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A NOTE ON THE PERTURBATION THEORY FOR
DISTORTED STELLAR CONFIGURATIONS

S. CHANDRASEKHAR AND WASLEY KROGDAHL

ABSTRACT

In this paper we relate the general perturbation theory developed in the precedlng paper with the
earlier general discussion of distorted equilibrum configurations.

1. In the preceding paperone of us has developed a general theory of perturbations for
describing stellar configurations distorted by tidal and (or) centrifugal forces. The gen-
eral method consists of simply expressing the changes in the physical parameters caused
by the perturbing forces in terms of the density and pressure distributions in an undis-
torted configuration with the same central density. Thus, considering the purely tidal
problem, for example, it is found that the pressure distribution can be expressed in the

form
4

n=mno+x) >, aintiPi(u), (1)

i=z

where 7 denotes the pressure (expressed in units of the central pressure) and the #} ;’sare
solutions of the differential equations (cf. 0p. cit., eq. [140])

g

1d d [n1j Lo M.\ o+ dE .
?ld_g'('szd—é[fo])_](]_'_l) o8 bk [T e (7=2,3,4) (2)
, dt

together with the boundary conditions
n1, = £ +0(£72) (£—0). (3)

Further, in equations (1) and (2) no and ¢, correspond to solutions for the pressure and
density distributions in the corresponding undisturbed conﬁguratlon, i.e., they satisfy

the differential equation

L d (£ dny__
BaE\s g )= "5 (4)

The ai,’s in equation (1) are certain numbers defined in terms of the values which 77 ;
and d/d(ny.;/¢o) take at the boundary of the configuration.? Finally,

MI/

Xo = 47p.a?R’ (5)

where M"' denotes the mass of the secondary, R the distance between the centers of
gravity of the two stars, p. the central density of the primary, and a the chosen unit of
distance. The solutions for the rotational and the combined rotational and tidal prob-
lems take similar forms.

1'W. Krogdahl,; 4p. J., 96, 124, 1942,
2 Cf. o0p. cit., eq. (135).
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2. Now there exists a general theory of distorted equilibrium configurations in which
the emphasis is on the variation in the forms of the surfaces of constant pressure (or
density) through the star.® On this theory the isobaric surfaces are written in the form

) 4
s=§{1+2 Yi(&)P;w)y, (6)

where £ is the mean value of £ for a given value of the pressure; and it is shown that the
functions S; (7 = 2, 3, 4), defined as

_ d,log Yj
SJ - E —d}‘,:— ’, ( 7 )
are solutions of the first-order equation ‘
as; Lo 6
EgptSi=S— G+ +(5+ 1) =0, (8)
with the boundary conditions : :
Si=j7—2 (¢=0). (9)

In equation (8) p is the mean density interior to £.

While the objectives of this theory are more limited than those of the general per-
turbation theory of the preceding paper, it is clear that equation (8) must be a simple
mathematical consequence of equation (2). In this note we shall show that this is actual-
ly the case and thus establish the formal equivalence of the two theories.

3. From equation (1) it readily follows that the equation of the isobaric surfaces can
be written in the form

4

£(50) =E(50) | 1=x4 D au; ";’P( ) |- (10)
=2
dt

Comparing equations (6) and (10), we conclude that

5
’ Yj=_X’éal:j d?;o . (11)

s

Hence,
Symg BB Ys_ gy i b (12)
23 LI I

where we have used primes to denote differentiation with respect to &.

We have to show that .S; satisfies the dlfferentlal equation (8) in virtue of its definition
and the differential equation (2) which #} ; satisfies. To show this, we shall first trans-
form equation (2) by introducing the variable

vi=¢— 1” JEEE)

3 H. Jefireys, The Earth, chap. xiii, Cambridge, England, 1929; T. E. Sterne, M.N., 99, 451, 1939.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1942ApJ....96..151C

DISTORTED STELLAR CONFIGURATIONS 153

whence equation (2) becomes

¥y j(j+1)

x v e e (14)
Now, let
pi= f. , (15)
Then !
1 d (e _JG+D L. fo_ .
G e S AL (16)
or, since p J _—
& (PiVi\_ _ $iVi j i
| 71 (%)= ~ S+ P, (an
equation (16) becomes, after some further reductions,
do; 2 v 9 f(’) "
fd£+¢j"¢i‘](]+1)+§'o$ ==0. (18)
Mo

4. We shall now express S;in terms of ¢;. According to equations (13) and (15),

d log ¢; 0t ¢o
=g 21} —_f20 1

Heﬁce, combining equations (12) and (19), we have

—2+z-@—§9+5 (20)
0

We can eliminate ¢’ from the foregoing equation by using equation (4); according to
this equation, '

70 210 21735“3:_ by
25§_0+E T 13 e &%, (21)

or

5o
E(——— 2- 00 (22)

We can therefore re-write equation (20) as

. 2 : !
%=&—z%. (23)

0

We can express the foregoing relation somewhat differently, using the following relation
between the actual and the mean densities:

p(8§) 1. &
G (24)
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Thus, (6
p
S;i+3 HOR (25)
- We now substitute the foregoing relation in equation (18). We find
d( s“g) ( p>2 P s to
——\S;— &= S;i+3<)—-S5;i—3=-— 1 220 = 2
Eds j Em,)-i- + ; F ](]-I-)—I-{oijno (26)
or, after some reductions,
¢ SI+SI- 8= JG D +5F (S+1)
(27)

(oo ne

Expanding the right-hand side of equation (27) and using the relatlon (24) we readily ob-
tain

£§‘0+2£2§‘0§_0 Eg g-() ll 35&_52%_&2?2}?0
0 0 0 2 0 (28)
- 2§50 s%ﬁ— g (———
0
which vanishes identically in virtue of equation (22). Hence,
gd£+52 j(j+1)—|—6%(S,-—|—1)=0. (29)
~ Finally, we verify that, according to equations (3), (13), (15), and (23),
' S;ji=7—2 at E=0. - (30)

This proves the formal equivalence of the two perturbation theories now available.

YERKES OBSERVATORY
May 18, 1942
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