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THE TIME OF RELAXATION OF STELLAR SYSTEMS. III
’ S. CHANDRASEKHAR

ABSTRACT

Certain difficulties of principle which confront a rigorous and satisfactory analysis of stellar en-
counters within the framework of a theory which idealizes them, individually, as two-body problems are
pointed out.

1. Introduction.—In the two preceding papers® the time of relaxation of a stellar
system has been considered from two distinct points of view. In both cases the problem
has a twofold character: first, to determine the effectiveness of stellar encounters in in-
fluencing the motions of the individual stars in a stellar system and, second, to estimate
the rate at which a stellar system may be expected to approach the final state of ‘“ther-
modynamic’” equilibrium. The clearest formulation of this latter aspect of the ideas
underlying the problem of the time of relaxation of a stellar system is due to Rosseland,?
who has pointed out that after a sufficient length of time (long enough for a star to have
suffered a large number of encounters) successive values of AE may be expected to be
independent. Consequently, we can expect the AE’s to combine according to the
Gaussian error law. Thus, the probability that, after a time ¢, AE may have a value in
the range {AE, AE + d(AE)} will be given by an expression of the form (cf. Rosseland,

0p. cit., eq. [1])

W(AEYI(AE) = ——2 Seze)/ ziwde) o

21rZAE2

{
In other words, » AE? is a measure of the dispersion in AE to be expected after a given

o]

length of time. It is primarily for this reason that the quantity TAE? was evaluated in
Part 1. (Similar arguments apply to the consideration of the sum 2 sin? 2¥ where (7 —
2V) is the true deflection of a star with respect to fixed frame of reference.) Thus, at first
sight, it would appear that, by combining the methods of Parts I and II with a law of
the form (1) we should be able to make some progress toward a statistical theory of stellar
encounters. Such a theory would clearly be of the greatest importance, particularly in
an analysis of the problem of clusters. However, and it is the object of this note to point
out, that a description of stellar encounters from a very much more fundamental stand-
point than has been adopted in Parts I and IT is necessary before a really satisfactory
start can be made toward a statistical theory of stellar encounters.

2. The evaluation of the sum ZAE.—It is clear that in order that we may be able to
use equation (1) it is necessary to evaluate not only the sum TAE? but also the sum
ZAE, and it is in this connection that we encounter certain fundamental difficulties.

Let us suppose that, as in Parts I and II, we can idealize stellar encounters, indi-
vidually, as two-body problems. As we have seen in Part I, § 3, the parameters defining

* Referred to as “I” and “IL.” 2 M.N., 88, 208, 1928.
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such an encounter are v;, 6, ¢, D, and 6.3 Consider, then, a (v, 6, ¢, D, ©) encounter.
The exchange of energy AE resulting from such an encounter is (cf. I, eq. [16])

2My M2

AE=—m1+m2

VoV cos (¢ — ) cos ¢ cos 7. (2)

The contribution to ZAE by all the (v:, 8, ¢, D, 6) encounters can therefore be written
as (cf. I, eq. [19])

SAE, 0, 4, D,0) = 27N (v, 0, go)AEVDdD QQ dv.d0dedt (3)
or, using equation (2), as
SAE(s, 0,0, 0,0) = —47N (v, 0, ¢)
X ﬁ;ﬂzﬁ; VoV?2cos i cos (¢ — ¢) cos ¢ DdD (217? dv.dbdeds . <4)

If we used ¢ as the variable instead of D, then equation (4) becomes (cf. I, eq. [22])

ZAEq, 0, ¢,9,0) = —4TN (01, 0, ©)G*muma(m: + mz) 2 cos i
(s)
cos (¢ — \l/) siny ,, dO
X o5 ¥ d\b dvldﬁdgadt
On integrating the foregoing equation over ¥, we obtain
V,
ZAE @, 0, o600 = —47N (01, 0, ©)G*mum,(m; + m.) T/; cos %
(6)

X f cos (¢ — ¥) siny dw dv1d0d¢dt

cos* ¢y

In equation (6) the integration will have to be extended over the relevant range in .
Now, the integral occurring in equation (6) diverges at ¢ = x/2. This, in itself, is not
surprising. Actually, the corresponding integrals which occur in the evaluation of either
of the sums ZAE? or 2 sin® 2 (cf. I, eq. [24], and II, eq. [39]) also diverge at ¢ = =/2.
But there is one important difference: the integral in equation (6) diverges to a higher
order in D than in either of the two previous cases. To examine explicitly the nature of
this higher order of divergence, let us extend the range of integration too < ¢ < ¥, and
put ¥, = w/2 in all terms except those which diverge at ¢ = =/2. Using this method,
we readily find that

fCOS (¢ —¢) siny dy = (—log cos ¥,) cos ¢ + (tan Yo — ;) sing.  (7)

cos? Y

3 The notation is the same as in I and II.
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Combining equations (6) and (7), we find that

ZAE@, 0, 4,0) = —4wN (01, 0, ©)G*mum,(m: + m,) -II;-Z cosi (217?— dv,d0d pdt

I D3V D,V? T .
[ o8 (x4 rgmtry) oo+ e =5 ]

Using the relations (27) of Part I, we can re-write the foregoing equation more con-
veniently in the form

(8)

V, do
72 . E dv1d9d<pdt

: I DV D,V T .
X [;{log <I+W>}COS@+ {m—;}sm@cose] .

Now, the dominant term in the foregoing expression is the one which involves
[D.V?/G(m, + m,)], and this is seen to be very much more important than the non-
dominant terms, for (cf. I, eq. [56])

EAE(”!, 6, 0,0) = _47"N(vla g, ‘P)szxmz(mx + mz)
(9)

D,V ) ~ 031 X 10f [D,/parsec]

G(mz + ma ] [V/20 km/sec™™2. (x0)

(- m2)/ O

Consequently, the term [D,V?/G(m. + m.)] is generally 1035 to 1045 times as large as
the logarithmic term, log [DoV?/G(m; + m.)]. However, the dominant term occurs with
cos © as a factor, and it would appear that the averaging over © would eliminate the
dominant term from equation (g9) and retain only the logarithmically diverging term.
But it is now clear that the [D,V?/G(m; + m.)] term can be ignored only if the average
value of cos © foro < © < 27 under the conditions of the physical problem is less than
10~4. This is hardly likely to be the case, since any fluctuation giving even the slightest
preference to a particular value of © will make the [D,V?/G(m: + m.)] term far more
important than any of the other terms which would normally be retained. We cannot
thus ignore the dominant term in equation (g), for the formal reason that the average
value of cos O in the range o < © < 27 vanishes. At the same time it would be difficult

4 A recent paper by L. Spitzer (M.N., 100, 387, 1040) contains an evaluation of the sum ZAE. It
will be noted that Spitzer retains only the logarithmic term in his expressions. For reasons which are
stated in the text the evaluation of TAE which ignores the dominant term [D,V?/G(m: + m,)] is likely
to underestimate it by a factor of the order of 100 or more when any particular star is being followed
during its motion. However, as Dr. Spitzer has pointed out to the writer, if one averages over a large
number of “incident” stars, a more complete cancelation of the [Do,V2/G(m, + m,)] term may be ex-
pected. If this be assumed, the averaging of equation (g9) over © will give

V
ZAE(@,0,0) = — 27N (vs, 0, ¢) G*mam,(m, + m.) 75 cos @

Di V4

(11)
X IOg <I + m) dv;d@dgodt .

If we adopt a spherical distribution of the velocities v; for purposes of averaging, equation (11) becomes
(cf. I, egs. [40] and [41])

ZAE(v,6,0) = — 3N (v0) G*ms my (my -+ m) % cos ®sin 6

D; V4

(12)
X IOg (I + m> dﬂ;d@d{ﬂdt.

The averaging of the foregoing equation over ¢ is immediate. To average over 6, we should first express
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to incorporate in a satisfactory manner the [D,V?/G(m, + m.)] term within the frame-
work of a theory which idealizes stellar encounters as two-body problems. The prob-
lems which we have to face in the present connection are several. First, if we retain the
two-body approximation, the main contribution to ZAE would arise, as we have already
pointed out, from the random fluctuations which would give preference to certain
values of ©. Second, any error in estimating the “cut-off”’ distance D, will directly in-
fluence the results, and this, we may note, is contrary to our earlier experience in Parts
I and II, where an uncertainty of a factor of 2 or 3 in D, introduced errors of less than 10
per cent. Third, the extreme importance of the dominant term in the present problem
indicates that very great care should be exercised in including the distant encounters.
And finally, if the distant encounters are as important as they appear to be, it would
appear more profitable to abandon the two-body approximation of stellar encounters
altogether and devise a more satisfactory statistical method. It is not the object of this
note to go into these matters here. We wish only to draw attention to the fundamental
difficulties which a proper discussion of stellar encounters must necessanly confront.
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Vg, V,and cos ® in terms of 4. Using the relations (30), (31), and (35), and after some further reductions,
we find

wG2mmy(m; + m,)
20192

dv.dt

SAEv, = —N(v)
|vr + v2]

v; — 'Ui Mmy — M2 2 (13)
X |22 -] og o+ evoav,
|or — 2]
where
— D,
g= TN (14)

The integral occurring in equation (13) can be evaluated by the methods described in I and IT (cf. pp.
204 and 295). We find

SAEw = — N(o) 470 30 44

102

|:mzvI log ¢ (2 — v3) — maw, log %t + 2m1v1] (v. > o),
U — Ty

X %(’mz — my) (log 4qv* — 2)v (v, = v), (15)
[— myv,; log q(v? — %) + mu; log v 2m2v2] (v < ).

0 — 7
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