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ABSTRACT
In this paper the equation of transfer

al +1
pe-=1~1I; h=fj@
is solved by expanding I in terms of spherical harmonics in the form
o
I(r, w) = 120 I(7)Pi(p) -

It is shown how successively higher approximations to I can be obtained by retaining more and more
terms in the foregoing expansion; thus, the first, second, and third approximations are obtained by re-
taining the first three, five, and seven terms, respectively, in the expansion. The first three approxima-
“ tions to Io(r) are explicitly obtained, and the corresponding laws of darkening derived.
The exact function describing the law of darkening and given by Hopf’s theory is also numerically
evaluated. A comparison of this exact law with those derived on our second and third approxxmatlons
indicates that the method described in this paper is sufficiently rapidly convergent.

1. Introduction.—As is well known, the solution of the equation of transfer

) ,
cosos L7 (1)
dr .
where
) 1 T,
J=§fo I sin 949, | (2)

has occupied a central position in the theory of stellar atmospheres and has been the sub-
ject of investigations by Schwarzschild, Milne, Eddington, Jeans, Hopf, Bronstein, and
others. An account of these investigations and ‘the successive methods of approximation,
“as developed particularly by Milne and Eddington, will be found in the various treatises
on the subject by Eddington, Milne, and Unséld.! However, the methods described by
these latter writers, while adequate for most purposes, are not sufficiently systematic, in
the sense that no general procedure is outlined which would enable one to obtain solu-
tions of increasing accuracy by retaining, for example, more and more terms in an expan-
sion of some sort for /. More recently, however, an attempt in this direction has been
made by L. Gratton? in a paper of considerable interest. Gratton’s basic idea is to seek a
solution of equation (1) of the form

I(r,8) =3 Ii(r)P(cosd), (3)

=1

' 1A. S. Eddington, Tke Internal Constitution of the Stars, chap. xii, Cambridge, England, 1926; E. A.
Milne, Handb. d. Ap., 3, No. 1, 114-126, Berlin: Springer, 1930; A. Unséld, Physik der Sternatmosphdiren,
pp. 89-104, Berlin: Springer, 1938.

2 Societa astronomica italiana, 10, 309-325, 1937,
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in which the P;’s denote the various Legendre polynomials. In other words, we expand 7
in terms of spherical harmonics with the expectation that by retaining a sufficient num-
ber of terms in the expansion we shall be able to obtain solutions with any desired degree
of accuracy. This is, of course, an entirely sound procedure; but, unfortunately, Grat-
ton’s specific treatment of the problem following this idea is vitiated by a number of
errors and oversights which require corrections. Accordingly, it has been thought worth
while to re-examine the whole problem de n0vo and obtain what might properly be de-
scribed as the first, second, and third approximations to the solution of equation (1).
We shall, moreover, compare the predictions of these approximate solutions with regard
to those features (e g., the law of darkening) for which the Hopf-Bronstein® theory pro-
vides exact information.

2. The outline of the method.—Denoting cos ¢ by u, we can re-write equation (1) in the
form

al
w=I—1I, (4)
T
where I is the first term in the expansion
I(r,w) =D, 1:i(1)Pi(p). (5)
=0

Substituting the foregoing expansion for I in equation (4) and remembering that the
Py’s satisfy the recursion formula

pPy= g L+ D Pt IR, (6)
we find
> gl U+ D PP S = S 1P 1. (1)
1=0 =0

Equating the coefficients of the various Legendre polynomials in equation (7), we ob-
tain

l dIl—l l+ 1 d.[l+1 _ _
21—1 dr +2H—3 dr =I, (U=1,2,....) (8)
and _
1dI,
2= =0).
3 dr 0 (@=0). (9)

Equation (9) leads at once to the integral
I, = constant = 3 (say) , (10)

which clearly insures the constancy of the net integrated flux and determines the effec-
tive temperature of the star. Another integral of the equations is obtained by considering
equation (8) for the case / = 1. For, according to this equation, for / = 1 we have

dl, 2 dI,

FZRN Ik (n

3 E. Hopf, Mathematical Problems of Radiative Ethbrmm (Cambridge Mathematical Tract No. 31),
Cambridge, England, 1934.
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or, since I; is a constant (eq. [10]),
: Is+31I:=%Fr+a, (12)

where a is an arbitrary constant at our disposal. This integral is readily verified to be the
same as what is more generally known as the “K-integral.”*
Before we proceed to outline our method of approximation we shall first formulate the
boundary conditions of the problem.
For the problem of the radiative equilibrium of a stellar atmorphere the boundary
condition at 7 = 0 is
I(0,u) =0 ©for —1<p.<0, (13)

since no external radiation is assumed to be incident on the star. The implication of the
boundary condition (13) for the I;’s as 7 — 0 can be derived in the following manner.
From equation (5) we conclude that for 7 > 0

g 11 (7) = f I (e, 1) Py () das. (14)

Passing now to the limit 7 = 0 and remembering that, according to equation (13),
I (0, p) vanishes for all negative values of u, we obtain

g 10 = [ 10, Py (w) du. s
On the other hand, for 7 = 0 (cf. eq. [5])
I(0,u) = Z::OI,,, (0) Pp, () - (16)
Hence, combining equations (15) and (16), we must have
:;111 1,(0) = gzm 0 folplm)zfm () dus. Coan

Thus the boundary condition (1) is equivalent to the infinite set of linear relations (17)
among the I;’s as 7— 0.

. It is now apparent that we cannot satisfy the entire set of relations (17) when a solu-
tion for I is sought by retaining only a finite number of terms in the expansion (5). But
it is clear that the more the number of the relations (17) we are able to satisfy, the more,
in general, we may expect the derived solution to be accurate. On the other hand, only
as many of the relations (17) can be satisfied as there are disposal constants in the solu-
tion for the 7/s. It thus appears that the order of the approximation will be indicated
by the number of constants of integration (other than F) which the solutions for the
I/s contain. Thus, as we shall presently show (§§ 3, 4, and 5, below), the solutions ob-
tained by retaining only the first three, five, or seven terms in the expansion (5) involve
respectively one, two, or three disposable constants of integrations. These, then, will pro-
vide the first, second, or third approximations to the solution of equation (1).%

¢ E.g., see Milne, 0p. cit., p. 121, eq. (125), or Unséld, op. cit., p. 97, eq. (29.13).

.~ 5One of the oversights of Gratton (loc. cit.) consists precisely in his failure to recognize this point.
Thus he obtains his “second” approximation by retaining terms up to and including 7;. However, as
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For further reference we may note here that the relations (17) for the cases / = 0, 1,
and 2 explicitly reduce to

21,(0) =1,(0) +%I1|(0) —31500) ++%I;(0) +...., (18)
21,(0) =31,(0) +3I.(0) +3I,(0) —£1,(0) ++145l6(0) +...., (19)

| and \
312 (0) =31:(0) +312(0) +315(0) —1§sl5(0) + ... ., (20)

where on the right-hand sides we have retained all terms up to and including 7¢. Remem-
bering that 7; = constant = 3F/4, we can write more conveniently in the forms

310(0) +1515(0) — 4515 (0) +.... = &F, (21)
316(0) +372(0) — 4574 (0) ++14516(0) +.... =%F, (22) .

and
31,(0) —115(0) + 415 (0) + .. .. =5%F. (23)

So far we have considered only the boundary conditions at 7 = 0. Turnlng next to the
boundary conditions at 7 = | it is evident that®

Io~%Fr and I,(7) for >0 boundedas r— . (24)

3. The first approximation.—The first approximation is obtained by retaining the
terms Iy, /1, and I in the expansion for 7 and considering only the first three equations
(namely, for / = 0, 1, and 2) which result from equation (7). The equations for / = 0
and ! = 1 lead, as we have already seen, to the integrals (10) and (12). The equation for
l=2is

24dl,, 3dl;

33 —7-—2;—=Ig. (25) |
Remembering that 7; is a constant and that we have put 73 = 0, it follows that
I,=0. (26)
Accordingly, our solution is _‘
Iy=3Fr+a; I,=%F ’ (27)

and involves, as we see, the one disposable constant a. To determine this constant, we
should use one or the other of the relations (17). Now the relation for I = 1 is given pref-
erence over all the others, since (as was first pointed out by Milne) this insures that the

we have indicated, the genuine second approximation is obtained only when the term 14 is also included.
A consequence of this is that Gratton’s solution (after correcting some further arithmetical errors in his
evaluation of the constants of integration) fails to satisfy certain other necessary conditions of the
problem (see n. 7, below).

8 Cf. Hopf, op. cit. -
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emergent flux is the same as the constant net flux in the interior. Accordingly, we use
equation (22) to determine a. We readily find that

a=3F. (28)
Thus,
: Io(r) =3F (1 +3), | (29)
and the corresponding law of darkening is
1(0, ) =3F+3Fu. (30)

We therefore see that the first approximation on our present method reduces simply to
the solution in the form first derived by Milne.

4. The second approximation.—As we shall now show, the second approximation for I
is obtained by retaining the terms up to and including 7, in the expansion (5). This re-
quires the consideration of the first five equations which result from equation (7). Thus,
in addition to the integrals (10) and (12), we have now to consider the following equa-~
tions:

3dI;
7 dr Iy,
3dl, 4dl,
5dr Todr 1o (31)
4 dI, 3
T dr =L

From the first and the last of the foregoing equations we obtain the integral

$I,=1;. (32)7

Equations (31) also lead to the following differential equation for 73:

16 &I, _4dl, . 3dl, . 9 &I
63d2=9a, ~ 1753, T35 g0 (33)
or ’
23 &I,
R—ﬁ—[;,. (34)

The solution of this equation appropriate for our present purposes is (cf. eq. [24])
I;=Ae o, 7 (35)

where A4 is an arbitrary constant and

a=V3ii=1.399. (36)

From equations (31) and (32) we now obtain

Iy=—$%dae™; I,=—4dae™. ENCE)

7 The existence of this integral reveals the inconsistency of an approximation in which I3 is included
but 4 is not (see n. 5). A consequence of this inconsistency is that when the solution for I, including
only terms up to I, is obtained, it is found that 7(0, 0) £ I,(0), contrary to what should be expected to
be identically true (since at the limb we necessarily see only the surface layers).
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The solutions for the I’s are thus seen to involve only two disposable constants (namely,
A4 and @) and therefore lead, as already stated, to the second approximation.

To determine the constants 4 and ¢, we use equations (21) and (22) as our boundary
conditions. Under our present assumptions (namely, that I5, I, etc., can all be ignored)
these equations reduce to

310(0) +1%15(0) =-5%F (38)
and
37,(0) +371,(0) —£7,(0) =3F. - (39)

Elimina.ﬁng I, (0) between the foregoing two equations, we obtain
312(0) —5715(0) —£514(0) =&F. (40)

This equation directly determines 4. We find
F
1 +3a
Accordingly, our solutions for I,, I3, and 7, are
I,=0.3102F¢e I3= —0.5175F¢—o; I;,=0.4136Fe¢~o, (42)
Equation (38) or (39) now determines I, (0). We find '

=—0.5175F. (41)

, I,(0) =0.4397F . - (43)
On the other hand, since (cf. eq. [12])
I,(0) =a—%1,(0), : (44)
we have ,
. a=0.5638F. ’ (45)
Thus, our solution for 7, is
Io(7) =3F7-+0.5638F—0.1241Fe~*", (46)
which for later comparisons (§ 6) we write in the form
Iy (r) =§F[r+q()], (47)
where now .
g(7) =0.7517—0.1654¢1:3%7, (48)

To obtain the corresponding law of darkening, we start from the exact relation
10, ) = [ Io(r) e~ & (49)
0 K

and substitute for Iy (1) the solution (46). We thus find that

0.1241 )

151.399, (50)

1(0, u) =F (0.56384—0.75#—

5. The third approximation.—To obtain the third approximation for 7, we retain all
the terms up to and including /s in the expansion for 7 and consider the first seven equa-
tions which result from equation (7). Accordingly, in addition to the two equations
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which lead to the integrals (10) and (12), we have to consider the following five further
equations:

3dI;
7dr
34l 4dl,_,
Sdr ' 9dr % |
44l 5 dI, |
7 T = I b
S5dl, | 6 dIg
93y 713 ar 1o
6 dI;
1 dr =lo.

From the first, third, and fifth of the foregoing equations we obtain the integral

$lo+8ls=1,, (52)

which is our present analogue of the integral (32) we had in the second approximation.
Again, from equations (51) we obtain

36 &5 _ 6 dls )
143 dr2 13 dr
s,

dr

9
o spA@L s d215)
=1y 6(7 d7'2+11 dr2/’

=TI (53)

Similarly

99 dr2 9\dr 7 dr¥
16 4%,
= ~63 g T1sT

16,
63 dr?

2041y 4 /dl, 4 d2I3>

3 ary
5 dr
id2l3
35 dr?”

(54)

+1,—

Equations (53) and (54) can be re-written alternatively in the forms

59 45 20 4?1,

117 dre = 763 ar

234, ., 20 &,
45 dr2 "' 99 g%

(535)

To solve the foregoing equations we make the substitutions

Is=Ae and I;=Be o, (56)
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where 4, B, and a are constants, for the present unsPeciﬁed. We obtain

- — 22 w24
117(1 1)B— ,

23 20 (57)
i 1>A = =39 a’B
Hence a? must satisfy the equation
117 ¢ _1)< 1) 634>0<099 B (58)
Solving this equation, we find that a can have either of the two values |
a;=1.9825 or a,=1.1464. (59)
Correspz)nding to these two roots for a, we must have
B;=—1.27064, and By;=1.23684,. (60)
Accordingly, the solutions for I; and [s appropriate for our present problem are
Is=Ae 7+ Ageor - (61)
and
Is=—1.27064,e7%"+1.2368A4,e7%". (62)

Using equations (51) and (52), we can now evaluate the remaining 7’s. We find
I,=—0.84974,6 47— 0.4913 4,77,
I,=40.01214,e 77— 1.29954,e %, (63)
I¢=+1.37404,6747—0.7733 Age ™7,
We thus see that our solution for the I’s involves three disposable constants (namely, A,,
A2, and @) and leads, therefore, as we have already stated, to the third approximation
fOI’TI(; determine next the constants 4;, 42, and @ we use equations (21), (22), and (23)

as our boundary conditions. Eliminating I, (0) between equations (21) and (22), we
have

315(0) — 1675 (0) — 75714 (0) +5515(0) +135l6(0) =F.  (64)

Equations (23) and (64) directly determine 4; and 4,. We find

A;= —0.3931F and 4,=0.2384F. (65)
Substituting these values for 4; and 4, in equations (61), (62), and (63), we obtain |
Iy= (+0.3340¢™7— 0.1171e %) F
I;=(—0.3931¢~%7+0.2384¢~")F,
I,= (—0.0048¢~%7—0.3098¢ ") F, (66)
Is= (4+0.4995¢—+0.2949¢ ") F
Ts= (—0.5402¢~u7—0.1844¢—or) F .
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The value of I (0) can now be determined from equation (64). We find
I1,(0) =0.4440F . (67)
Equations (12), (66), and (67) now determine a. We find '
a=0.5307F . (68)
Thtis the solution for 7, is given by
Iy(r) =3F740.5307F —0.1336F¢~7+0.0469F ¢ 7 ; (69)
or, writing I, (7) in the form (47), we now have

g(r) =0.7077 —0.1781¢~1-98%r 10,0625 ¢ ~1- 14647 , (70)

Finally, to determine the law of darkening we again start with the equation (49) but
substitute for 7, our present solution (69). In this manner we find

0.1336 _  _ 0.0469
1+1.19825, ' 1+1.14645

I(0,u =F(0.v5307+0.75u— (71)

6. A comparison of the second and the third approximations in their predictions regarding
q () and the law of darkening: the exact law of darkening—As is well known, Hopf
and Bronstein have succeeded in deriving certain exact results concerning the solution
of the equation of transfer (1) satisfying the boundary condition (13). Thus it has been
shown (see Hopf, 0p. cit.) that, if the solution for Iy be written in the form

Io(r) =3F[r+q(n)], (72)

then ¢ (7) is a monotonic increasing function of 7 and that, moreover,

1
] q(O) =7—’§=0.57735 (73)
and y
1 27 3 tan ¢
'q(w)_;»/(; sin® ¢ ¢—tan¢) a9 (74)

The integral on the right-hand side of equation (74) was evaluated numerically, and it

was found that
g (o) =0.710447 . (75)

These exact values for g (0) and ¢ (=) should be compared with those given by equatlons
(48) and (70) on our second and third approximations, respectively. We have

g (0) =0.5862; q (o) =0.7517 (second approximation) , } 76)
g (0) =0.5920; g () =0.7077 (third approximation) .

It is seen that, while the third approximation effects a marked improvement over the
second in the agreement of ¢ () with the exact value (75), it worsens somewhat the
agreement of ¢ (0) with its exact value (73). However, it appears that the third approxi-
mation actually represents a substantial improvement over the second over the entire
range of 7 except in the very immediate vicinity of the boundary 7 = 0. That this is so is
indicated, for example, by the comparison made in Table 1 of the functions ¢ () given by
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our second and third approximations with that given by Eddington’s second approxima-
tion.8 This conclusion is further strengthened when we compare the laws of darkening

TABLE 1

A COMPARISON OF THE FUNCTION ¢(7) DERIVED ON THE BASIS OF THE SECOND AND THE
THIRD APPROXIMATION (EQS. [48] AND [70]) WITH THAT DERIVED ON
EDDINGTON’S SECOND APPROXIMATION

a(7) q(7)
T Second Thirq | Zddinston’s T Second Thira | Dddington’s
. . Second . . Second
Approxi- Approxi- Approxi- . Approxi- Approxi- Approsxi-
mation mation mation mation mation mation
0.00.... :...| 0.5862 0.5920 0.583 090........ 0.7047 0.7000 0.692
05.. ..., .5974 .6053 .620 1.0......... .7108 .7030 .694
0., .6078 .6172 .635 1.2......... .7208 .7070 .697
AS. oo 6175 .6280 .645 1.4......... .7283 L7091 .699
200 ... .6266 .6375 .653 1.6......... . 7340 .7102 .701
25000, .6351 .6460 .660 1.8......... .7383 L7106 .702
30, .6429 .6537 | .665 20......... 7416 L7106 .703
B35 .6503 .6605 .670 2.2, - L7441 L7104 .704
40, . ... ... .6571 .6666 .613 2.4......... .7459 .7101 .704
500 .6695 .6768 .679 2.6......... L7473 .7098 .705
60, ... .6802 .6848 .683 2.8......... .7484 . 7095 .705
0. .6895 L6912 .686 3.0......... 7492 .7092 .706
0.80......... 0.6977 0.6962 0.689 @, 0.7517 | 0.7077 0.710
TABLE 2

A COMPARISON OF THE LAWS OF DARKENING GIVEN BY THE SECOND AND THE
THIRD APPROXIMATION (EQS. [S0] AND [71]) WITH THAT
GIVEN BY THE EXACT FORMULA (EQ. [77])

I(0, u)/F 0, p)/I1(0, 1)
B Second Third Second Third
Approxi- Approxi- Exact Approxi- Approxi- Exact
mation mation mation mation
O, 0.4397 0.4440 0.43301 0.3484 0.3530 0.34390
0.1.......... 0.5299 0.5363 0.54011. 0.4199 0.4264 0 42896
0.2.......... 0.6168 0.6232 0.62802 0.4887 0.4955 0.49878
0.3.......... 0.7014 0.7068 0.71123 0.5557 0.5620 0.56487
04.......... 0.7842 0.7884 0.79210 0.6214 0.6268 0.62909
0.5.......... 0.8657 0.8684 0.87156 0.6860 0.6904 0.69220
0.6.......... 0.9463 0.9475 0.95009 0.7498 0.7533 0.75457
0.7.......... 1.0261 1.0258 1.02796 0.8130 0.8156 0.81642
0.8.......... 1.1052 1.1035 1.10536 0.8757 0.8774 0.87788
0.9.......... 1.1838 1.1808 1.18238 0.9380 0.9388 . 0.93906
1.0.......... 1.2620 1.2578 1.25912 1.0000 1.0000 1.00000

given by our two approximations with the exact law of darkening. This comparison is
made in the following paragraph.

8 Milne, 0p. cit., pp. 122-124, and Unséld, op. cit., p. 102.
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It has been shown by Hopf (0p. ¢it.) that for the case under discussion the problem of
darkening admits of an exact solution. Thus, expressing the emergent intensity I (0, ) in
the form

10, =23 Fa ) (77)

Hopf has shown (0p. cit., p. 105) that

/2 Jog [ (1 — ¢ cot ¢) /sin? ¢]
cos? ¢ + u? sin? ¢

(1) = (1+p) exp | — "f dqs}. (78)

Although the foregoing solution has been known for over ten years, it does not appear
that the integral defining ® () has been evaluated. Accordingly, we have evaluated the
function ® (u) numerically for the values u = 0,0.1,0.2, . . . ., 1.0 and tabulated the re-
sulting values of 7 (0, u) in Table 2. In Table 2 we have also tabulated the functions
I (0, u) as given by the equations (50) and (71), i.e., by our second and third approxima-
tions, respectively. It is seen that, except for u very close to zero, equation (71) for I (0, u)
provides an appreciably better approximation to the exact law of darkening than does
equation (50). And, moreover, the agreement of either (50) or (71) with the exact law of
darkening over the whole range of u is entirely satisfactory.

In conclusion I wish to record my indebtedness to Miss Frances Herman, who carried
out most of the numerical work connected with the preparation of Tables 1 and 2.
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