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Abstract Cholesterol is an essential component of eukary-
otic membranes and plays a crucial role in membrane
organization, dynamics and function. The G-protein cou-
pled receptors (GPCRs) are the largest class of molecules
involved in signal transduction across membranes and
constitute ~1–2% of the human genome. GPCRs have
emerged as major targets for the development of novel drug
candidates in all clinical areas due to their involvement in
the generation of multitude of cellular responses. Mem-
brane cholesterol has been reported to have a modulatory
role in the function of a number of GPCRs. This effect
could either be due to specific molecular interaction
between cholesterol and GPCR, or due to alterations in
the membrane physical properties induced by cholesterol.
Alternatively, membrane cholesterol could modulate recep-
tor function by occupying the ‘nonannular’ sites around the
receptor. In this review, we have highlighted the nature of
cholesterol dependence of GPCR function taking a few
known examples.
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Abbreviations
5-HT 5-Hydroxytryptamine
7-DHC 7-Dehydrocholesterol
8-OH-DPAT 8-Hydroxy-2(di-N-propylamino)tetralin
CCK Cholecystokinin

DPH 1,6-Diphenyl-1,3,5-hexatriene
GPCR G-protein coupled receptor
FRET Fluorescence resonance energy transfer
MβCD Methyl-β-cyclodextrin
SLOS Smith–Lemli–Opitz syndrome

Role of membrane cholesterol in the function
of G-protein coupled receptors

Biological membranes are complex non-covalent assem-
blies of a diverse variety of lipids and proteins that allow
cellular compartmentalization, thereby imparting an iden-
tity to the cell and its organelles. Since a significant
portion of integral membrane proteins remains in contact
with the membrane [1], and reaction centers in them are
often buried within the membrane, the structure and
function of membrane proteins often depend on their
interactions with the surrounding lipids [2, 3]. Cholesterol
is a major representative lipid in higher eukaryotic cellular
membranes and is crucial in organization, dynamics,
function, and sorting of membranes [4, 5]. Cholesterol is
often found distributed nonrandomly in domains or pools
in biological and model membranes [4–8]. Many of these
domains (sometimes termed as ‘lipid rafts’) are believed to
be important for the maintenance of membrane structure
and function. The idea of such specialized membrane
domains assumes significance in cell biology since
physiologically important functions such as membrane
sorting and trafficking [9] and signal transduction pro-
cesses [10], in addition to the entry of pathogens [11, 12],
have been attributed to these domains. Cholesterol plays a
vital role in the function and organization of membrane
proteins and receptors [13, 14].
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The G-protein coupled receptor (GPCR) superfamily is
one of the largest and most diverse protein families in
mammals, whose primary function is to transduce signal
across membranes [15–17]. Cellular signaling by GPCRs
involves their activation upon binding to ligands present in
the extracellular environment and the subsequent transduc-
tion of signals to the interior of the cell through concerted
changes in their transmembrane domain structure [18].
GPCRs are prototypical members of the family of seven
transmembrane domain proteins and include >800 members,
which together constitute ~1–2% of the human genome
[19]. They are involved in the generation of cellular
responses to a diverse array of stimuli that include biogenic
amines, peptides, glycoproteins, lipids, nucleotides and
even photons. As a consequence, these receptors mediate
multiple physiological processes such as neurotransmission,
cellular metabolism, secretion, cellular differentiation,
growth, inflammatory and immune responses. For this
reason, GPCRs have emerged as major targets for the
development of novel drug candidates in all clinical areas
[20–23]. Interestingly, although GPCRs represent 30–50%
of current drug targets, only a small fraction of all GPCRs
are presently targeted by drugs [24]. This points out the
exciting possibility that the receptors, which are not yet
recognized, could be potential drug targets for diseases that
are difficult to treat by currently available drugs.

Importantly, membrane cholesterol has been shown to
modulate the function of a number of GPCRs. From the
available data on the role of cholesterol on GPCR function
(see Table 1), it appears that there is a lack of consensus in
the manner in which cholesterol modulates receptor
function. For example, while cholesterol is found to be

essential for the proper function of several GPCRs, the
function of rhodopsin has been shown to be inhibited by the
presence of cholesterol. This brings out the necessity for a
detailed mechanistic analysis of the effects of cholesterol on
the specific receptor system. In the following section, an
effort will be made to critically analyze some of the
available literature data on the role of membrane cholesterol
in GPCR function, with an overall objective to distinguish
specific and general effects.

Effect of membrane cholesterol on the function
of GPCRs: general or specific effect?

The effect of cholesterol on the structure and function of
integral membrane proteins and receptors has been a
subject of intense investigation [13, 14]. For example, it
has been proposed that cholesterol can modulate the
function of GPCRs in two ways: (1) through a direct/
specific interaction with the GPCR, which could induce a
conformational change in the receptor [43, 55], or (2)
through an indirect way by altering the membrane physical
properties in which the receptor is embedded [3, 56] or due
to a combination of both factors. There could be yet another
manner in which membrane cholesterol could affect
structure and function of membrane proteins. For example,
it has been reported that for the nicotinic acetylcholine
receptor (which requires cholesterol for its function),
cholesterol is proposed to be present at the ‘nonannular’
sites around the receptor (annular sites are binding sites of
lipids in the immediate annulus surrounding the cross
sectional area of the membrane protein) [57]. These
nonannular sites, initially postulated for Ca2+/Mg2+–
ATPase [58, 59], are characterized by occlusion of
phospholipids. It has been suggested that the possible
locations for the nonannular sites could be either inter- or
intramolecular protein interfaces [58]. In the context of
GPCRs, it is interesting to note that many GPCRs are
believed to function as oligomers [60]. More importantly,
cholesterol has been shown to improve stability of GPCRs
such as the β2-adrenergic receptor [61], and appears to be a
necessary component for crystallization of the receptor,
since it facilitates receptor–receptor interaction and conse-
quent oligomerization [62]. Since a possible location of the
nonannular sites is interprotein interfaces [58], it is possible
that cholesterol molecules located between individual
receptor molecules (see later, Fig. 1) occupy nonannular
sites and modulate receptor structure and function. We will
discuss below a few known examples of GPCRs for which
the mechanism of cholesterol dependence of function has
been addressed.

Rhodopsin, the photoreceptor of retinal rod cells, under-
goes a series of conformational changes upon exposure to

Table 1 GPCRs whose function is modulated by membrane
cholesterol

GPCR References

Rhodopsin [25–27, 64]
Cholecystokinin (CCK) [13, 28, 29]
Galanin (GAL2) [30]
Serotonin1A (5-HT1A) [14, 31–33]
Serotonin7 (5-HT7) [34]
Metabotropic glutamatea [35, 36]
δ Opioid [37]
κ Opioid [38]
μ Opioid [39]
Oxytocin [28, 40–43]
β2-adrenergic [44–46]
Chemokine (CXCR4, CCR5) [47–49]
Neurokinin (NK1) [50, 51]
Cannabinoid (CB1) [52, 53]
M2 muscarinic [54]

a These studies were carried out in the Drosophila eye where the major
sterol present is ergosterol
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light. The light activated receptor exists in equilibrium with
various intermediates collectively called metarhodopsins.
The state of equilibrium is sensitive to the presence of
cholesterol in the membrane [25, 26]. An increase in the
amount of cholesterol in the membrane shifts this equilib-
rium toward the inactive conformation of the protein. The
inhibitory effect of cholesterol on rhodopsin function has
been explained by direct as well as indirect modes of
action. Direct interaction between rhodopsin and cholester-
ol has been investigated using Fluorescence Resonance
Energy Transfer (FRET) between the tryptophan residues in
the receptor and a fluorescent cholesterol analogue,
cholestatrienol [63]. Interestingly, in presence of ergosterol,
FRET was observed between the tryptophan of rhodopsin
and cholestatrienol, indicating a specific interaction be-
tween rhodopsin and cholesterol. In addition, this study
postulated the presence of one sterol molecule per molecule
of receptor present at the lipid–protein interface. On the
other hand, the indirect mode of action has been rational-
ized based on the free-volume theory of membranes, which
relates the alteration in membrane physical properties due
to the presence of cholesterol to receptor function [26]. The
conversion of the photointermediates, metarhodopsin I to
metarhodopsin II, upon exposure to light involves an
expansion of the protein in the plane of the bilayer [65],
which occupies the available partial free volume from the
surrounding bilayer. The presence of cholesterol in the
membrane has been reported to inhibit the formation of
metarhodopsin II, due to its role in reducing the partial
free volume in the membrane [66]. Importantly, FRET
approaches have indicated an inherent property of rhodop-
sin to partition out of cholesterol-rich regions of the
membrane [67]. These results have recently been reinforced
by molecular dynamics simulation with rhodopsin in a
membrane containing a mixture of cholesterol and polyun-
saturated phospholipids [68].

GPCRs such as oxytocin and cholecystokinin (CCK)
receptors have been shown to require membrane cholesterol
for their function [28, 29, 40–43]. Interestingly, while the
interaction between the oxytocin receptor and cholesterol is
believed to be specific, the function of the CCK receptor
appears to be dependent on the physical properties of
membranes, which are a function of cholesterol content.
This is demonstrated by the fact that these receptors
displayed different types of correlation, when fluorescence
anisotropy of the popular membrane probe DPH was
correlated with the ligand binding activity. In case of the
CCK receptor, ligand binding showed linear increase with
measured anisotropy values [28]. In contrast to this, the
ligand binding activity of the oxytocin receptor showed a
slight reduction with cholesterol depletion followed by a
sharp decline, when the membrane cholesterol content
reached a certain critical level (~57% of the original
cholesterol content). This shows that membrane cholesterol
could affect the ligand binding activity of the oxytocin
receptor by a cooperative mechanism. Hill analysis of
cholesterol content vs. ligand binding revealed that the
oxytocin receptor binds several molecules of cholesterol
(n≥6) in a positively cooperative manner [13, 43]. These
conclusions are further supported by structure–activity
analysis of the oxytocin and cholecystokinin receptor using
a variety of cholesterol analogues substituting for mem-
brane cholesterol [28]. In order to assess the specific
structural features of cholesterol that are required to
maintain the high-affinity state of the oxytocin receptor,
cyclodextrins were used to replenish cholesterol-depleted
membranes with a broad range of cholesterol analogues that
were subtly different from cholesterol either in the head
group, the steroid ring, or in the hydrocarbon tail.
Interestingly, ligand binding of the oxytocin receptor could
be restored only with certain analogues, thereby indicating
to a specific structural feature in cholesterol to support

Fig 1 Presence of cholesterol
molecules in the recently
reported crystal structure of hu-
man β2-adrenergic receptor. The
figure depicts the structure of
the human β2-adrenergic recep-
tor (in blue) embedded in a lipid
bilayer. Cholesterol molecules
between two receptor molecules
are shown in orange (repro-
duced from [62], with permis-
sion from AAAS)
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receptor function. Although cholesterol depletion reduces
ligand binding to the cholecystokinin receptor, this effect
could be reversed with most analogues of cholesterol that
could restore membrane order. The ligand binding of the CCK
receptor therefore was supported by each of the cholesterol
analogues and was well correlated with the corresponding
fluorescence anisotropy values. However, similar effects on
the oxytocin receptor could be demonstrated only with certain
analogues that structurally resembled cholesterol in some
critical features. Taken together, this data provide support
for a specific molecular interaction between the oxytocin
receptor and cholesterol. Further, molecular modeling
studies have indicated a putative docking site (involving
residues on the surface of transmembrane segments 5 and 6)
for cholesterol in the oxytocin receptor that is absent in the
CCK receptor [69]. In addition, it has been reported that

cholesterol stabilizes the oxytocin receptor against thermal
inactivation and protects the receptor from proteolytic
degradation [70]. It has also recently been shown that
cholesterol promotes cooperativity the binding of ligands to
the M2 muscarinic receptor [54].

Pang et al. have shown that membrane cholesterol is
required for the ligand binding of the subtype 2 galanin
receptor (GalR2) and intracellular signaling of the receptor
[30]. The role of membrane cholesterol in modulating ligand
binding to the galanin receptor was examined by treating
membranes with MβCD or by culturing cells expressing the
receptor in lipoprotein-deficient serum. These studies
revealed a marked reduction in galanin binding to the
receptor in cholesterol-deficient membranes. Importantly,
replenishment of cholesterol to cholesterol-depleted mem-
branes restored galanin binding to normal levels. This

Fig 2 A schematic representation of the membrane embedded human
serotonin1A receptor showing its topological and other structural
features. The membrane is shown as a bilayer of phospholipids and
cholesterol, representing typical eukaryotic membranes. The amino
acids in the receptor sequence are shown as circles and are marked for
convenience. Seven transmembrane stretches, each composed of 20–26
amino acids, are depicted as α-helices. The potential sites (shown in
lavender) for N-linked glycosylation (depicted as branching trees in
red) on the amino terminus are shown. A putative disulphide bond
between Cys109 and Cys187 is shown. Transmembrane domains contain

residues (shown in cyan) that are important for ligand binding. The
receptor is stably palmitoylated (shown in blue) at residues Cys417 and/
or Cys420 (shown in green). Light blue circles represent contact sites for
G-proteins. Light pink circles represent sites for protein kinase mediated
phosphorylation. Further structural details of the receptor are available
in [14] and [71]. Adapted and modified from [71]. It is probable, based
on comparison with known crystal structures of similar GPCRs such as
rhodopsin and β2-adrenergic receptor that there are motionally restricted
water molecules that could be important in inducing conformational
transitions in the transmembrane portion of the receptor
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interaction appears to be specific to cholesterol as only a
limited number of cholesterol analogues were able to rescue
galanin binding. In addition, treatment of membranes with
filipin, a cholesterol-binding agent, or with cholesterol
oxidase markedly reduced galanin binding. Hill analysis
suggested that several molecules of cholesterol (n≥3) could
bind in a positively cooperative manner to GalR2 [30].

The serotonin1A receptor: an important member
of the GPCR superfamily in the context of membrane
cholesterol dependence for receptor function

The serotonin1A receptor is an important neurotransmitter
receptor and is the most extensively studied of the serotonin
receptors for a number of reasons [71]. Serotonin receptors

have been classified into at least 14 subtypes on the basis of
their pharmacological responses to specific ligands, se-
quence similarities at the gene and amino acid levels, gene
organization, and second messenger coupling pathways
[72]. The serotonin1A receptor is the first among all the
types of serotonin receptors to be cloned as an intronless
genomic clone (G-21) of the human genome which cross-
hybridized with a full length β-adrenergic receptor probe at
reduced stringency [71, 73]. Sequence analysis of this
genomic clone (later identified as the serotonin1A receptor
gene) showed 43% amino acid homology with the β2-
adrenergic receptor in the transmembrane domain. The
serotonin1A receptor was therefore initially discovered as an
‘orphan’ receptor and was identified (‘deorphanized’) later
[74]. The human gene encodes a protein of 422 amino acids
(see Fig. 2). Serotonergic signaling plays a key role in the
generation and modulation of various cognitive, develop-
mental and behavioral functions. Interestingly, mutant
(knockout) mice lacking the serotonin1A receptor exhibit
enhanced anxiety-related behavior, and represent an impor-
tant animal model for the analysis of complex traits such as
anxiety disorders and aggression in higher animals [75, 76].

The modulatory role of cholesterol on the ligand binding
activity and G-protein coupling of the hippocampal
serotonin1A receptor has been shown in our laboratory
using various approaches, which include treatment with (i)
MβCD, which physically depletes cholesterol from mem-
branes [31, 32] (ii) the sterol-complexing agent digitonin
[33], and (iii) the sterol-binding antifungal polyene antibi-
otic nystatin [77]. While treatment with MβCD physically
depletes cholesterol from membranes, treatment with other
agents modulates the availability of membrane cholesterol
without physical depletion. In addition, metabolic deple-
tion of cholesterol using cholesterol lowering agents such
as statins resulted in the reduction of the ligand binding of
serotonin1A receptors (Shrivastava, S., Pucadyil, T.J.,
Chattopadhyay, A., unpublished observations). The un-
derlying tenet brought out by these data implies that it is
the non-availability of cholesterol, rather than the manner
in which its availability is modulated, is crucial for ligand
binding of the serotonin1A receptor. Importantly, replen-
ishment of membranes with cholesterol using MβCD–
cholesterol complex led to recovery of ligand binding
activity to a considerable extent.

In order to test the stringency of the requirement of
cholesterol for the function of the serotonin1A receptor, we
treated membranes with cholesterol oxidase, which cata-
lyzes the oxidation of cholesterol to cholestenone. The
results showed that oxidation of membrane cholesterol led
to inhibition of the ligand binding activity of the seroto-
nin1A receptor without altering overall membrane order
[78]. To further explore the specificity of cholesterol
requirement, we have recently generated a cellular model

Fig 3 Ligand binding function of the human serotonin1A receptor is
impaired in cellular model of the Smith–Lemli–Opitz syndrome. CHO
cells stably expressing the human serotonin1A receptor were treated with
varying concentrations of the inhibitor AY 9944 and specific [3H]8-OH-
DPAT binding to the serotonin1A receptor was measured (shown in
panel a). Values (means±standard error) are expressed as a percentage
of specific binding for control cell membranes without AY 9944
treatment. Panel b shows that the overall membrane order is unaltered
in SLOS-like condition. The overall membrane order was estimated in
control cell membranes and in membranes of cells treated with varying
concentrations of AY 9944, using fluorescence anisotropy of the
membrane probe DPH. Means±standard error of the measured
anisotropy values are shown. Adapted and modified from [79]
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of the Smith–Lemli–Opitz Syndrome (SLOS) using cells
stably expressing the human serotonin1A receptor [79].
SLOS is a congenital and developmental malformation
syndrome associated with defective cholesterol biosynthesis
in which the immediate biosynthetic precursor of choles-
terol (7-DHC) is accumulated [80]. The cellular model of
SLOS was generated by metabolically inhibiting the
biosynthesis of cholesterol, utilizing a specific inhibitor
(AY 9944) of the enzyme required in the final step of
cholesterol biosynthesis. SLOS serves as an appropriate
condition to delineate the specific and global effects of
cholesterol in the function of the serotonin1A receptor, since

the two aberrant sterols that get accumulated in SLOS, i.e.,
7- and 8-DHC, differ from cholesterol only in a double
bond. Figure 3a shows a progressive and drastic reduction
in the specific ligand binding with increasing concentra-
tions of AY 9944 used. In addition, our results show that
the G-protein coupling and downstream signaling of
serotonin1A receptors are impaired in SLOS-like condition,
although the membrane receptor level does not exhibit any
reduction. Importantly, metabolic replenishment of choles-
terol using serum partially restored the ligand binding
activity of the serotonin1A receptor. Figure 3b shows that
the overall membrane order, as monitored with anisotropy
measurements of the fluorescent probe DPH, does not
exhibit a significant change in SLOS-like condition.
Interestingly, we have recently shown that 7-DHC does
not support the function of the serotonin1A receptor without
any change in overall membrane order [81, 82]. This is
shown in Fig. 4a, where cholesterol depletion from native
hippocampal membranes followed by replenishment with
7-DHC, did not result in restoration of the ligand binding to
the serotonin1A receptor, in spite of recovery of the
membrane order (Fig. 5) [81]. In addition, solubilization
of the hippocampal serotonin1A receptor is accompanied by
loss of membrane cholesterol, which results in a reduction
in specific ligand binding activity and overall membrane
order [82]. Replenishment of cholesterol to solubilized
membranes restores the cholesterol content of the mem-
brane and significantly enhances specific ligand binding
activity (Fig. 4b) and overall membrane order (Fig. 5).
Importantly, replenishment of solubilized hippocampal
membranes with 7-DHC does not restore ligand binding
activity of the serotonin1A receptor (Fig. 4b), in spite of

Fig 5 Effect of replenishment of 7-DHC and cholesterol into
cholesterol-depleted and solubilized membranes on fluorescence
anisotropy (means±standard error) of the membrane probe DPH.
Cholesterol depletion was carried out using 40 mM MβCD.
Membranes (cholesterol-depleted or solubilized) were replenished
with 7-DHC or cholesterol, using the corresponding sterol:MβCD
complex. Adapted and modified from [81] and [82]

Fig 4 (a) Effect of replenishment of 7-DHC and cholesterol into
cholesterol-depleted membranes on the specific binding of the [3H]8-
OH-DPAT to the hippocampal serotonin1A receptor. Cholesterol
depletion in native hippocampal membranes was achieved using
40 mM MβCD followed by replenishment with 7-DHC and
cholesterol. Values (means±standard error) are expressed as percen-
tages of the specific binding obtained in native membranes. (b) Effect
of replenishment of 7-DHC or cholesterol into solubilized membranes
(denoted as SM) on specific binding of the [3H]8-OH-DPAT to the
hippocampal serotonin1A receptor. Solubilized membranes were
replenished with 7-DHC or cholesterol, using the corresponding
sterol: MβCD complex. Values (means±standard error) are expressed
as percentages of specific ligand binding obtained in native mem-
branes. Adapted and modified from [81] and [82]
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recovery of the membrane order (Fig. 5). Interestingly, we
have recently shown that the effects of 7-DHC and
cholesterol on membrane organization and dynamics are
considerably different [83]. We therefore conclude that the
requirement for maintaining ligand binding activity is more
stringent than the requirement for maintaining membrane
order. Taken together, these results indicate that the
molecular basis for the requirement of membrane choles-
terol in maintaining the ligand binding activity of seroto-
nin1A receptors could be specific interaction, although
global bilayer effects may not be ruled out.

Conclusion and future perspectives

As mentioned earlier, GPCRs are involved in a multitude of
physiological functions and represent important drug
targets. Although the pharmacological and signaling fea-
tures of GPCRs have been studied widely, aspects related to
their interaction with membrane lipids have been addressed
in relatively few cases. In this context, the realization that
lipids such as cholesterol could influence the function of
GPCRs has remarkably transformed our idea regarding the
function of this important class of membrane proteins. Very
recently, it has been possible to resolve closely associated
lipid molecules in the crystal structures of GPCRs. For
example, tightly bound cholesterol molecules have been
reported in the recently reported crystal structure of β2-
adrenergic receptor [62] (see Fig. 1). The presence of such
tightly bound cholesterol molecules in GPCR structures
indicates local (specific) interaction between GPCR and
cholesterol. With progress in deciphering molecular details
on the nature of this interaction, our overall understanding
of GPCR function in health and disease would improve
significantly thereby enhancing our ability to design better
therapeutic strategies to combat such diseases.

It has been postulated that glycosphingolipids and
cholesterol occur in laterally segregated lipid domains
(sometimes termed as ‘lipid rafts’) [84, 85]. Keeping in
mind the crucial role of glycolipids in cellular function [86],
the involvement of these lipids in GPCR-cholesterol
interaction promises to be an intriguing area of research.
In a broader sense, the diversity of lipids found in natural
membranes, combined with the ability of cells to modulate
their membrane lipid composition under conditions of a
variety of stress (or shock), vastly increase the potential by
which lipids can exert their influence on receptor function.
As in the case of many other membrane proteins, low
expression levels of the GPCRs in natural membranes, and
inherent difficulties in solubilizing [87] and purifying them
have posed considerable challenges in addressing various
issues related to membrane biology of GPCRs. Nonethe-
less, cultured cells heterologously expressing GPCRs have

made it possible to address important aspects related to
membrane organization and function of GPCRs. The
development of newer and more sensitive technologies that
determine the interactions of GPCRs with membrane lipids
and their influence on receptor function in a more native-
like membrane environment [88] would provide a more
comprehensive understanding of GPCR function.
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