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ABSTRACT

In this paper a new method is described for solving the various problems of radiative transfer in the
theory of stellar atmospheres. The basic idea consists in expressing the integral (proportional to the
density of radiation) which occurs in the equation of transfer as a sum according to Gauss’s formula for
numerical quadratures and replacing the integrodifferential equation by a system of linear equations.
General solutions of this linear system can readily be written down, and this enables one to obtain solu-
tions for the various problems to any desired degree of accuracy.

The method has been applied in detail to the problem considered in the earlier paper, and the first
four approximations explicitly found. The corresponding laws of darkening have also been determined.
An interesting by-product of the investigation is a new and entirely elementary proof of the exact Hopf-
Bronstein relation, giving the boundary temperature in terms of the effective temperature.

1. Introduction.—In an earlier paper! it was shown how successively higher approxi-
mations to the solution of the equation of transfer

+1

M % =I—3[ Idu (1)
T -1

can be obtained by expanding 7 in terms of spherical harmonics in the form

I(r, ) =2 1:(1) Py (n). (2)
=0

More recently an important investigation by G. C. Wick? has come to the author’s no-
tice in which an alternative method for solving equations similar to (1) has been devel-
oped. It is the object of this paper to describe Wick’s method in its astrophysical context
and to show its particular adaptability for solving the standard problems of radiative
transfer in the theory of stellar atmospheres.

2. The outline of the method.—Wick’s basic idea consists in expressing the integral on
the right-hand side of equation (1) as a sum, using for this purpose Gauss’s formula for
numerical quadratures.® Thus, denoting by u—n, . - . o, g1, pi1, .« « o oy i, and p; = —p;
the 2#n real roots of the Legendre polynomial Ps,(u) of order 2u, we can write, accord-
ing to Gauss, '

+1 T
/;11 (7, ) dus~ D7 a;I (7, 1j), (3)*

i=—n

1 Ap. J., 99, 180, 1944. Referred to hereafter as “I.”

2 Zs. f. Phys., 120, 702, 1943.

3 See, e.g., P. Frank and R. V. Misses, Differentialgleichungen der Physik, 1, 394, New York, 1943.
4 Note that the summation on the right-hand side does not include the term j = 0.
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where the g;’s are certain weight factors. It may be further noted that
a;=a—j; pj= —p—j. (4)

Tt is known that for a given number of subdivisions of the interval (—1, 4+1) Gauss’s
choice of the points u;and the weights a; yields the best value for the integral in the sense
that for any arbitrary polynomial of degree 4n — 1, the formula (3) is exact. In particular,

n

1
g a;pi = / K dl-"'—m"__i__l (5)

Accordingly, the representation of the integral as a finite sum of the form (3) can be
made as accurate as may be desired by choosing # sufficiently large.

In the “nth approximation” we therefore replace equation (1) by the linear system of
ordinary equation of order 2x: il

Wi dr_I"—%EafIJ' (t=+1,...., £n), (6)

where, for the sake of brevity, we have written I, for I(r, u;). Further, in equation (6)
the summation over j is extended over all the positive and negative values.

3. The general solution of the system of equations (6).—We shall now find the different
linearly independent solutions of the system (6) and later, by combining these, obtain
the general solution.

First, we shall seek a solution of (6) of the form

Ii=gig_k"' (i=i1,....,in), (7)

where the g/’s and k are constants, for the present unspecified. Introducing equation (7)
into equation (6), we obtain the relation

gi(1+pk) =3Za;g;. (8)
Hence, ,
constant
;==  =+1,...., +
gl 1+,u,k (7’ —1) ' 7—”); (9)

where the “constant” is independent of <. Substituting the foregoing form for g; in equa-
tion (8), we obtain the following equation for k

aj

1=32 10
1 + uik (10)
Remembering that ¢_; = ¢; and u_; = —pu;, we can re-write equation (10) as
n a:
1= —, (11)
I

It is thus seen that k2 must satisfy an algebraic equation of order #n. However, since

iaj=1 (12)

(cf. eq. [5]), & = 0 is a solution of equation (11). Accordingly, equation (10) has only
2n — 2 distinct roots, which occur in pairs

Tka (a=1,....,m—1). (13)
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And, corresponding to these 2n — 2 roots, we have 2» — 2 independent solutions of
equatlon (6). To complete the solutlon we notice that equation (6) admits of a solution

of the form
I,=b(r+qy) (t=%1,...., +n), (14)

where b is an arbitrary constant. For, inserting the form (14) for I; in equation (6), we
find that

: wi= ¢~ 32045 ; (15)
and this can be satisfied by -
g:=u;+0Q (t==41,....,xtn), (16)
where Q is an arbitrary constant. Thus, the system (6) allows the solution
Ii=b(r+Q4 ) (G==%1,....,£n), (17)

where b and Q are two arbitrary constants.
Thus, combining solutions of the form (7) and (17), we have the general solution

N w |
Ii:b{Z[L“ek = ]+m+Q+TJ> (18)

1 + ,Uvq’,ka #1

where b, Lio, (a = 1,...., % — 1), and Q are 2z arbitrary constants.

4. The solution of equation (1) satisfying the necessary boundary conditions.—For the
astrophysical case under consideration the boundary conditions are® that none of the
I/s increase exponentially as r — « and that, further, there is no incident radiation on
the surface 7 = 0. The first of these conditions implies that in the general solution (18)
we omit all the terms in exp (+4a7). Thus,

I-”{ZH k+#i+Q+T} (i=+1,....,+n). (19)

Next the nonexistence of any radiation incident on 7 = 0 requires that
;=0 at =0 andfor i=1,....,%, (20)

or, according to equations (4) and (19),

K L : '
;m+Q=#i (¢=.1,--~-;”)- (21)

These are the » equations which determine the (# — 1) constants L, and the further
constant Q. The constant b is left arbitrary; and this, as we shall presently show, is re-
lated to the constant net flux in the atmosphere.

Now the net flux is defined in terms of F, where

+1
F=2 Tudu. (22)
—1

Expressing the integral on the right-hand side as a sum over the Iu,’s according to
Gauss’s formula and using the solution (19) for the I.’s, we find

\
F=21><L Lae—kvr?1+lzl—+2amz+<Q+T>Zazulj. (23)

5Cf. 1, p. 182.
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On the other hand (cf. eq. [5]),

Eami=% and Zau;=0. (24)
Moreover,
a1 ( ____)
z 1+I~Lika—ka Ea”b 1 1+IJvika
(25)
1 a;
(),
which vanishes according to equation (10). Hence,
F = %b = constant ; ' (26)

i.e., b is related to the constant net flux, as stated.
In terms of our solution for the I,’s we can obtain a convenient formula for J defined

by “+1
J= %f_lzdu= 150,10, (27)

in our present approximation. We have

J=1%b {ELe Zlﬂﬁiwzﬂ@%)Ealj, (28)

or, according to equations (5), (10), (24), and (26), we have

n—1 '
J=gF(T+Q+ ELae_"’aT>. (29)
a=1
If we express J in its “normal” form (cf. I, eq. [47]),
=4F(r+qlr]), (30)
we have
n—1
(1) =Q+ D Lie . (31)
a=1

Finally, we may note that, according to the solution (29) for J, we have the law of
darkening (cf I, eq. [49]):

I(0, p) =32F <“+Q+21+kau) (32)

This completes the solution. The clear superiority of our present method over our
earlier one of expanding I in terms of spherical harmonics is apparent. It is to be particu-
larly noted that, in contrast to our earlier method, we can now write down the formal
solution for any order of approximation quite generally.

5. The first, second, third, and fourth approximations—We shall now obtain in their
numerical forms the first four approximations to the solution for J and the corresponding
laws of darkening.
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i) The first approximation.—The first approximation is obtained by choosing #» = 1,
in which case

1 ,
a1=a-,=1 and M= —u_1=—\7§. (33)

There is no nonzero root for equation (10), and equation (21) now implies that

0=m=—r5. (34)
Accordingly,
q(r) =‘\“}§ (35)
and
ol oy L |
) I(0, u) =4F (,u-f-—\/‘g—) (36)

It is remarkable that in the very first approximation our method predicts a boundary
value for ¢(7) which is in exact agreement with the Hopf-Bronstein value (cf. I, eq. [73]).
Actually, as we shall presently show (see § 6 below), this is identically the case in all ap-
proximations; and, consequently, we have here an essentially new and “elementary”
proof of the Hopf-Bronstein relation. ‘

One further remark about this first approximation may be made. The differential
equations for I; and 7_; are

s %L=11_%(11+1f1),
1 dI P
_—\—/_—j-?__l.zl_,l—"%(ll'i‘l—l);

which are essentially the equations of Schwarzschild’s first approximation.® However, the
y q pp

difference is that on the left-hand sides of the foregoing equations we now have 1/ V'3 in-
stead of the usual 1/2. It is interesting to speculate that, had Schwarzschild used our
present systematic method, based on Gauss’s formula, he might have discovered the ex-
act boundary temperature some twenty-five years before Hopf and Bronstein!

ii) The second approximation.—To obtain the second approximation we have to choose
for the u.’s the zeros of P4(u) and the corresponding weight factors. We have’

a=a-1=0.652145; = —u—=0.339981 ,} (38)
@y =a—_y=10.347855 ; ue= —u—=0.861136.
E(juation (11) reduces to
pipsk® = a1l + aui=1% . (39)
Hence,
1
ky=—=—"=1.972027. 40
' \/3#1#2 (40)
Solving for Q and L,, we find
0=0.694025; L;= —0.116675. (41)

8 Cf. E. A. Milne, Handb. d. Ap., 3, No. 1, 114-116, Berlin: Springer, 1930.
7 A. N. Lowan, N. Davids, and A. Levenson, Bull. Amer. Math. Soc., 48, 739, 1942,
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Accordingly, on this approximation

q(r) =0.694025—0.116675¢1.97208r (42)
and
0.116675
— 3 _
I(0,p) =4F <#+0.694025 1+1.97203M>. (43)

iii) T'ke third approximation.—We now have
gy =a-,=0.467914 ; pr= —u—1=0.238619,
Gs=a—y=0.360762 ; ps= —pu_p=0.661209, (44)
Gs= 0_;=0.171324 ; . pg= —p_s=0.932470 .

The equation for %2 reduces to

0.02164502k*—0.254545k24+3 =0, (45)
the positive roots of which are
k1=3.202945 and k,=1.225211. : (46)
Solving for Q, L,, and L., we find
0=0.703899, L;=—0.101245, L,= —0.02530. (47)
Hence,
g(7) =0.703899 —0.101245¢—3:202957 — (0,0253( ¢ 122621~ (48)
and

(49)

1(0, u) =2F (M+0_703899_ 0.101245 0.02530 )

1+3.20295, 1+1.22521p

iv) The fourth approximation.—To obtain the fourth approximation we have to choose
for the u’s the roots of Ps(u) and the corresponding weight factors. We have

g1=a_,=0.362684; = —#_1=0.183435,]
G3=a_s=0.313707 ; py= —p_p=0.525532,

: (50)
as;=a_,=0.222381; ps= —pu—3=0.796666 ,
ay=a-,=0.101229; pa= —pu_y=0.960290.
The equation for &2 reduces to
0.00543900%% — 0.1284982k4+0.422222F2~1 =0, = (51)
the positive roots of which are
k;=4.45808 ; ko=1.59178 ;=1.10319. (52)
The constants Q, L;, Ls, and L; were found to be |
Q0=10.706920; L= —0.083921;
Ly= —0.036187; L;= —0.009461 } (59)

Accordingly,
g(7)=0.70692—-0.08392¢4-48087—(,03619¢1-59787—(,0094 6 ¢ —1-103197  (54)
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and
100, =%F<y+0.70692—

0.08392  0.03619  0.00946 )(55)
1+4.45808; 1+1.591784 1+1.103194)"

In Tables 1 and 2 we have tabulated the functions ¢(r) and 7(0, u)/F according to our
second, third, and fourth approximations. It is also seen that, in agreement with our

TABLE 1

THE FUNCTION ¢(+) DERIVED ON THE BASIS OF THE SECOND, THIRD, AND
FOURTH APPROXIMATIONS (EQs. [42], [48], AND [54])

q(7) q(r)

4 Second Third Fourth T Second Third Fourth
Approxi- Approxi- Approxi- Approxi- Approxi- Approxi-

mation mation mation mation mation mation

0.00......... 0.5774 0.5774 0.5774 0.90........ 0.6743 0.6898 0.6933
05, .. .5883 .5938 .5974 1.0......... .6778 .6924 .6954
A0 .5982 .6080 .6139 1.2......... 16831 .6959 .6987
AS. . .6072 .6202 .6274 1.4......... .6867 .6982 .7008
200, .6154 .6307 .6386 1.6......... .6891 .6997 7024
250 .6228 .6398 .6479 1.8......... .6907 .7008 7035
300 .6295 L6477 .6557 2.0......... .6918 .7016 .7044
S50 6355 .6544 .6621 2.2......... .6925 .7021 .7050
40......... .6410 .6603 .6676 2.4......... .6930 7025 .7055
50 .6505 .6698 .6761 26......... .6933 .7028 .7058
60.. ... ... .6583 L6770 .6823 2.8......... .6936 .7031 7064
0. 6647 .6824 .6870 3.0......... .6937 .7033 .7065
0.80......... 0.6699 0.6866 0.6905 ® ., 0.6940 0.7039 0.7069

TABLE 2

THE LAWS OF DARKENING GIVEN BY THE SECOND, THIRD
AND FOURTH APPROXIMATIONS (EQS. [43], [49], AND [55])

I(0, p)/F
H
Second Third Fourth
Approximation Approximation Approximation

00.............. 0.4330 0.4330 0.4330
0.1.............. 0.5224 0.5285 0.5319
0.2.............. 0.6078 0.6164 0.6205
0.3.............. 0.6905 0.7003 0.7046
04.............. 0.7716 0.7819 0.7861
0.5.............. 0.8515 0.8620 0. 8660
0.6.............. 0.9304 0.9410 0.9449
0.7.............. 1.0088 1.0193 1.0231
0.8 ............. 1.0866 1.0970 1.1007
0.9.............. 1.1640 1.1743 1.1779
1.0.............. 1.2411 1.2513 1.2548

earlier remarks, ¢(0) agrees with the exact value 1/ V3 in all our approximations. (For a
proof of this relation see § 6 below.) Moreover, a comparison of the law of darkening on
our fourth approximation with the exact values given in I, Table 2, indicates that in this
approximation we have reached an over-all accuracy of about one part in two hundred.
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6. A proof of the Hopf-Bronstein relation J (0) = (V'3/4) F.—In the preceding section
we have verified that ¢(0) agrees with the Hopf-Bronstein value 1/ V/3in all the four ap-
proximations we have numerically worked out. We shall now show how this result can
be demonstrated to be quite generally and rigorously true. In order to do this, we start
by considering the function

n—1

S = 30—, (56)

According to the boundary conditions (21), :
S(u;) =0 (i=1,....,n). (57)

This fact enables us to determine S(u) explicitly. For, by multiplying equation (56) by
the function

R(uwy=0 —kyp) (1 —kop).... (1 —kyyp), (58)
we obtain a polynomial of degree » in u which vanishes for p = py, 0 = 1,. ..., n. Ac-
cordingly, S(u)R(u) cannot differ from the polynomial

P(p)=(p—p) (u—p) ... (0 i) (59)

by more than a constant factor; and this factor can be determined by comparing the co-
efficients of the highest power of u (namely, ) in P(u) and S(u)R(u). In the former it is
unity, while in the latter it is

(—1)"kyks - .. By - (60)
Hence, , P
= J— n —“’_ 8
S(u)=(—-1) klkz....kn_lR(’u) . (61)
From equations (31), (56), and (61) we now conclude that
| q(0) _—.;La-l—Q—S(O)—(——l) k1k2....kn_1m. (62)
On the other hand, according to our definitions of the functions P(u) and R(u),
: PO)y=(—D" upe ... p; R(O)=1. (63)
Hence,
q(0) =Fkiks. ... kp—qpipe . .. iy - (64)
We shall now show how the quantity on the right-hand side of equation (64) can be ex-
plicitly evaluated from the equation for the roots %1, . . . ., k.—1. We have (eq. [11])
a »
1= — . (65)
| = T
Multiplying this equation by the product of the factors (1 — &%), . ..., (1 — E%ul),
we obtain
(=)m w2 w2k = D ey <E ,@.—@) B2 D utk?
=1 =1 i=1 (66)

+§:a¢—1=0;

i=1

8 This relation can be used for a direct evaluation of the constants L, without going through a routine
solution of linear equations (21).
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or, using equation (5), we have

(=) 2l ... w2k 2. +1=0. (67)
Hence the product of the roots % . . . . k2_; is given by
. .
252 2 N
R2k2.... k2 = S | (68)
or
kik ky—1= ! (69)
TR N B

Combining equations (64) and (69), we have
1

a result which is thus seen to be true in all orders of approximation. We therefore con-
clude that equation (70) represents an exact relation.
Finally, it is to be noted that equations (30) and (70) imply that

7 (0) —lf—’F (71)

which is the well-known relation of Hopf and Bronstein.

7. Further applications of the method.—Our analysis in the preceding sections has dem-
onstrated the extreme simplicity with which solutions accurate to any desired extent
can be obtained. But the usefulness of the method is by no means limited to the particu-
lar problem which has been considered. Indeed, the possible applications of the method
are so numerous that it would hardly be possible to consider all of them within the limits
of a single paper. We shall therefore content ourselves with a brief consideration of two
further standard problems in the theory of radiative transfer, postponing to a later oc-
casion the more detailed discussion of the various solutions.

1) The radiative equilibrium of a planetary nebula.%—As was first pointed out by Am-
barzumian, the equation of transfer for the “ultraviolet” radiation (i.e., radiation beyond
the head of the Lyman series) consistent with Zanstra’s theory is

I _
b= —~p_/ Tdu —1pSe—tn— (72)

where p is a certain factor less than unity, 7; the optical thickness of the nebula for the
ultraviolet radiation, and =S the amount of ultraviolet radiant energy incident on each
square centimeter of the inner surface of the nebula (i.e., at 7 = 71).

Again, in equation (72), we approximate the integral occurring on the right-hand side
by a sum according to Gauss’s formula for numerical quadratures. And in this manner we
replace equation (72) by the system of 2x linear equations

dl,
Mg dT

I,-—%pEa,-Ij—ipSe‘(n—f) (1,= il, ey in), (73)

in the nth approximation. We shall now briefly indicate how the general solution of this
linear system of equations can be obtained.

? For earlier discussions of this problem see V. A. Ambarzumian, Pulkovo Obs. Bull., No. 13, and M.N.,
93, 50, 1931; also S. Chandrasekhar, Zs. f. 4., 9, 266, 1935.
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Setting
=/S[gi€_k7+hi€—(71_r)] ('L=i1;) in) (74-')
in equation (73) (where g;, k;, and k are constants), we find -
g (1 +ku) =3pZa;g; (75)
and
hi (L —pi) = 3pZahi+1p . ' (76)
Equation (75) implies that .
constant .
& =TT (G==+1,....,+n) (77)

and that % is a root of the equation

S (78)

=1 —uzkz

Since p < 1, the foregoing equation admits of 2# distinct roots, which occur in pairs as

+k, (a=1,....,%m). (79)
Considering next equation (76), we observe that %, must be expressible in the form
ho=—L (i=+1,....,%n), (80)

1 —

where 3 is a constant which must, in turn, be so chosen that

B=3p82 7~ +1p. (81)

Hence,
1

' (82)
Z

Accordingly, the general solution of equation (73) can be written in the form

W
I
S
¥

NN

n Lae—kar L_a_6+kar —(7,—7)
) Z [1 k +1 k ]+ b
I,=S e Ll pike " 1~ pika : Lop3 . (83)
4(l=p) (=P +—
{ . i=1 1- 'u?
where Ly,, a = 1,...., n, are 2z constants of integration. For the problem under con-

sideration the solution (83) becomes determinate when the boundary conditions at
7 = 71y and at 7 = 0 are taken into account. These are

I,=1_; at T=T7 for i=1,....,n (84)
and
I_,=0 at =0 for i=1,....,n. (85)

The conditions (84) arise from the geometry of the problem, as was first pointed out by
Milne,'® while the conditions (85) arise from the nonexistence of any radiation incident
on 7 = 0. The explicit form which these conditions take can be readily written down in

0 Zs. f. Ap., 1, 98, 1930.
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terms of the general solution (83). We shall not continue with this discussion further, but
it is apparent how solutions of any desired degree of accuracy can be obtained in this
manner.

ii) The standard case in the theory of the formation of absorption lines—In a standard
notation! the equation of transfer appropriate for this problem is

al, (1 —e€) 14en,

s T ATy TN

In the “standard case” the ratio 7, of the line to the continuous absorption coefficients is
assumed to be constant. Suppressing the suffix » and introducing the quantity

I vdu— (a yo—i- buoty) . (86)

14en
A= 8
T, (87)
we can re-write equation (86) more conveniently in the form
dI _ 1 _ +1 _ .
pSi=T-30 x)f_lzdu N (a+ bi) . (88)

In the nth approximation we replace the foregoing equation by the system of linear equa-
tions
d I;

=LA =NZal—Ne+b) (=%1,...., £n). (89)

Proceeding as before, we verify that the solution of this system appropriate for the prob-
lem on hand is

21+ k+<m+a+bt> G==%1,...., £n), (90)

where the k.’s are the # positive roots of the equation

n a:
1= (1-X\ L (91)
N 2=
and the L,’s (a = 1, . ..., n) are the »n constants of integration to be determined by the
boundary conditions
E i—+a=u,~b (i=1,....,n). (92)
a=1 1 —’uika

Again solutions to any desired degree of accuracy can be obtained.

In conclusion, we should further like to point out that the methods developed in this
paper can readily be applied also to problems in which the scattering does not take place
isotropically, as, for example, in the case of scattering by free electrons. But we postpone
a discussion of this problem to a later occasion.

I am indebted to Miss Frances Herman, who carried out the numerical work involved
in the preparation of Tables 1 and 2.

11 See, e.g., B. Stromgren, 4p. J., 86, 1, 1937.
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