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ABSTRACT

In this paper the theory of the stochastic variation of the force acting on a star is considered, and the
solution to the formal problem is obtained in terms of the average force per unit mass F, acting at time ¢,
given that a force of intensity ¥, acted at time ¢ = 0. Various related quantities are also considered, and
in particular an explicit formula for the correlation coefficient R(Fy, ¢) is derived.

1. Introduction.—A basic problem in statistical stellar dynamics is the characteriza-
tion of the entire stochastic variation of the gravitational force acting on a star. And,
as we have already explained in the introductory section to the preceding paper,* this re-
quires the specification of the average force per unit mass F, acting on a star at time #, -
given that a force of intensity Fq.acted at time ¢ = 0. In other words, the essential
physical quantity which is needed concerns the correlation in the forces acting on a star
at two different instants of time. In this paper we propose to present the formal parts of
this theory. In a later paper we shall undertake a fuller discussion of the various formu-
lae derived and also outline the applications of the theory developed here.

2. The first moments of Fr.—As in III, § 2, the solution to the formal problem soon
reduces to one of evaluating the characteristic function C(p, o), associated with the dis-
tribution function W(Fo, F;) governing the probability that forces of intensities Fo and
F, will act, respectively, at times { = 0 and ¢ = #. Similar to III, equation (7), we now
have

+m +CD

C(p, c) = Nf f [ {|;|‘:+%‘,V‘—Zg_}]x(l}) drdV , (1)

— —

where x(V) denotes the probability distribution of the relative velocity V. In writing

equation (1) we have assumed (as in ITI) that all the stars have the same mass M. (The

generalization necessary to allow for a distribution over the masses is straightforward

and will be indicated later.) The foregoing equation can be re-written in the form (cf.
111, eq. [9])

C(Py o) —T‘E(ZTGM) 3/2N‘p]1/2

ta st 2)

+Nf fezGMT p/|r]3 [1 — e iGM(r+Vi)a/lr+ V1|3 ]X (V) drdV ;

— —o

and, since we are interested only in the first moments of Fy, it would be sufficient to
examine the behavior of grads C(p, o) for || — 0. Accordlngly, we express C(p, o) in
the form

C(p,y 0) =+ (27GM)* 2N [p['*+D (p, 0) +0 (|0 | (3)
1P. 25, ThlS paper will be referred to as ITI. The. earlier papers, 4 j) J’ 95, 489 1942, and 97, 1,

1943, will be referred to as I and II, respectively.
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and verify that
D (p, 0) =f;n(p, o, Vt) x (V) dvV, (4)
where -
D(p, o3 Vi) = —iGJl/_fN'[;TGMr-p/lrla "_[r%’li_) dar . (5)

It is seen that our present definition of D(P, o5 V#) agrees with our earlier definition of
D(p, o) in III (eq. [12]) with + V¢ replacing —r. Hence (cf. III, egs. [38] and [41]),

D(p, o3 V) =—as >, A (|pl; 2 Pi(w) — s D Bi([pl; 2) Pilw) , (6)
=0 =1

where o3 and ¢; are the components of ¢ in a Cartesian system of co-ordinates in which
the z-axis is in the direction of p and the xz-plane contains the vector V and where

u=cosd; =X, V), (7)
: > 71/ 31(1—1
A= (—i) 1212732 (GM) 32N | p| /2 / dzgz/z.zm[ _ (21+l1(§ (ZZ)-— 3 J 1—3/2 o
21(I+1) 3(+2) (I4+1)
TaiEy =0 /T @i GiFD Ten,
and
. °° 71 3(1—-1
B;= (—1) 1212432 (GM) 3/2N]p|1/2 / dzgz/z_z_m[ — (2l+(1) (2;_ B Ji1—3/2 o
3 3(+2)
tTaiFy @i=n et @FD GiEs Tun].
Further, in the foregoing equations (cf. III, eq. [29])
GM|p|
21=—W—. (10)

And, finally, we may also recall that the integrals defining A; and B; should be broken
at z = z; according to the scheme III, equations (31) and (32).

To evaluate D(P, o), we have first to refer the solution (6) to a system of co-ordinates
which is independent of the direction of V. Letting the z-axis still point in the direction
of P, we can write :

D(p, o3Vt) = —a3 >, APi(p) — (g1 c08 @+ oasin @) D BiPi(n) , (11)
1=0 =1

where ¢ denotes the azimuth of the meridian plane containing the vector V.
Now, let u and v denote, respectively, the velocities of a typical field star and the star
under consideration in an appropriately chosen local standard of rest. Then

V=u—v. (12)
2 Tt will be noticed that our present definitions of 4; and B; agree with those given in ITI, egs. [39]

and [40], except that —7 now replaces 7. This difference can be traced to the circumstance that Vand r
occur with opposite signs in the relevant equations.
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It would be natural to suppose that the distribution of the ‘“‘peculiar” velocities u is
spherical (cf. II, eqgs. [58] and [59]). While it would be feasible to work with a general
spherical distribution of the velocities u, in the present investigation we shall assume,
for the sake of simplicity, that the distribution of the velocities u is actually Gaussian.
And it is evident that a Gaussian distribution of the velocities u implies that x(V) has
the form

)3
x (V) = =5 e=ivolt, (13)

where j is a certain parameter related to the mean-square residual velocities of the stars.
Using the foregoing form for x(V) in equation (4) and changing to polar co-ordinates,
we have

+1.27

D (p, 0) = s/szf —i2(| V|24 vl 22| V| 0] cos ©) "
X D(p, o;V) |V|*@|V]dpde,

where © denotes the angle between the directions of v and V. If the xz-plane of our
co-ordinate system is now assumed to contain the vector v, then

cos © = cos & cos ¥, +sin ¢ sin ¢, cos ¢, (15)
where
d=X@®V); Hh=%X{pv). (16)
Writing . .
JlVl =X and j|v|=v, (17
we find equation (16) taking the form
+1 .97
D (Py 0—) — 3/2f/fd)\d/.tdgo>\2e (A2+»2+27p cos O)

® (18)
X [ ZZO L () + (o cos €0+025111 ®) ZBLPZ(M)]

where we have further substituted for D(p, o V#) from equation (11). The integrations
over u and ¢ in equation (18) can be performed by first expanding exp (—2\» cos 6) in
tesseral harmonics. We have?

e o 02 (VTS () @mA ) L (20)

N = o, - (19)
X {Pm (1) P () +2 350 B () B () cos msO} :
‘ > ]

where the I’s are the Bessel functions for purely imaginary arguments.? Introducing the
foregoing expansion into equation (18) and using the orthogonality properties of the
Legendre functions, we find that D(p, o) reduces to

D(p, 0) = —fd)\ 7[';41:/5 e— (2 Fy2) )2
’ (20)

1/2 -
X(%;) {03; (=1) " ppye APy () +0‘12 (—1) "I 141/2B.P) (#1)}

=1

3 See, e.g., G. N. Watson, Tkeory of Bessel Functions, p. 369, Cambridge, England, 1922.
4 For the definition of these functions see bid., pp. 77-80.
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We can thus express D(p, o) in the form

D(p, 0) =05 > Uy ([p 505 7) Polu) —os > B ([p 5w 1) Ph(w) , (21)
1=0

=1

where we have introduced the quantities A; and B, defined by

i 4 @ 1/2
A, = (—1)'}mfe—w+»2>>\2(4i>w) Lisva (2W) 4;([p]5Ar) N (22)
0
~and

4 0 1/2
531= (—'1)1;‘_—mfg~()\z+p2))\2 (———47;\1;) Il+1/2(2)\V)Bl(lP|; >\"') d)‘, (23)
0 .

where we have used 7 to denote the time measured in the unit
h=jl; t=tr, (24)
! denoting the unit of length introduced in III, equation (72), so that (cf. ITI, eq. [73])

X

3=

It is now seen that D(p, o) has exactly the same form as D(P, &) in the theory of spa-
tial correlations (cf. eq. [21] with III, eq. [38]). We can therefore write down at once
the expressions for all the first moments of F,. Thus, choosing a co-ordinate system in
which the ¢-axis is in the direction of v (i.e., the direction of motion) and the £{-plane
contains the vector Fy (see ITI, Fig. 1), we have (cf. ITI, egs. [60], [65], and [66])

Foe=——i(3) }, (=) (u) f e~ LT,y () (26)
X [(‘Sn—l_@n-f-l] dx )
Ft:’l':o” > (27)
and
Fos= 13 By ) Z( 0" (“)fe O s (%) (28)
>< [n@n 1+ (n’+1)®n+1]
where ) .
=g W18 and D=y (MH CHD B (29)
~and
u=cos ¢ ; d=<X (v, Fy). (30)

Combining equations (8), (9), (22), and (23), we find that the formulae defining €,
and D; are explicitly (cf. ITI, egs. [68] and [69])

@‘=ils(2l+135)Q€I21+1) (6)1/2[ =7 A (“‘) T/ (29)

51/2
x[dzy/?—;,—z {10y —30+2) i)

(31)
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and
s (" fo )
— il ) b
D=1 S2I=1) 2IF D \B d)\ 5 € A L4172 (20W)
(32)
xfdzsm — 3= V)Tt U+ 1) Trays)
With this we have formally solved the problem.
It is of interest to note that, since
' 1
Tiyy2 (2N) > ——— (W) 112 (»—0), (33)
1+1/2 v r (l—l-%) 12 v
it follows that
TN e (2 ' Z 0). (34
(m) 1+1/2 (2W) — m (W) »—0). (34)

Hence, for » = 0 all the functions €; and D, except &, vanish identically. This implies
(cf. § 3 below) that for |v| = 0 the only nonvanishing moment of F, is in the direction
of Fo. In other words, the problem of the stochastic variation of the force acting on a
“fixed” point in a system containing stars in random motion is exceptionally simple.

3. The first moment of ¥t in the direction of Fo and its averages.—A quantity of con-
siderable interest is the average value of F, in the direction of Fo. Analogous to ITI, equa-
tion (76), we now have

_ 1/2
Forv=——mm(3) 1 2 { (=i)"P}(w) P} m)[ R T gy ()

X (Gt = Duval do+ D (=) Py (w) Pu () [ e~ /03T, gy (2) [ (39
n=0 0

X [n@n—l_l— (n+ 1) ®n+l] dx} .

Again, as in the theory of spatial correlations, greatest interest is attached to Fy, g, only
after it has been further averaged over all mutual orientations of the vectors Fy and v.
When this additional averaging process is carried out, we are left with

Fi o= —<x/ﬂ>“/*x3/=’~fa/2 () Codx , (36)

WBH T8H (8) <2> b

where, according to equation (31),
1/2
s=-0r 1 (5)" ax S eoree () 11/2(2>\V)fdz S Tya (). (37)

Combining equations (36) and (37) and expressmg F., F, in unlts of Q4 and ¢ in units
of £, (eq. [24]), we can write

= 15 . sin % —( x :
= —_— —(z/ﬁ)s/z 3/2 —— ——
B8 27 B EH (B) Oe x ( p cos x>2(726,v dx , (38)
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where
ra) . > 4 — (242 T \/? Y
20 = [z emeoon () Teema(F), 69

the function 2(x) being defined as in III, equation (80). Since

1

W (62}‘”—' 6—2)\1') , (40)

VAV, (2Nn) =

we can re-write equation (39) more explicitly in the form ‘
y/A?

o [L1 d
2(3;9) —fd)\~1—/§e v [ sinh m]-;,[ ST, @)

where we have further substituted for 2(y/\*) according to III, equation (85).
Now, the correlation coefficient R(B, 7) is related to 8,, g very simply. Thus,

B'Br 1=
R, =g =5 (42)
Hence,
15 m_z o sin x —( x
R(B, T) =2—7rm 06 (/B)/x3/2< o —COSOC)Q(;EE;V dx . (43)

It is evident that (cf. III, egs. [95] and [97])

R(B, 7) —1 as 7—0, (44)
while
RPB, r)=r1 as 71— . (45)

According to equation (45), the correlation coefficient R(B, 7) decreases relatively rather
slowly for 7— . In this respect the stochastic process we are considering is strikingly
in contrast with processes of the usual Markoff type, in which the correlations are ex-
pected to decrease exponentially with the time.

As in IIL, § 7, we can also consider the result of further averaging B, g over all
initial values of B weighted according to the Holtsmark function, H(B). Analogous to
111, equation (111), we now have

Batrn) = 2 (L % (46)

The appropriate asymptotic expansions for 63(7, v) can be readily written down from

the corresponding expansions for 8g(s) given in III, § 7. B

4. The average value of ¥t in the direction of v.—The average value, F;, y of F;in the
direction of v is, according to our choice of the co-ordinate system, the same as F, ¢,
and this is given by equation (28). And, as in the case of F;, r,, the quantity of great-
est physical interest is that which results from further averaging F:, v over all mutual
orientations of the vectors Fo and v. Analogous to III, equation (138), we now have

= 5 °°— 3/2 . Ve X
,ﬁf’ v=m[e (=/8)*/*x3/2 gin xR <§E, v) dx , (47)
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where
O (A o 4 —(\2+p2 T 1/2 Yy
gl(y,v) =[d>\;r1—/2 e~ ))\2 <m> I3/2(27\v)93(ﬁ>, (4:8)

the function R(x) being defined as in III, equation (139). Since

Iy (W) = [ @ (1—55)+e (1 +2M) (49)

we can re-write equation (48) more conveniently in the form

R (33 —fde/z e=0rt)2 (23 cosh 2 —sinh 2 R (35) - (50)

1
(2M) 2

Again, the relevant asymptotic expansions for B;, » can be derived from those given for
B, s in III, § 8.

This completes the formal parts of the theory of the stochastic variation of the force
acting on a star. In later papers we shall return to fuller discussions of the various im-
plications of this theory to the problems of stellar dynamics.
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