incident light. We shall for-
mulate these more detailed laws in the following manner:

Let I; denote the intensity of radiation plane-polarized with the electric vector
perpendicular to the plane of scattering. Then the amount of radiation scattered in a
direction inclined at an angle O to direction of I, and confined to an element of solid
angle do’ and per free electron is

81 et 3d w)

3 mict I 2 4rx (2)
The scattered radiation is also polarized with the electric vector perpendicular to the
plane of scattering. On the other hand, if the incident light is polarized with the electric
vector parallel to the plane of scattering, then the scattered radiation is also polarized
in the same way, but its amount is now given by (cf. eq.[2])

2 T
3 m2c4 I”(z cos? O ) (3)

where I} denotes the intensity of the incident polarized radiation. More generally, if
the dncident light is plane-polarized with its electric vector inclined to the plane of
scattering by an angle a, then the amount of scattered radiation (under the same cir-
cumstances to which equations [2] and [3] refer) is given by

8= 64 dw’
i 3 (g} .+. 27
3 264Ig2(sma COSaCOSG) | }, (4)

4 Cf. A. H. Compton and S. K. Allison, X-Rays in Theory and Experiment, pp. 117-119, New York:
D. Van Nostrand, 1935.

5 Since the Thomson scattering coefficient is independent of wave length, we can directly consider the
intensity I integrated over all the frequencies.

8 This is the plane which contains the directions of the incident and the scattered light.
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while its plane of polarization is such that the electric vector is inclined to the plane of

scattering by an angle
B =tan"!(tan a secO). (3)

Thus there is, in general, a “turning” of the plane of polarization. We shall now show
how, with the laws of scattering formulated in this manner, we can obtain the equations
of transfer for the two components of polarization distinguished by I; and I,. :

It is first evident that the equations of transfer must be expressible in the forms

aI
COSd—d—;l=Il“8<z,z(T.l?)"ST.Z(T-ﬂ) (6)

and ;
dT=IT_E}l'T(T~0)_S(T»T(T-&)‘ (7)

-
where 7 denotes the optical depth, measured in terms of the Thomson scattering coefhi-

cient
8w et

°=F i (8)

with N, denoting the number of electrons per unit mass. Further, in equation (6),
1,1 and Jy,; are the contributions to the source function for the radlatlon in a particu-
lar direction and polarized with the electric vector in the meridian plane, arising from
the scattering from all other directions of radiations polarized with the electric vectors
parallel, respectively, perpendicular to the appropriate meridian planes. Similarly, in
equation (7), &4, and &,,, are the contributions to the source function for the radiation
in a particular direction polarized with the electric vector perpendicular to the meridian
plane, arising from the scattering from all other directions of radiations polarized with
the electric vectors parallel, respectively, perpendicular to the appropriate meridian
planes.

To evaluate &,:(r, #) and 3,.(7, ¢#), we consider the contributions to these source
functions for the radiation in the direction (&, 0), say, arising from the scattering of ra-
diation of intensity I;(r, ¢’) in the direction (¢, ¢’) and polarized with the electric
vector in the meridian plane through (¢, ¢’). Let £ denote a quantity proportional to
the amplitude of the electric vector such that

= £7. (9)

(We shall refer, quite generally, to &'s defined in this manner as simply the amplitude.)
The components of the amplitude that are parallel, respectively, perpendicular to the
plane of scattering, are

£, cos 1y and £;8n 77 , (10)

where 7, denotes the angle between the meridian plane OZP; through P, = (¢, ¢) and
the plane of scattering OP1Ps (P2 = [, 0]) (see Fig. 1). When this radiation is scattered
into -the direction OP,, the components of the scattered amplitude that are parallel,
respectively, perpendicular to the plane OP.Ps, are proportional to

£, cos1; cos O and £;sin 4, , (11)

while the amplitudes in the meridian plane OZX through Ps, and at right angles to it,
are, respectively, proportional to

£, (sin 4, sin 43 — cos 7, cos 73 cos O) (12)
and .
— &;(sin 4; cos 45 - sin 42 COS 71 cOS O) . (13)
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where 75 denotes the angle between the planes OZX and OP,P,. The contributions to
the source functions S;,,(z, ¢, 0) (= S1,1(z, ¥)) and Fu,.(2, &, 0) (= J4,,(2, ¥)), arising
from the scattering of the radiation I;(z, ¢/, ¢’) (= I;(z, ¢)) in the direction (¥, ¢’)
and confined to an element of solid angle dw’ are, therefore,

dS1,1=%1,(7, ") (sin 4, sin 42 — cos 7 cos 73 cos B) ? fi_“’;/ (14)
and ‘

a3, =%1,;(r, ') (sin ; cos 5+ sin 72 cos 4, cose)2%%l. (15)
Hence,

3 L . . . .
’3z,z=§;££ I,(7,8") (sin ; sin 43 — cos 7, cos 43 cos ©) 2 sin ¥'dd'do’ (16)
and
3 L . . . .
3<m=ﬁff I,(7,d)(sin 4, cos 22 +sin 45 cos 4, cos ©) 2 sin ¢'dd'de’. (17)
0 0

~ND

Fic. 1

On the other hand, from the spherical triangle ZP,P, we have
sin ¢’ cos ¢/ = cos %; sin %, + sin 45 cos 4 cos O . (18)
Equation (17) accordingly reduces to the form

T 2r )
3z,r=§;f f I,(7,d")sin? ¢’ cos? ¢’ sin ¢'dd'dy’; (19)
o Yo ‘

or, in view of the axial symmetry of the radiation field about the z-axis, in our prob-
lem, we can write

3 +1 ‘
Sur(row) =5 [ Ll w)utdu’, EEY

where we have used p and u’ to denote cos ¢ and cos &, respectively.
From equations (16) and (17) we have

3 T riw )
3l>1+3l:r=§£f I, (7,9")(sin? 4, + cos? 4, cos? ©) sin ¢'dd'de’; (21)
o ,

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1946ApJ...103..351C

J: 1037 °351C!

P

(10284

RADIATIVE EQUILIBRIUM 355
or, since
sin? 2; +cos? 4, cos?@ = 1 — cos? ¢; sin? O
} (22)
=1— (cos ¢ sin ¢’ —sin & cos ¢’ cos ¢’) 2,
we have
3+
31:1+31;r=§[—1 Iz(T,P«') [Z—M/2+M2(3.U«'2—2)]dﬂ’- (23)

From equations (20) and (23) we now obtain
' 3 1
Sualr ) =5 [ Ll ) [2(1=p™) +u2 Gu=2)1du'.  (24)

To determine the source functions &,,; and &,,,, we proceed along similar lines, con-
sidering radiation of intensity I,(r, ¢, ¢') (= I,(r, ¢)) in the direction (¢, ¢) and
polarized with the electric vector perpendicular to the meridian plane OZP; and evaluat-
ing its contribution to the source function for the radiation in the direction (¢, 0). Let
&, denote the amplitude corresponding to the intensity I.(r, ¢, ¢’). Its components,
parallel, respectively, perpendicular to the scattering plane, are

£, 8in 7, and £, CO81y . (25)

When this radiation is scattered into the direction OPs, the components of the scattered
amplitude, parallel, respectively, perpendicular to the plane OP,Ps, are proportional to

£,sin4,c0s 0  and £, COS17; . (26)

~ The amplitudes in the meridian plane OZX and at right angles to it are, respectively,

proportional to
4 £, (sin 4; cos 75 c0s © 4 cos 7; sin 72) = &, sin ¢’ cos & (27)
an
&, (sin 7; sin 42 cos © — cos 4; cos 42) = &, cos ¢’ . (28)

Accordingly, the contributions to the source functions J,,,(r, ¢, 0) and &,,.(r, &, 0),
arising from the scattering of the radiation I,(r, ¢, ¢) in the direction (¢, ¢’) and con-

fined to an element of solid angle dw’, are given by
4

A3, 1=%I.(7,d) (sin 4; cosz cos © + cos 4, sin 73) ? 4‘; (29)
and
d3,.,=3%1,(r,d")cos? qa’—%’-ri. (30)
Hence,
3,,,:%-/0‘T~/0.2r1,(7.0’)c052 ¢’ sin ¢'dd'de’, (31)
or
Selrow) =g [Lahdut (32)

On the other hand (cf. egs. [27] and [28]),

3 L . O .
3”,4—3,,,:_8;/0‘/0‘ I.(7,d") (sin? 4, cos? © 4 cos? 7;) sin ¢'dd'de’; (33)

or, since
sin? 7, cos? © +cos? 4; = 1 —sin? 4, sin? © = 1 —sin? ¢ sin? ¢’ , (34)
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we have

' 3 +1
S+ Sri=3 [ L(r,u)(1+u)du’. (35)
-1
From equations (32) and (35) we now obtain
+1
Senilrw) =4w [ L(rou)ydu'. (36)
—1

Combining equations (6), (24), and (36) and similarly equations (7), (20), and (32),
we obtain
I, +1 +1 ‘
R A 1 LY AR TGN O ICEO MERLY [y HENYE MR P
d’r —1 —1 (37)
+1
- u? I.(r,u')du’
+p -/_.1 (r,u")du %

and

dlr._ .3 +1 ’ +l ’ 14 ’
wor=1I, g{fﬂ Ir(r,u)du’-kf_l Iz(“r,u),uzdui, (38)

which are the required equations of transfer for I; and 7,.

We may note here that, for radiation initially unpolarized, the source functions for
radiations polarized in the two ways can be obtained from equations (20), (24), (32), and
(36) by setting I; = I, = iI. Thus,

3 +1 +1
. N =1_6§2[—1 I(q—,IM')('1—-‘1,412)dM/__l_M{/_‘1 I(T,u')(3,u'2—1)dp.'§ (39)
an
3 +1
Sr=15.f, I(rw)Utumdn, (40)

which agree with A. Schuster’s well-known formulae.”
In terms of the quantities J and K, defined in the usual manner (cf. paper I1I, eq. [6]),
we can re-write the equations of transfer (37) and (38) in the following forms:

al
ud—;=1,—g{2(11—1<z> +ut (3K, =273 +7) | (41)
and
dI, .
MdT=Ir'—z(Jr+Kz)- ‘ (42)

From the equations of transfer in the foregoing forms we can readily establish the flux .
integral

+1
Fz+Fr=F=2f_ [I:(r,u) +1I,(7,n)]lpdu = constant (43)

and the “K-integral” .
K+ K,=3F(r+Q) (44)
where ( is a constant.

3. The general solution of the equations of transfer in the nth approximation.—In solv-
ing equations (37) and (38) we shall follow the method developed in the earlier papers of
this series and replace the various integrals which occur on the right-hand sides of the
equations by sums according to Gauss’s formula for numerical quadratures. Thus, in

T M.N., 40, 35, 1879; see also M. Minnaert, Zs. f. 4., 1, 209, 1930, and H. Zanstra, M.N., 101, 250,
1941. :
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the nth approximation, equations (37) and (38) are replaced by the following system
of 4x linear equations:

al X ’
=L — 1220510, (L= ) +wi{Zailn,; (B3uy— 2) +2a51,5)] } (45)
(e=4+1,....,+n)
and ,
dlrn' .
I'L‘L. dT—: IT’,L_%(EQJIT,7+EGJIZ’]”,27) (1=i1)""yin>7 (46)
where the u’s (i = +1,...., +n) are the zeros of the Legendre polynomial of order

2n and the a/’s are the appropriate Gaussian weights. Further, in equations (45) and (46)
we have written Iy,; and I,,; for Iy(r, pi) and I.(r, u;), respectively.

We shall now find the different linearly independent solutions of equations (45) and
(46) and later, by combining these, obtain the general solution.

First, we seek a solution of equations (45) and (46) of the form

I,;=g;e™ and I.,;=h;e " (e==+1,....,+n), (47)

where the g;’s, %’s, and % are constants, for the present unspecified. Substituting the
foregoing forms for I;,; and I,,; in equations (45) and (46), we obtain

L (14 uk) =2[22a;g,(1 —4ij) +4i:{Za;g;(3i;—2) +Za;h;} ] (48)
an

Bi (14 k) =3 [Sasgm;+2ah;]. (49)
Equations (48) and (49) imply that g; and %; must be expressible in the forms

_apit+B

S e A

7 .
=T¥ak G=+1,....,+n), (50)

where a, 8, and v are certain constants, independent of . Inserting the solution (50)
back into equations (48) and (49), we find

aui+B8=2[2{a(D:s—Dy) +B8(Dy— Do)} +pui{a(3Ds— 2Ds) } (51)
+B(3D:— 2Dyo) +vDo} |
’Y=%(¢ID4+5D2+’YD0), (52)

and

where we have introduced the quantities Dy, Dy, and Ds, defined according to the for-
mula

ajpy
Dy =2 ———. 53
ZTtuk (39)

Since equations (51) and (52) are valid for all 4, we must require that

$a=a(3Ds—2Dy) +8(3D:—2Dy) +vDo , (54)
48 =a(Dy— D,) +B(Do— Dy), ’ (55)

and
$v=aDy+BDs+vDy . (56)
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It is seen that equations (54), (55), and (56), together, represent a system of homogene-
ous linear equations for a, 8, and . The determinant of this system must, therefore, be
required to vanish. Thus,

3D,—2D;—%  3Dy— 2D, Do

Dz—D4 Do""'Dz"‘% 0 =0 (57)
D, D, Dy— §

Expanding this determinant by the elements of the last column, we find, after some
minor reductions, that

Do(4 — Do+2D;— Dy) — (3¢ —§ Do+ ¥ Dy —4D,+ DDy — D3) =0. (58)

To simplify equation (58) still further, we must make use of certain relations which
can be derived from the recursion formulae®

1 2
Din =35 ( Don-s = 57 (59)
and
DZm—1= _kDZmy (60)
which the D’s satisfy. From equation (59) we infer, in particular, that
1 .
D2=%§(Do—2) .(61)
and ‘
1 1 2
D4=Z5(D2_%)=751(D0—2) —W (62)
A further relation which follows from equations (61) and (62) is
Dz(Dz—%)=D4(Do—‘2), (63)
or
DyDy— D;=2D,—2D,. (64)

By using equation (64), equation (58) reduces to
Do(4 —Do+2Dy— Dy) — (%2 —§Do+ ¥ D, —2D,) =0. (65)

Now, substituting for Dy and D4 according to equations (61) and (62) in terms of Dy in
equation (65), we find, after some simplification, that

%(Do—2)2—762—2(D0—2)2+D§—4D0+ 82 =0, (66)
Again using equations (61) and (62), we can re-write the foregoing equation in the form
D;—2D,(Dy—2) + Di—4Do+ 4 =0 (67)

or
(Do~ D3)?—4(Dy— D) +32=0. ~ . (68)

8 CE. Ap. J., 101, 328, 1945 (egs. [54] and [56)).
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Equation (68) is equivalent to

(Dy—D;—%)(Dy—Dy—4%) =0. (69)
In other words, either
s @(1=pd)
Do D2—ET*_'”_]k——§ (case 1) (70)
or
a;(1— I-‘J) 4
—Dy=x 2" i _= ] 1
Dy— Dy=3 T F ik =3 (case 2) (71)
Equations (70) and (71) can be written alternatively in the forms
L]
2N oai(1—uh) 4 i '
g W——g (CaSB 1) (72)
=1 7
and
o~ g (1—ph) 2
; _1—‘—,11?732—_3 (case 2). (73)

And %2 must be a root of either of the two foregoing equations.
Equation (72) is of order # in k2 and admits 2 distinct nonvanishing roots for £ which
occur in pairs as

i_ka, ’ (a=1,....,n).(74)

On the other hand, equation (73), though of order 2% in k2, admits of only (2 — 2) dis-
tinct nonvanishing roots for &, since &2 = 0 is a root.® However, these 2# — 2 roots also
occur in pairs, which we shall denote by

+ kg B=1 ....,n—1), (75)

to distinguish them from the roots of equation (72).
Case 1: k2 a root of equation (72).—In this case, Dy — D, = 8/3; and from equations
(61) and (62) we readily find that

24K2-3 2 2 2—kF

hh=z%=—17 D=3m-—1’ D=spep—1 (76)
With these values for Dy, D, and D4, equations (55) and (56) lead to .
' a= — k28 (77)

and
vy=—(k2—1)8. ‘ (78)

Accordingly, equations (45) and (46) allow 2# linearly independent integrals of the form

I;,;=constant (1 Fkau;) eFrar

Fa—1 _ [+ 32

P = t ————— +kor
I, — constan FE e

., *tn

...., n) ) % (79)

H

v
e

n
9 Note that Z a;(1 — ,u?) = 2.

i=1
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Case 2: k¥* a root of equation (73).—In this case, Dy — Dy = 4/3; and equations (61)
and (62) now give 29— 3 )
K2 —

Doz*— D2=D4= —m—

Fr e ok (80)

With these values of Dy, D,, and D, it is seen that equation (55) is satisfied identically,
while the consideration of equations (54) and (56) leads to the result that
a=—f and y=0. (81)

Accordingly, equations (45) and (46) admit of (2n — 2) linearly independent integrals
of the form ‘

_ 1—pi o (i==%1,....,%0)) (82)
Il,iTCODSta,ntme 8 3(ﬂ=1,.. .,n—l)g
and :
I.,;=0 G=+1,....,+n). (83)

To complete the solution, we verify that equations (45) and (46) also admit the

solution
Iln‘=Ir:i=b(T+lJ'i+Q) (7:=i_1,----,in), (84-')

where b and Q are arbitrary constants.
Combining the solutions (79), (82), (83), and (84), we observe that the general solu-

tion of the system of equations (45) and (46) can be written in the forms

Lge—87  L_g e"'"ﬁf)

1+pie  1—pixe

N

Ti=bdr+uto+ (1—u S
B=1

n n—1 (85)
+ DM (1= Bass) et 3 Moo (L ) o]
a=1 a=1
(i=+1,....,+n)
and ! )
= 1) o (ka—1) e Hkar
Ir;i_ §T+N1+Q EM"- 1_*_#1 ?;M_al—ﬂ»,k i (86)
(i=i1,""1in)7
where Lig B=1,....,n— 1), My, (a=1,....,n), b, and Q are the 4n con-

stants of integration.

4. The solution satisfying the necessary boundary conditions.—The boundary conditions
for the astrophysical problem on hand are that none of the 7,’s tend to infinity exponen-
tially as r — « and that there is no radiation incident on the surface + = 0. The first
of these conditions implies that in the general solution (85) and (86) we omit all terms in
exp(+ ka7) and exp(+ k). We are thus left with

L= b{r+utQ+ (1= )VL"”+§;M<1—1W>6 o}

e TFping (87)
==4+1,....,+
and == ")
_ . T Ma(kg.—]-) —kr .
Ir,i—b;r+#i+Q—zmek“§ (G==1,....,%n). (88)

a=1
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Next, the nonexistence of any radiation incident on r = 0 requires that
I;,;,=1,,;:=0 at r=0 and for i=—1,...., —n; (89)
or, according to equations (86) and (87),

”’)21 "‘;Ma(lJrkam —ui+0=0  (G=1,....,%n) (90
and
M. (k= 1) -
a=1w+ﬂ1 Q 0 (1,—1,....,71). (91)
These are the 2z equations which determine the 2z constants Lg (8 = 1,....,n — 1),
M, (a=1, . = n), and Q.1 The constant b is left arbitrary and is related to the

constant net flux of radiation in the atmosphere.
For, defining the net flux in terms of F; and F, where

+1
Fq= 2[1 Iqﬂdﬂ o ZEdin,i#i (‘I=l; 7’), (92)

we have, according to equations (87) and (88),

Fy=2b {24 S LDy (ks) = Do) lemwr =23 Moot} (93)
8=1

a=1
and
Fo=2b 12— MK~ 1) Dy (k) et} (94)
a=1
On the other hand, from equations (60), (76), and (80) we conclude that
2 ke
Dl(ka) = —kaD2(ka) = —gkz—_—‘l (95)
and
D,y (xg) — D3(xg) = — k| D2(kg) — Ds(xp) ] =0 . (96)
Hence,
Fz=%b(1—EMakae—kaT) (97)
. a=1 .
and
F,= %b(l-i— EMakae—"af). (98)
a=1

From the two preceding equations we infer the constancy of the net flux. More par-
ticularly,
F=F;+F,=4%b=constant . (99)

10 Addmg equations (90) and (91), we obtain the equation

Z

n

> o

a=1

E=1....,n),

l—p.ka 1—-#1{3

which together Wlth equation (91) is more convenient for the practical determination of these constants.
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We can, therefore, re-write the solution (85) and (86) in the form

1+ piks (100)

a=1

Il,,-=%F§T+m+Q+<1—n3>"ZL” ” +2Ma<1 botss) ¢}
B= ,

and

n 2
Loo= 37 {r a0 - D UETD ool
. a—=1 z

In térms of the foregoing solutions for I;,; and 7,,; we can readily establish the follow-
ing formulae

Ji=3%Za;l,,;=%F (T+Q+ EL,se"‘ﬂT EM e”’°aT> (102)

G=+1,....,4n). (101)

B=1
Ki=3Za,0, ul=1F <T+Q+ zMae—kar), (103)
a=1
1 |
J,:gp(ﬁu —ga‘éMa[é’ckf—ﬂe-kaT), (104)
and
—1F(T+Q S e —k) (105)
a=1

Now the source functions (7, u) and (7, u) for I, and I, are (ci., eqgs. [41] and [42])
1 Si(r,u) =2[2(U—K)) +p2(3K,— 27,+7,) ] (106)

an ,
ST(T) F') —_(J +Kl): (107)

or, substituting for J;, K;, J r; and K, from equations (102)-(105), we find
. ) ) n—1 n
Julr,u) =4F {70+ (1—u®) > Leemwr+ D Mo (1= kiu®) e7or| (108)
g=1 a=1
and

Sr(r,u)=%F§T+Q—‘2Ma(k3—1)e-kaf§. (109)

With the explicit forms for the source functions now found, we can readily obtain
formulae for the intensity distribution of the emergent radiation. For, since quite gen-
erally

10,0 = [T Crw) e, (110)

we have, in our present case,

100, =38 {u 0+ (1= T 12 SV (1— k) | (111)
B=1 a=1
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and

n 2
1,0, w) = §F juto— S Melbez DY (112)
a=1

= 1+4ka )’

It is to be particularly noted that the foregoing expressions for I;(0, ) and I,.(0, u)
agree with the solution (100) and (101) for 7 = 0 at the points of the Gaussian division.

This completes the solution of the problem in the nth approximation.

5. The numerical forms of the solution in the second and the third approximations; the
degree of polarization of the emergent radiation.—The consideration of the solution ob-
tained in the preceding section in the first approximation is of no special interest except
possibly to emphasize the importance of having a method which gives solutions to any
desired degree of accuracy. For, in the first approximation (z = 1) there are no L’s;
and, though there is an M, this is also seen to be zero; and the only nonvanishing con-
stant of integration is , which has the value 1/4/3. Accordingly, in this approximation
(cf. II, eq. [35], and III eq. [72])

1
1:00,) = 1,00, w) = (w+—3). (113)
It is, therefore, seen that the first approximation is far too crude to disclose the essentially

finer features of our problem. We therefore proceed to the higher approximations.
i) Second approximation.—In this approximation it is found that

K1= V3% k= V'5; and ko= VE. (114)
Further, the constants Li, M1, M,, and Q have the values
Li=—0.19265; M,=-+0.021830; M.= —0.029516;
0= +0.69638 ;} Hs)

and the laws of darkening for the emergent radiation in the two states of polarization
take the forms

-0.19265
=3 —_ —_— 2y
1,00, w) 8F§,,,+O.69638 (=) {15775, 16
4+0.021830(1—2.236071) —0.029516(1 — 1.08012x) 2
and 0.0873215 0.0049193
=.§. — ° N
1;(0; w) ng“ +0.69638 1~+2.23607ﬂ+1+1.08012#§° (117)

- Values of I,(0, u) and I,(0, u) obtained" from the preceding formulae are given in
Table 1. '
ii) Third approximation.—In this approximation the characteristic equations for &

and &2 are
' ‘ k*—8.642+9.24 =0 . (118)
k6 —14.82k*4+36.12k2—23.1=0. (119)

and

The characteristic roots are \
k1 =2.718381; ke=1.118216; ky=3.458589 ; } (
. 120)
ks =1.327570; and k;=1.046766.

11T am indebted to Mrs. Frances H. Breen for assistance with these calculations.
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The constants of integration Ly, Ly, Q, M1, M3, and M ; are found to have the values

L= —0.1402646; Ly= —0.06791696 ; Q= 4+0.705927 , } )
121)

M,=+0.00718392; M,= +40.01861255; M,;= —0.0328664 ;

and the laws of darkening for the emergent radiation in the two states of polarization
take the forms

1,00, u) = 3F §u+0.705927—~ (1—w) |

0.06791696
1+1.118216u

+0.01861255(1—1.327570p) —0.0328664 (1 —1.046766n) %

0.1402646
14+2.718381u

] +0.00718392 (1 — 3.4585894) b (122)

+

TABLE 1

THE LAW OF DARKENING IN THE EMERGENT RADIATION IN THE TwO
STATES OF POLARIZATION GIVEN BY THE SECOND APPROXIMATION

7 Ii(0, u)/F I:(0, p)/F |10, p)/T(0, 1)|I:(0, 1)/I+(0, 1)
0. 0.1860 0.2302 0.2967 0.3673
L .2331 .2735 0.3718 0.4363
0.2, ... .2789 .3150 0.4448 0.5025
0.3, .3238 .3554 0.5165 0.5670
0.4.. . ... ... .3681 .3951 0.5871 0.6303
0.5, ... ... .4119 .4344 0.6570 0.6929
0.6........... ..., .4553 .4733 0.7263 0.7549
0.7 ..., S .4985 .5119 0.7952 0.8166
0.8. .. .. ... .5415 .5504 0.8637 0.8779
0.9, ... ... .5843 .5887 0.9320 0.9391
1.0 0.6269 |. 0.6269 1.0000 1.0000

and

1,00, w) = 3F {u+0.705027 — 29787490 _0.01419099

1+3.458580u 14+1.327570u

0.00314593 %
14+1.0467659%u

(123)
+

Values of 1,(0, u) and 7,(0, u) obtained from the foregoing formulae are given in Table 2.
Comparison with the values given in Table 1 indicates that the solution obtained in
the third approximation is probably accurate to within 1 per cent over the entire range
of the variables.

In Figure 2 we have illustrated the laws of darkening on the third approximation for
the intensities 7;(0, x) and I,(0, u). It is seen that, while they are equal at the center of
the disk (u = 1), they differ by about 25 per cent at the limit (u = 0). The theory,
therefore, predicts a polarization of the emergent radiation. And the degree of polariza-

tion 6(u), defined by 1,00, u) —I,(00,pu)
y l )

I.(0, w) +1,00,u)’

varies from 0 at 4 = 1 to 11 per cent at u = 0 (see Table 2). It is not impossible that
this predicted polarization of the radiation of the early-type stars (in which scattering

6 (u) = (124)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1946ApJ...103..351C

J: 1037 °351C!

P

(10284

RADIATIVE EQUILIBRIUM -~ 365

by free electrons is believed to play an important part in the transfer of radiation) could
be detected under suitably favorable conditions.

One further comparison is of interest. In an earlier paper (paper IIT) we have worked:
out the theory of radiative transfer in an atmosphere in which radiation is scattered in
accordance with Rayleigh’s phase function. This is not a strictly correct procedure, in-
asmuch as no allowance is made for the polarization of the existing radiation field. How-
ever, a comparison (see Table 2) of the emergent intensity 7(0, u)/F derived on the
theory of transfer incorporating Rayleigh’s phase function with the total emergent in-

TABLE 2

THE LAWS OF DARKENING IN THE TWO STATES OF POLARIZATION GIVEN BY THE THIRD Ap-
PROXIMATION; THE DEGREE OF POLARIZATION OF THE EMERGENT RADIATION; COMPARISON
OF THE TOTAL INTENSITIES GIVEN BY THE THEORY IGNORING THE POLARIZATION OF THE
EXISTING FIELD OF RADIATION BUT INCORPORATING RAYLEIGH’S PHASE FUNCTION

I(0, u) for
. 00,8 | 108 | 100 | L0 | LOW | gy |10 +L0, Raflei s
F F 1;(0, 1) I:(0, 1) 1;(0, 1) F Phase

Function

0........ 0.1840 | 0.2310 | 0.2914 | 0.3659 | 1.2557 | 0.1134 0.4151 0.4195
01, ... 2354 | .2767 | 0.3728 | 0.4382 | 1.1753 | .0806 0.5120 0.5175
0.2, | 2832| 3190 | 0.4486 | 0.5053 | 1.1264| .0594 0.6023 0.6076
03 . .. 3201 | 3598 | 0.5213 | 0.5699 | 1.0032 | .0445 0.6890 0.6937
0.4 ... 3738 | 3997 | 0.5921 | 0.6330 | 1.0601 | .0334 0.7735 0.7773
0.5. .. .| 4178 | 4390 | 0.6616 | 0.6953 | 1.0508 | .0248 0.8567 0.8593
06 ... 4611 | 4779 | 0.7303 | 0.7569 | 1.0364 | 0179 0.9390 0.9402
07, . 5041 | .5165 | 0.7983 | 0.8181 | 1.0247 | .0122 1.0206 1.0203
08 .. ... 5467 | .5549 | 0.8659 | 0.8780 | 1.0150 | .0075 1.1017 1.0998
09, . .. 5801 | .5032 | 0.9331 | 0.9396 | 1.0069 | 0.0034 1.1824 1.1789
1.0, 0.6314 | 0.6314 | 1.0000 | 1.0000 | 1.0000 0 1.2628 1.2576

1.0

0.8

0.6

I0p |
1(0,1)

0.4

o2

F16. 2.—The laws of darkening in the two states of polarization. The symbol /; refers to the com-
ponent polarized with the electric vector in the meridian plane, while I, refers to the component polar-
ized with the electric vector at right angles to the meridian plane.
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tensity [1;(0, u) + 1,(0, u)]/F given by our present more exact theory shows that the
errors made in the fotal intensities by ignoring the polarization of the radiation field
are small.

6. The reduction of the laws of darkening in the two stales of polarization to certain closed
forms—In § 4 we derived expressions for the angular distribution of the emergent radia-
tion in the two states of polarization (egs. [111] and [112]). These expressions involve
certain constants of integration (2»# of them in the nth approximation), and it would
appear that these have to be evaluated before the solutions can be brought to their nu-
merical forms. However, we shall now show how, for the purposes of characterizing the
emergent radiation, we can avoid the necessity of solving explicitly for these constants
by expressing the laws of darkening in forms in which they require only a knowledge
of characteristic roots k. and . '

First, we may observe that equations (90) and (91), which determine the constants
of integration, can be re-written as

Si(p) =0 and S,(u;) =0 (t=1,....,n), (125)

where
Silw) = (1—u2)2 -I-ZMa(l-I-kau)—u-i-Q (126)
and |
Sp(w) = —u+Q- ZM‘}(EM : (127)

In terms of these same functions the angular distribution of the emergent radiation in
the two states of polarization can also be expressed. For, according to equations (111)
and (112), we can write

1,0, w) =3FS;(—u) and I,(0, ) =3FS,(—p).  (128)

We shall now show how explicit expressmns for the functions S;(u) and S, (,u) can be
obtained.

First, we shall define the functions R(u), Ra(u), p(u) and pg(u) according to the
formulae

R(w =] O—kw); Ra(w) =] (1= kaw), (129)
a=1 . azxa
and
p(w) =TT A—wew); o) =] (1= ren). (130)
8=1 =B

Considering, now, the function S;(x), we see e that R(u)S:(u) is a polynomial of degree
7 in u which vanishes for u = u; (¢ = 1, . ..., n). We must, accordingly, have a rela-
tion of the form

S1(u) —oPE"i , (131)
where o is a constant and |
P =[] (w= - a3y

=1
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The function Si(u) is therefore determinate apart from a constant of proportionality.
Apart from this same constant of proportionality, the constants Lg can also be deter-
mined. For, according to equations (126) and (131),

( 1>Lﬁ— fﬂ((ll//’:;)) B=1,....,n—1). (133)
Moreover, setting u = 41, respectively, —1, in equations (126) and (131) we obtain
SiCHD) = DMt +E) - 140=0 117 (134)
and ”
Sl<—1>=§;:Ma<1—ka>+1+Q=a1;—§’_'—%. (135)
Adding and subtracting these two equations, we have '
iM.z=aa—Q (136)
and "~
iMaka=Ba+1, (137)
=
where we have written
=ilrmtsen] = el —en] o

Considering, next, the function .S,(x), we observe that we must have a proportionality
of the form
R(p)S, (p) <P (p) (p+c¢), (139)

where ¢ is a constant, since the quantity on the right-hand side is a polynomial of de-
gree # + 1 in p and has the zeros p = p; (¢ =1, ...., n). The constant of propor-
tionality in equation (139) can be found from a cornpanson of the coefficients of the
highest powers of u on either side. In this manner we find that

P(u)
R( R(u)

From equations (127) and (140) we now conclude that

Sp(w) = (=1 k..., (uto). (140)

N Pk (1 _
M= ( 1)kl""k"Ra(l/ka)(ki—l)(E+6> (a=1,....,n). (141)

Also, setting u = 0 in equations (127) and (140), we have

S IMe(ki—1) =Q=Fki.... kair oo . | (142)
a=1
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On the other hand, from the characteristic equation (72) for k# we infer that

1
R VL (143)2
Hence,
Mo(k2—=1) =0+ —. (144)
2 G |
Adding equations (136) and (144), we have
N ME = ot~ (145)
b3 V2

Finally, substituting for M, according to equation (141), we can re-write equations (136)
and (137) in the forms

fdcki=ar—0. (146)
éot+cti=B0c+1, (147)
and
bt cti= a7, (148)
where

VR N P(1/k)RR _
E,=(=1) kl""k";Ra(l/ka)(kﬁ—l) (m=—1,0,1,2). (149)

To evaluate the sum occurring on the right-hand side of equation (149), we introduce
the function

N~ P(1/R)EY _
fm () —;Ra(l/kﬁ(ki—l) R.(x) (m=—1,0,1,2), (149a)

and express &, in terms of it. Thus,

En=(—1D"k:i.... k. [0 (0). (150)

12 This relation follows most readily from the characteristic equation written in the form

n
Z PZJ'AH = 0;
=0

where the p,;’s are the coefficients of 4% in the Legendre polynomial P,,(u) and

n

Z a:i(1 — phud

Aos =
H 1—k2;t,?

=1

The A’s defined in this manner satisfy the recursion formula

1 2
Ay = EE(A2J‘—2 - m) .

For the characteristic equation (72), A, = $ and A, = 2/3k2. From the recursion formula we there-
fore conclude that A, starts with 2/3k?». The equation for ¢ must accordingly have the form

P+ ...+ 3P =0.
Hence,
, _l)n?2n 1
B p=t =553
i " 2p, 2;4% BT
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Now, f(x) defined as in equation (149) is a polynomial of degree (» — 1) in x, which
takes the values

P (1/ka) b

o (151)
for & = 1/ke, (a = 1,....,n). In other words, _
(1—2%f,(x) —a>mP(x) =0 for x=;1— and a=1,.....%n. (152)

The polynomial on the right-hand side of equation (152) must therefore divide R(x).
There must, accordingly, exist a relation of the form

(1= f,,(x) —2>""P (x) =R(2)¥ (%), (153)

where ¥(x) is a polynomial of degree 3,2, 1, or tinx form = —1,0, 1, or 2, respectively.
To determine ¥(x) more explicitly we must consider each case separately. We shall illus-
trate the procedure for the case m = —1.

For m = —1, equation (153) becomes

(1—2%) foi(x) — 2P (») =R(x) (4-12*+B_1x’+Cix+ D), (154)

where A_;, B_1, C_1, and D_; are certain constants to be determined. The constants
A_; and B_; readily follow from a comparison of the coefficients of x"*3 and x"*? on
either side of equation (154). In this manner we find

(=t _ (_1),, 1
g ol Ba=p—— :E:,h =122). (1553)

=1

A-—1=

Next, putting x = +1, respectively —1, in equation (154), we have

A B HCaH D= ) (156)
)
and p 1
— A FBL—Cot Doy = R T (=1 (157)

R(—-1D"

These equations determine the remaining constants C_; and D_1 In particular,

D=1 1(0)——b+£<2m > (158)
—1

where (cf eq. [138])

1P P(—1)
b=3 u)“R(—1J'

From equation (150) we now conclude that

tam (=0 b b= (D k- D). (160)
i=1 a=1 "%

The evaluation of Eo, &, and £, proceeds along similar lines. We find .
fo=(—1)nt+ik, . ... ka1, (161)

(159)

Ey=(— 1)tk ... kb, , _ (162)
and ' L ]
£2=(—1)”+1k1....k,,a+w. (163)
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In equations (161) and (163) a stands for (cf. eq. [138])

_1rP(1)  P(-1)
o=3 [z tr= ) | (164)
With the foregoing expressions for £’s, equations (147) and (148) become
—_ n+1
etbo= T g (165)
ki.... R,
and
bac=t"1" | (166)
ac= m ao .,
These equations determine ¢ and ¢. We find
(= —20=6b (167
T wb—Ba Ba’
and
- (= Dk b 2 TY (168)
o= IR "ab—Ba,'
Equation (146) now determines (. After some minor reductions we find that
n n 1
Q=—c+;w-—;z. (169)

Finally, substituting for ¢ and ¢ according to equations (167) and (168) in equations

) (131) and (140), we obtain

1 a®—0* (—1)» P(u)
Su(w) = V2 ab—aﬁm-.--unp(u)’ (170)
and
_1_ (_1)ﬂ+1P(IJ') ad-—ﬁb (171)

Se(w) =73 bR \M T e —Ba

The laws of darkening now follow according to equation (128).
We may note here that in the third approximation

o= —3.3351 and c=—0.87134.

7. Concluding remarks—The successful solution of a specific problem in theory of
radiative transfer distinguishing the different states of polarization justifies the hope
that it will be possible to solve other astrophysical problems in which polarization plays
a significant role. Thus it may be expected that a theory of diffuse reflection along the
lines of an earlier paper of this series'® but incorporating the polarization of the existing
field of diffuse radiation will account, in a general way, for the remarkable observations
of Lyot' on the polarization of the reflected light from Venus. We hope to return to
these and similar essentially more difficult problems in the theory of radiative transfer
in the near future.

I am indebted to Dr. G. Herzberg for helpful discussions on some of the physical as-

‘ pects of the problem considered in this paper.

' Note added May 6: The problem of diffuse reflection from a semi-infinite plane-
parallel atmosphere, aﬂowmg for the partial polarization of the diffuse radiation has
now been solved. It is. hoped to pubhsh the results of this investigation in the near
future.

18 4p. J., 103, 165, 1946. 14 Ann. Obs. Meudon (Paris), 8, 66, 1929.
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