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STELLAR MODELS WITH ISOTHERMAL CORES
LOUIS R. HENRICH AND S. CHANDRASEKHAR

ABSTRACT

This paper is devoted to the study of stellar models with isothermal cores. Two types of such con-
figurations have been studied: (1) models with isothermal cores and polytropic envelopes (z = 3) and
(2) models with isothermal cores and radiative point-source envelopes with a lIaw of opacity x = k,pZ—3:s.
The most important characteristic of these models is the existence of an upper limit to the fraction » of
the total mass which can be contained in the core. For models of type 2, ymax ~ 35%. Also it appears
that, as » increases, the radius of the star first decreases to a minimum value and then increases. Further,
the luminosity of the star is found to increase by about a factor 3 from the stage when it has no iso-
thermal core to the stage when the core contains the maximum possible mass.

1. Introduction.—The possible physical importance of stellar models with isothermal
cores was first indicated by Gamow* who suggested that these models may have their
counterparts in nature if resonance penetration of charged particles into nuclei should
become the main source of energy. For under such circumstances the energy may be
thought of as being generated in a spherical shell, in which case the regions interior to
the shell would be isothermal. Again, if, following Gamow and Teller,* we suppose that
the proton disintegration of the light-nuclei (D, Li, Be, and B) provides the energy source
for the giants, it is conceivable that the available element at a particular time, lithium
say, becomes exhausted in the central regions; also the physical conditions may be such
that, before the temperature rises sufficiently for the disintegration of the next element,
beryllium, to become effective, a situation may arise when the disintegration of lithium
in the outer parts becomes the primary source of energy. Under these circumstances,
also, the stellar configurations will have isothermal cores. A situation similar to what we
have described may prevail quite generally with the exhaustion of hydrogen in the central
regions of stars, during the course of their normal evolution. A study of the physical
characteristics of stellar models with isothermal cores becomes, therefore, a matter of
some interest. A first attempt in this direction has already been made by Critchfield and
Gamow.? But the essential peculiarities of the model arising from the isothermal nature
of the core has been overlooked by these authors.4 In this paper we therefore propose to
study these models under varying conditions to elucidate their physical characteristics.

2. The equations of the isothermal core.—We shall consider first the equilibrium of the
isothermal core. In the core we can write

P=Kp+ D, (1)
where
= _k_ . = 1 4
K, = ;LH Tc ’ D= 3aTc7 (2)

T Ap. J., 87, 206, 1938; Phys. Rev., 53, 505, 1938.
2 Phys. Rev., 53, 608, 1938. 3 Ap.J., 89, 244, 1939.

4 Thus Critchfield and Gamow assume series expansions for M (r), P, etc., which are valid in the im-
mediate neighborhood of the center, no matter what the equation of state is (cf. eqs. [7] and [8] in the
paper referred to in n. 3). Further, it appears that the parts of the isothermal function which are neces-
sary to describe the core cannot be satisfactorily expressed by any kind of series expansion (see §§ 3, 4,
and 5 in the present paper).
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where K, and D are constants. The reduction to the isothermal equation is made by the
substitutionss

p = Ne¥; P=KMNe¥+ D, (3)

Kz 1/2
;= <4m2) ;. (a)

Further, we have the mass relation

and

K,
M) = ar (2) N 5 (s)

3. Stellar models with isothermal cores and polytropic (n = 3) envelopes.—As a first
example of stellar models with isothermal cores we shall consider the case where the
structure of the envelope is governed by the isothermal equation of index » = 3. Physi-
cally, this assumption implies that in the envelope we have the standard model approxi-
mation “kn = constant.” Under these circumstances we can write

4 — B
P= [(%) ?_z I = /3J Yol = Kopils | (6)

where K, is a constant. The reduction to the polytropic equation is made by the sub-
stitutions

p=N0; P =K\

K. \¥/2 (7)
= [ = —=1/3
r <1rG> A3y |
Also, we have the relation
K\  df
M) = —ar (B2)" 0 . ®)
The mass M of the whole configuration is given by
K \3/?
i = (28) e, (9)
where
df | |
w=—~(r5). (10)

the subscript 1 indicating that the quantity in parenthesis is evaluated at the point where
6 has its zero. It may be noted that w, is a homology-invariant constant.®

Now, at the interface where the isothermal core joins the polytropic envelope the
values of P, p, r, and M(r), given by the two sets of formulae (3), (4) and (5), and (7)

5 See S. Chandrasekhar, An Introduction to the Study of Stellar Structure, p. 155, Chlcago 1939.
6 See ibid., p. 149.
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and (8) should be identical. The resulting four equations of fit can be reduced to two
equations involving only the homology-invariant combinations

_ b _
U = lp, ’ Ul = ds ’ (II)
and
63 6’
Uy = _%;—; U3 = —ﬁg—- (12)
We find?

ue(E:) = us(ns) ,

(13)
1Bv5(8:) = (1) ,

where the subscript 7 denotes that the respective quantities are evaluated at the inter-
face. According to equations (13) every intersection of a (u;, v;)-curve with the (%,
+Bv,)-curve derived from the complete isothermal function gives a solution of the
equations of fit and corresponds to a definite configuration of the type we are looking for.
An examination of the general arrangement of the (#, v)-curves for » = 3and n =
readily shows that solutions for equations (13) exist only for (u;, v;)-curves derived from
M-solutions;® however, it may be noted that not all M-solutions provide solutions to
equations (13).

According to the views expressed in § 1, in considering stellar models with isothermal
cores we are primarily interested in the changes which occur in the parameters describing
a star, as the isothermal core at some fixed temperature ‘“‘grows’ at the expense of the
envelope. We shall now obtain the relations necessary for this purpose.

Suppose that a (u;, v;)-curve labeled by a certain value for the homology-invariant
constant w; intersects the (%, $8vs)-curve derived from an E-solution of the isother-
mal equation at a point where £ = £; and 7 = ;. At this point the equations of fit (13)
are therefore satisfied. The fraction ¢ of the radius R occupied by the core is clearly
given by

q9=—, (14)

where 7 = #; defines the boundary of the particular solution 6(5, w;). The fraction » of
the mass M contained in the core is also readily found. We have

_ M) _ (n8)s
b Ve Rl (15)

where the subscript 7 indicates that the quantity in parenthesis is evaluated at the inter-
face. Using the definitions of #; and v; we can re-write equation (15) more conveniently
as

y = ———(usvg)g/z .

w3

(16)

7 See 1bid., pp. 170~76.
8 For the classification of the solutions of the Lane-Emden equation see 7b:d., chap. iv.
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The ratio of the central to the mean density is given by?®

pe_ N N
47 R3 3hs n dn):
or, using the formula

e ¥i = N\ 63, (18)
which expresses the equality of the density at the interface, we have

ojes O3niets

Po . B
(). sral) "
S\n dn). S\" dn)\n
Hence,
Pe (’1437’3> 27’/ 2e¥i
L B8 20
P 3w;¢° (20)

Finally, to determine the R(g) relation for a given mass and 7, we start from the relation
K. = BK.\/%0;, (21)
expressing the equality of pg.s/p on the two sides of the interface, and eliminate \; from

the equation (cf. eq. [7])

1/2
R = <%> N3, . (22)

™
We obtain
_ KI 3/2 I N1
R =68 ()" £ (2) ne, (23)

or, using equations (2), (9), and (12), we have

SN————

_ 0@ M GM |
where we have written
_ (”37’3)%/2
0lg) = (25)

Equation (24) is an important relation which determines the dependence of R on ¢
for a configuration of a given mass and fixed central temperature.

Restricting ourselves to the most important case of negligible radiation pressure and
putting 8 = 1, four solutions of the equations of fit (13) were obtained, using the two

9 In writing these equations we have assumed that the particular solution of the isothermal equation
used is the one for which ¢ = oat £ = o, i.e., the solution commonly denoted by ¥(£) (see ibid., p. 156).
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M-solutions (w; = 1.9o and 1.50) integrated by Fairclough.’® The results of the fitting
are summarized in Table 1. Further, in Figure 1 we have illustrated the (M (core)/M, q)
and the (R, ¢) relations. We shall return to the physical meanings to be attached to these
relationships in § 5. ’

4. Stellar models with isothermal cores and point-source envelopes with the law of opacity
k = kopT73:5—The standard model approximation for the envelopes which we have
considered in § 3, while giving an insight into the general behavior of these models, is
not in strict conformity with the physical circumstances under which we might expect
isothermal cores. For, consistent with the views expressed in § 1, we should rather sup-
pose that the energy is generated in a thin spherical shell (of thickness Ar;, say) at the

TABLE 1

STELLAR MODELS WITH ISOTHERMAL CORES AND
n=3 ENVELOPES

w3 q v pc/p Q@
2.018....... o o 54.2 0.854
1.90........ 0.151I 0.180 101 0.767
1.50........ .148 .349 708 0.954
1.50........ .004 .209 6.7X10% 1.207
1.50........ . 104 .235 2.9 X108 1.158
1.42(?)*%. .. .. 0.100 0.250 © 1.250

* The figures in this row are not reliable. They give very rough estimates of the points
about which the respective curves spiral.

interface between the isothermal core and the outer envelope. Under these circumstances
the luminosity of the star will be given by

L = 47ripArie, , (26)

where ¢, denotes the rate of generation of energy per gram of the material. Accordingly,
the regions of the star outside » = r; will be governed by the same equations as those for
the point-source model. The equations of equilibrium for these regions are, therefore,

a(k 1 __GM(r)
ar </.TH T + '3‘(1T4> = s P (27)
and
d 1 = — Kol p—Z 34
E (§(ZT4) - 47!'67’2 T35 (28)
where we have assumed for the coefficient of opacity the law
K= Ko —— . (29)

T35

o M .N., 93, 40, 1932.

11Tt is conceivable that circumstances may arise which require the replacement of equation (28),
valid under conditions of radiative equilibrium, by another equation, valid under conditions of convective
equilibrium. However, in the models we shall be primarily concerned with, this is not of much sig-
nificance. Actually, apart from one possible exception, in the models considered the conditions for the
validity of radiative equilibrium are not violated.
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In equation (29), k, (which is a constant throughout the configuration) may depend on
the chemical composition (in particular on the hydrogen and helium abundances).

We shall now consider the method of fitting an isothermal core to a solution of equa-
tions (27) and (28): At the interface the quantities p, P, M(r), and r as known along a
solution of equations (27) and (28) must join continuously with the respective quantities

0.6

05

Qlq)

07 }

FiG. 1

determined by equations (3), (4), and (5) in terms of an appropriate E-solution of the
isothermal equation.
According to equations (3), (4), and (3),

_ ke rpo(r)
Uo = lpl = 4T M(?’) 3 (30)
and
ey G pM(r) _ pH GM(r)
W T80 PG Tk T 1)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1941ApJ....94..525H

STELLAR MODELS WITH ISOTHERMAL CORES 531

Hence, an isothermal core can be fitted to a solution of equations (27) and (28) whenever
the curve

[ rp(r) pH GM (’)] (32)

M( )’ &k rT(r)

derived from such a solution intersects the (%, v,,)-curve associated with an E-solution
of the isothermal equation. At such an intersection

U (i) = 4m <%>r=h‘ ’

and the values of r/R and M (r)/ M at this point will determine, at once, the ratios ¢ and
v of the radius and the mass of the core to the radius and the mass of the star, respective-
ly. Further, according to the second of equations (33),

(33)

uH GM

T. = Q(q) & 0= e (34)

The ratio of the mean to the central density is also readily found. We have (cf. eq. [17])

= ;‘[ . (35)

$TR3

>

On the other hand, according to equations (4) and (5), we have identically

_ M) &
TR (36)

Hence, combining equations (35) and (36),

— V‘Ei =Vuoo(£i) ¥
Yo ZAEY I (37)

©ip

Now, there exist five integrations of equations (27) and (28) which can be used for our
- present purposes. Three of these integrations (due to Miss I. Nielsen™) are for the solar
values of L, M, and R, with u = 1 and for values of log x, = 24.792, 24.892, and 24.992.
Further, in these integrations of Miss Nielsen the radiation pressure as a factor in the
equation of hydrostatic equilibrium has been ignored. The two other integrations (which
were found to give solutions for the equations of fit) are due to Strémgren.’s These in-
tegrations also refer to the solar values of L, M, and R, but with u = 2.2 and log «, =
27.4 and 27.8. Further, in these integrations the effect of the term ¢7'4/3 in equation (27)
has also been taken into account.

1z Under the supervision of B. Stromgren. 13 Zs. f. Ap., 2, 345, 1031.
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The results of fitting isothermal cores to the five integrations of equations (27) and
(28) referred to, are summarized in Table 2.

It is known that the point-source model with negligible radiation pressure and with a
law of opacity of the form x = k,p"T™ is a homology-invariant configuration.*# It fol-
lows, therefore, that among the models with negligible radiation pressure, which consist
of isothermal cores and point-source envelopes, those with a constant ¢ form a homolo-
gous family. Hence, the physical relations derived from the three integrations I of
Table 2 are invariant to homologous transformations. In particular the relations

R(g) = 0(9) ‘%I GTACJ ;o g = —ﬂﬂ%@ , (38)

will be valid for all stars. In practice, however, the foregoing relations will give suf-

ficient accuracy only for stars of mass less than, say, 5©. This is confirmed, for example,

TABLE 2
STELLAR MODELS WITH ISOTHERMAL CORES AND POINT-SOURCE ENVELOPES

Integration of Lo(q) ﬁ:{ Af_{bf
Equations (27) q v Q(g) pc/p [6(—4_—)]‘/’ X107 trary 1—6; Remarks
and (28) . Scale
log ko=24.735; u=1 | © o 0.900 37.0 5.73 feeeeeo oo Cowling model
log ko=24.792; p=1 | 0.139 | 0.103 | 0.701I 54 6.97 1.00 | 0.0043 | Inger Nielsen’s integra-
I...[<log ke=24.892; =1 .158 .176 | 0.778 8o 8.85 0.98 .0040 tions for the point-
log koe=124.992; p=T1 .166 .231 | 0.788 | 115 I1.1 I.I1 0042 source envelope. Radi-

ation pressure neglect-
ed in equation (27)

log ko=27.4; p=2.2 .158 .239 | 0.776 | 160 7.1 .77 .078 Stromgren’s integrations
1I.. [Klog ke=27.8; p=2.2 .11g .319 | 1.07 175 16.5 I1.51 . 103 for the point-source en-
log xo=27.8; p=2.2 | 0.081 | 0.224 | 1.33 635 14.8 1.70 0.II§ velope. Radiation pres-

sure accurately taken
into account. The re-
sults of fitting valid for
configurations having a
mass 4.84 u™2 ©

by the results of the last three rows of Table 2: These have been derived for the solar
mass with u = 2.2, taking full account of the radiation pressure in the equation of hydro-
static equilibrium. Itis, however, clear that we shall obtain the same results for a star of
mass M = (2.2)?Q = 4.840 and p = 1. From the column “1 — B3, in Table 2 we no-
tice that the radiation pressure, while it is appreciable in these models II, is still not of
primary importance. This is reflected, for instance, in the fact that Q(¢) and »(g) for
these models fall roughly on the same curve as those for the three other cases in which
the radiation pressure in equation (27) has been treated as negligible (see Fig. 2 where the
models I are indicated by dots and models II by crosses).

5. The physical characteristics of stellar models with isothermal cores.—An examination
of the results of §§ 3 and 4 (particularly Tables 1 and 2 and Figs. 1 and 2) brings out the
following essential features of these models:

a) Atafixed central temperature, the radius R of the star first decreases as g increases
from ¢ = o. For a value of ¢ ~ 0.15-0.16 the radius passes through a minimum. Fur-
ther, there exists also a maximum possible value for ¢ (gmax ~ 0.16-0.17). As g decreases
after passing through ¢msx, R increases very rapidly, reaches a maximum, and begins
spiraling about a determinate point.

b) Again, at a fixed central temperature, the fraction of the total mass, », contained
in the core increases slowly at first and soon very rapidly as ¢ approaches gmax. How-

14 See Chandrasekhar, 0p. cit., pp. 234-39.
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2 ever, this increase of » does not continue indefinitely; » soon attains a maximum value
S 7max. There exists, therefore, an upper limit to the mass which can be contained in the
isothermal core. For the models with point-source envelopes and inappreciable radiation
pressure, vmax ~ 0.32 and occurs for ¢ ~ o.12. The curve »(¢q) also shows the spiraling
characteristic.’s
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A result of some importance in the present connection is the variation of the luminos-
ity as ¢ varies at constant central temperature. We shall discuss this variation of the
luminosity on the basis of the models considered in § 4.

We may first recall that for a homologous family of stellar configurations derived on
the basis of the law of opacity (29) there exists a luminosity formula of the form

5.5
KJRO-5 “7'5 ) (39)

15 This phenomenon of spiraling need not cause any particular surprise. It arises essentially from the
oscillatory behavior of the solutions of the isothermal equation as £ — « (see 7bid., pp. 163-66). Situa-

tions similar to these described in the text have also been encountered in other connections (see, e.g.,
S. Chandrasekhar, Ap. J., 87, 535, 1038; and M.N ., 99, 673, 19309).

L = constant
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where the constant is a characteristic of the family. Consequently, for stellar models
with isothermal cores and negligible radiation pressure, we must have a formula of the
form

1 Mss
L = Lq) o R0 u?es (40)

where, as the notation implies, L, depends on ¢ only. Remembering that in obtaining the
models I of Table 2 we have used integrations of the point-source envelope computed for
the solar values of L, M, and R with u = 1, it follows that

L, (Q) = (Ko) integration » (4 I )

if we suppose that in equation (40) L, M, and R are expressed in solar units. Similarly,
for the solutions II (see Table 2)

L,(g) = {fotentn, (42)

Consider now the variation in L as ¢ varies at constant 7, u, M, and k.. During such
a change, R will alter according to (cf. eq. [38])

_ oo H GY -
Rlg) =@ 7 — - < (43)
Eliminating R between equations (40) and (43),
LO(Q) < E >1/2 1 .
L= =) — MsToSu.
7 \ca) w T (4)

Hence, the variation in the luminosity is governed by the factor

Lo(q)
@I (4)

If we now consider the more general case in which the radiation pressure in equation
(27) is taken into account, it is clear that we can still construct a homologous sequence of
configurations. But a homologous family is now determined by two parameters: ¢ and
Mp?/©. However, as long as we are interested only in the changes in the luminosity
occurring in a star of given M and u, we can always write down a relation of the form
(44). Moreover, any such relation will be valid for a sequence of configurations of con-
stant Mu2.

The factor (45) governing the variation of L for constant M, T, k., and u is tabulated
in Table 2. According to the values given in this table, the luminosity increases by a
factor of about 3 from the stage where there is no isothermal core to the stage where the
core contains the maximum possible mass.
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The variation in the luminosity predicted by equation (44) implies a corresponding
variation in the thickness of the energy-generating shell, for, according to equations (26)
and (44),

SV 21C) N LI Re PR
47rripZA7’leo - [Q(q)]I/Z Ko (HG) MSTc #7 . (46)

The foregoing equation can be simplified by using equation (30). We find

A7 e, _ Lo(q) i _k—_ 1/2 705 7
ri Q)1 uw(E)v ko (HG> MeTS (47)
or ,
A?’:,; o qLo(q)
R Q@) ue(Es)y (48)

The quantity on the right-hand side (apart from a constant factor) is tabulated in
Table 2. We notice that the variation in the thickness of the shell is not very marked.

6. General remarks.—We shall now consider briefly the bearing of the results sum-
marized in § 5 on the physical problems outlined in § 1 and in particular the implication
for the Gamow-Teller theory of the energy production in giants. Suppose that to begin
with a star has a central temperature 7,(~10%°) at which the disintegration of lithium
can provide for an adequate source of energy. Under these circumstances the star will
approximate to the Cowling model which has a convective core occupying 17 per cent of
the radius and containing 15 per cent of the mass of the star. Suppose now that the
lithium in the central regions is exhausted and that the process of the diffusion of ele-
ments does not take place rapidly enough for the restoration of adequate amounts of
lithium to the center. Weshall then haveashell-sourcemodel. Intheearly stages (v <o.15)
the star will consist of an isothermal core, a convective fringe, and a point-source
radiative envelope. However, very soon (i.e., when » > o.15) the star will consist only
of an isothermal core and a radiative envelope. It is now clear that energy production
from the disintegration of lithium can continue only aslong as the mass in the isothermal
coreincreases. But we have seen that » cannot increase beyond a certain maximum value
vmax(~35 per cent). When this happens the liberation of energy from the process con-
sidered will cease. The star must then readjust itself to a contractive model (e < 7") and
evolve according to the Helmholtz-Kelvin time scale. This will continue till the central
temperature increases sufficiently for the liberation of nuclear energy from the disintegra-
tion of the next element, beryllium, to become effective. The whole cycle of changes will
now be repeated.

In considering the course of changes we have described in the foregoing paragraph, it
is of interest to trace the track of evolution in the Hertzsprung-Russell diagram. To il-
lustrate this we have plotted

, Lo(@)

log [0 (q)‘]'x/z (49)
against
log [0 — 2108 09 (50)
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in Figure 3. According to our earlier remarks, an evolution of the kind we are considering
must cease when the luminosity has reached about its maximum value (cf. Table 2). We
may note at this point that at no stage during such an evolution does the isothermal core
occupy a large fraction of the radius; indeed, it is always less than about 17 per cent.

log L + const

0.0 1

I
05 04 0.3 02 0.l 0.0

4logTe +const

FiG. 3

Consequently, we cannot expect any significant changes in the stability of a star along
such a course.

Finally, we may remark that with suitable modifications we may similarly follow the
eventual course of evolution of a star as the hydrogen in the central regions becomes
exhausted.

YERKES OBSERVATORY
July 30, 1941
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