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ABSTRACT

Some remarks on the quantum theory of the negative hydrogen ion are made, and attention is drawn
to certain facts which make the evaluation of its continuous absorption coefficient a problem of extreme
difficulty. .

This paper will consist of a few disconnected remarks on the quantum theory of the
negative hydrogen ion.

* 1. The wave function for the ground state of H-—Since the discovery of the stability of
the negative ion of hydrogen by Bethe! and Hylleraas? and the recognition of its astro-
physical importance by Wildt,? attempts* have been made to determine the electron
affinity of hydrogen with as high a precision as possible. In these latter attempts the
energy of the ground state is determined by applications of the Ritz principle, using
forms for the wave functions suggested by Hylleraas’ successful treatment of the ground
state of the helium atom. Thus Williamson’s six-parameter wave function is of exactly
the same form as the “best” wave function of Hylleraas for helium. Similarly, Henrich’s
eleven-parameter wave function includes terms beyond those used by Williamson.
While there can hardly be any doubt that Henrich’s value for the electron affinity of
0.747 electron volts can be in error by more than a fraction of 1 per cent, the relatively
weak convergence of the entire process (cf., e.g., Table 7 in Henrich’s paper) leaves one
with a suspicion that the formal analogy between the atomic configurations of H— and
He has perhaps been taken too literally. From one point of view it would seem that the
structures of these two atoms must be very different indeed; for, while helium is a stable
closed structure, the negative hydrogen ion is an open structure which exists principally
on account of incomplete screening and polarization (see below). This suggests that it
might be possible to obtain better representations of the true wave function by seeking
forms which will explicitly take into account this difference. That such attempts may
not prove unsuccessful is suggested by the following preliminary considerations.

As is well known, the success of Hylleraas’ investigations on helium is due principally
to the circumstance that a wave function of the form

¢ = g—a(r,+ry) , (1)

which ascribes a hydrogen-like wave function to each of the electrons in a suitably
screened Coulomb field, already provides a good first approximation. More particularly
the wave function of the form (1), which gives the lowest energy, is

Y= e—(Z—15/161)(r,+r,) | (2)

(In the foregoing equation 7; and 7, are measured in units of the Bohr radius. Similarly,
in the rest of the paper we shall systematically use Hartree’s atomic units.)

1Zs. f. Phys., 57, 815, 1929.

2 Zs. f. Phys., 60, 624, 1930. 3 A4p. J., 89,295, 1939.

4R. E. Williamson, 4. J., 96, 438, 1942; and L. R. Henrich, 4p. J., 99, 59, 1943.
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When Z = 1, the wave function (2) predicts an energy E = — 0.473, which actually
makes H— an unstable structure and is in error by fully 12 per cent. In other words, the
first approximation, which is so satisfactory for He, fails completely for H~. That this
should happen is not surprising in view of our earlier remarks concerning the difference
between the two atoms. On the other hand, it would appear that in contrast to He a
natural first approximation for H~ is to ignore the screening of one of the electrons and
adjust the screening constant for the second electron only. In other words, the starting-
point for H~ should rather be a wave function of the form :

‘p = g~ r1~bry + e Tybry , (3)
where b is the screening constant for the second electron. More generally, we may write
¢ = g—ar;~br, + e—ary—br; , (4)

where @ and b are constants to be appropriately chosen. The Ritz principle applied to a
wave function of the form (4) showed that the lowest value of energy is attained when

a=1.03925 -and b=0.28309. (5)
The corresponding value for the energy is
E,=—0.51330, - (6)

which predicts the stability of H—. Moreover, in confirmation of our expectations it is
seen that, while the inner electron is practically unscreened, the outer one is screened
considerably and to the extent of 72 per cent. In view of this, it appears that a good
second approximation may be provided by considering a wave function of the form

Y= (e—or—brs4 g—ara=br) (14 cry), (7

where a, b, and ¢ are constants to be so chosen as to lead to a minimum value for the
energy. It is found that with

a=1.07478, b=0.47758, and c=0.31214 (8) -
we minimize the energy integral and obtain for it the value

E,=—0.52592. (9)

This value for the energy, while inferior to those predicted by Williamson (0.5265) and
Henrich (0.5276), is substantially better than the value 0.5253 given by the three-param-
eter wave function of Bethe and Hylleraas.

An interesting feature of the wave function (7) with the constants as given by equa-
tion (8) is that the inclusion of the term 7y, reduces the screening of the outer electron
from 0.72 to 0.52. This relatively large reduction in the screening is due to the strong
polarizability of the hydrogen atom. Indeed, according to equations (6) and (9) we may
say that the electron affinity of hydrogen is due about equally to the incomplete screening
of the nucleus and to the polarization of the hydrogenic core.

The foregoing discussion suggests that it might be profitable to improve the wave
function (7) by including further terms. This would be particularly useful for estimating
the inherent uncertainty in the absorption cross-sections derived from different wave
functions, all of which predict (within limits) the same value for energy. The practical
importance for carrying out such a discussion will be apparent from our remarks in the
following section.

2. The absorption cross-sections for H-.—The calculations of the absorption cross-
sections which have been carried out so far (Massey and Bates; Williamson; Henrich)
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are based on two approximations. The first consists in the use of the wave function for
describing the bound state the ones derived from the minimal calculations and the sec-
ond, in the use of a plane wave representation of the ejected outgoing electron. The
validity or otherwise of these approximations will depend upon whether the principal
contributions to the matrix element,

p’=f\1'd (r1+12)\1,cd7' ’ (10)

come from those regions of the configuration space in which the two approximations may
~ be expected to be satisfactory. In equation (10) ¥, denotes the normalized wave function
for the ground state of H—, and ¥, the wave function of the continuous state normalized
to correspond to an outgomg electron of unit density.

It appears that the use of the plane-wave representation for the free electron will not
introduce any very serious error, since, as has been pointed out on an earlier occasion,?
parts of the configuration space which are only relatively far from the hydrogenic core
are relevant for the absorption process. But if this be admitted, the question imme-
diately arises as to whether the wave function for the ground state derived from the
Ritz principle can be trusted to these distances. It appears that the matter can be de-
cided in the following manner.

First, we may observe that it might prove to be an adequate approximation to use
for the continuous wave function that of an electron moving in the Hartree field of a
hydrogen atom. In other words, it might be sufficient to use for ¥. the expression

——=leme ) + oo ] (11)
where ¢(r) satisfies the wave equation
1
v2¢+[k2+2<1+;) e—27]¢=0 (12)

and tends asymptotically at infinity to a plane wave of unit amplitude along some chosen
direction. If this direction in which the ejected electron moves at infinity be chosen as
the polar axis of a spherical system of co-ordinates, it is readily shown that the ap-
propriate solution for ¢ can be expressed in the form

6= 3 g 2F DR cos D) (), (13)

HMB

where the radial function x; is a solution of the equation

2 tat ) N
IXI4 ke +2(1+ ) vl xi=0, (14)

which tends to a pure sinusoidal wave of unit amplitude at infinity. Thus, on our pres- -
ent approximation ¥, can be written in the form

1 o1 .
\pc=7ﬁge Q;R(zzﬂ)z’z(cosm)xl(n,k)
- (15)
+e—n;k—”(zzﬁ—1)Pz(cosz92)xl(r2;k)2-

8 S. Chandrasekhar and M. K. Krogdahl, 4p. J., 98, 205, 1943.
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Using the foregoing form for ¥, the standard formula for the absorption cross-section
for a process in which a photoelectron with % atomic units of momentum is ejected can be
reduced to the form

k= 0.266% 10— lgk_“LQM

| [W e, a6

where W (r) is a certain weight function which can be derived from and depends only on
the wave function for the bound state. It is seen that, according to equation (16), the
absorption cross-section depends only on the single radial function x;. This is to be ex-
pected, since the ground state, being an s-state, transitions can take place only to a p-
state. It may be noted here that on the plane-wave representation of the free electron
the appropriate form for x: is

in kr

kr
The function W(r) corresponding to Henrich’s eleven-parameter wave function has

been computed and is tabulated in Table 1. The run of the function is further illustrated
in Figure 1.

x1 (plane wave) =3 —coskr. (17

TABLE 1
THE WEIGHT FUNCTION W(r)

r 140 r W(r) r W(r) r W(r)
0........... 0 4.0....... 1.597 11.0....... 0.833 19.0....... 0.131
0.5......... 0.210 4.5 ...... 1.623 12.0....... .703 200....... .096
1.0......... . 0.553 50....... 1.620 13.0....... .585 21.0....... .069
1.5......... 0.861 6.0....... 1.548 14.0....... 478 22.0....... .049
2.0......... 1.108 7.0....... 1.422 15.0....... .383 23.0....... .034
2.5......... 1.298 8.0....... 1.273 16.0....... .301 24.0....... .024
3.0......... 1.439 9.0....... 1.120 17.0....... .233 25.0....... 0.016
3.5......... 1.538 10.0....... 0.972 18.0....... 0.177 © -0

An examination of the values given in Table 1 discloses the somewhat disquieting
fact that substantial contributions to the integral

/O“’W(r)xl(r)dr (18)

arise from values of 7 up to 25, while as much as 30-40 per cent of the entire value comes
from r > 10. Thisresult has two consequences. The first is that the use of the p-spherical
wave (17) instead of the solution derived from (cf. eq. [14])

d’x1 2 ( 1) —2r — ~
P =22 (147) evr) =0, (19)
will not lead to any serious error; for the solution of equation (19), which tends to a sme
wave of unit amplitude at 1nﬁn1ty, has the behavior

sin (kr + 6)
X1 Lr

and the ‘““phase shift” § may be taken as a measure of the distortion of the p-spherical
wave by the hydrogen atom at the origin. Integrations of equation (19) for various values
of k% have been carried out numerically, and the resulting phase shifts for some of them
are given in Table 2. It is seen that the phase shifts are indeed quite small for values of
k2, which are of astrophysical interest.

—cos(kr+9) (r—w), (20)
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The second consequence of the run of the function W(r) is not so satisfactory; for an
examination of the energy integral minimized in the Ritz principle reveals that over 95
per cent of the contribution to the integral arises from regions of the configuration space
which correspond to r < 10. Accordingly, it would appear that the choice of the wave

wir)
St
1 | 1 1
0 5 10 15 20 25
r—>
Fic."1 :
TABLE 2
PHASE SHIFTS § FOR THE p-SPHERICAL WAVES IN THE
HARTREE FIELD OF A HYDROGEN ATOM
B 5 B2 5 B2 s B 5

1.50....... 0.1486 0.80...... 0.09244 || 0.25...... 0.02605 || 0.100. . ... 0.007689
1.00....... 0.1115 | 0.50...... 0.05838 || 0.125..... 0.01046 {| 0.035..... 0.001709

function in accordance only with the Ritz principle cannot be expected to lead to values
of W (r) which are necessarily trustworthy for » > 10. Under these circumstances the
best hope for improving the current wave functions would consist in first determining
the true asymptotic forms of the wave function for large distances and later choosing
functions which would lead not only to the best value for the energy but also to the cor-
rect asymptotic forms. However, such calculations are likely to be extremely laborious.

I am greatly indebted to Miss Frances Herman for valuable assistance in the numeri-
cal parts of the present investigation.
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