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ABSTRACT

In this paper we consider the theory of the correlations in the forces acting at two points separated by
a finite distance in a system containing a random distribution of stars. A problem central in this theory
is the evaluation of the average force acting at a point and in the same direction as the force acting at
another specified point. It is shown how this and other similar problems in the theory of spatial correla-
tions can be solved. An application of this theory to the problem of the stability of wide binaries is con-
tained in a later paper.

1. Introduction.—In the two earlier papers! of this series we have analyzed certain
statistical features of the fluctuating gravitational field acting on a star. More specifical-
ly, the particular problems considered in the earlier papers arose out of an attempt to
answer certain questions relating to the speed of fluctuations in the force per unit mass
F acting on a star and required the evaluation of all the first and the second moments

of F, the rate of change of F for a given F. While the specification of these moments of F
are sufficient for the purposes of determining the instantaneous rates of change of F that
are to be expected, they are very far from providing all the information that is necessary
for a complete statistical description of the fluctuating force acting on a star.? For the
entire stochastic variation of F with time can be described fully only in terms of the aver-

age force F; acting at any later time £, given that a force of some prescribed intensity
acted at time ¢ = 0. In other words, we need a complete “‘integration’ of the stochastic
equations of F.

Now the problem of specifying the average force F, acting at time ¢ (for a given F, at
time ¢ = 0) is essentially equivalent to determining the correlations in the force acting
at a given point but at two instants separated by a finite interval of time. Accordingly,
it would appear that the solution to the problem of the stochastic variation of F acting
on a star can be derived from that of the somewhat simpler one of the correlations in the
force acting simultaneously at two points separated by a finite distance. For the corre-
lations between F; and F; will be determined in terms of the distribution function
W (F,, F.), where

F0=GZM,-]—::|—3 (1)
and ‘
ri+Vi
Ft—GEM VA (2)

149p.7.,95,489, 1942, and 97, 1, 1943: these two papers will be referred to as I and II, respectively.
For a more general account of the basic ideas see S. Chandrasekhar, Rev. Mod. Phys., 15,1, 1943, and also
an essay entitled “New Methods in Stellar Dynamics,” Annals of the New York Academy of Sciences,
45, 131, 1943.

2 See, e.g., the remarks in S. Chandrasekhar, 4. J., 97, 255, 1943 (§ 3 of this paper)
25
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In equations (1) and (2) r; and V; denote respectively the position and the velocity of a
typical field star relative to the one under consideration. On the other hand, the prob-
lem of the spatial correlations requires the consideration of the distribution function
W (F,, F1), where Fg is again defined as in equation (1), while

F1 Gz ]1’1—71'3’ ' - c (3)

where r; now denotes the position of the second point considered relative to the first.
Comparing equations (2) and (3), it is apparent that the two theories associated respec-
tively with the quantities F; and F; differ formally from each other only in one respect,
namely, that, while when considering F; we have to allow for an appropriate asymmetric
distribution of the relative velocities V;, we have no such problem of averaging when
considering Fy, since r; is a certain prescribed constant vector. It is therefore seen that
the consideration of spatial correlations provides us with a problem basic to the whole
general theory. But, even apart from this, the theory of spatial correlations has its own
independent interest for stellar dynamics. Thus, questions relating to the stability of
wide binaries can be answered satisfactorily only in terms of such a theory.? We shall
accordingly devote this paper entirely to the development of the theory of spatial cor-
relations. The more difficult problem of the stochastic variation of F acting on a star
is taken up in the paper following this one.*

2. The general formula for W(Fo, F1).—As we have already indicated, the problem of
spatial correlations requires us to consider the probability that a force. Fowill act at a
point and that simultaneously a force F; will act at a second point distant |r1| from the
first. The general expression for the corresponding probability distribution W (F,, Fy)
can be readily written down by an application of Markoff’s method.> We have

W (Fy, Fy) = % e—i(P-F,to-F)) 4 (p’ o) dpdo, (4)
T ipl=0 Tol=0
where
_limit 3 cam L a=m)e 4rR3N/3
A (p, o) —R—>°°[_4WR3416<R (i ar | : (5)

In equations (4) and (5) P and o are two auxiliary vectors and IV denotes the average
number of stars per unit volume. (It should be noted here that in writing equation [5]
we have assumed that all the stars have the same mass M. However, the generalizations
needed to allow for a distribution over the masses is fairly stralghtforward and will be
indicated later.) By a series of transformations customary in this theory we can express
A(p, o) in the form®

A4(py 0) =e= 0D, (6)

where the characteristic function C(P, &) is given by

+e (r—r1).
Coo=N) [1—esnlfit 207 Jar. (1)

3 See a later paper appearing in this same issue (p. 54).
4 See p. 47; this paper will be referred to as IV.

5 Cf. S. Chandrasekhar, Rev. Mod. Phys., 15, 1, 1943. (See particularly chap. i, § 3, and chap. iv,
§§ 2 and 3.)

6 Cf,, e.g., IT, § 1, particularly the transformations leading from eq. (6) to eq. (12).
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An alternative form for C(P, ) is

+ o

Clp, @) =N [[1 — eioure/i:] gy |
o o (8).

_I_NfeiGMr-P/lrla [1 — eieMa—1)o/lr—1,1*] g,

The first of the two integrals which occur in the foregoing equation is equivalent to the
one we have already evaluated in I (egs. [55]-[58]). We thus have

4
C(p, o) =T‘%(21,-GM)'3/2N|P|3/2+ NfeiGMr-P/lrla [1— etcMr—r)o/lr=1.1*] dr. (9)

Equations (4), (6), and (9) formally solve the problem. However, an explicit evaluation
of the entire probability distribution W(Fo, F1) will require a complete knowledge of
the characteristic function C(p, 0). But, if we are interested only in the moments of Fy,
. we need only the behavior of C(pP, o) for |o| — 0. For these purposes we can therefore
expand

1 — etGM(r—r)0/|r—r|? , (10)

which occurs under the integral sign in equation (9) in a power series in . Retaining
only the first term in this expansion, we have

C(p, 0) =1 (27GM)3*N |p|%*+ D (p, ) +0 (| |?) , (11)

where
(r—mn) .o

EE=AE dr. \ (12)

+
D(p, 0) = —iGUN [ escarre/in:

In equation (12) it is convenient to introduce two new variables, R and S, in place of
P and 0. Let

R=GMp and S=GMo. (13)
Equation (12) becomes
(r—ry)
= — ir.R/r}g .
D(R S) sze’ s . |r_r1|3dr (14)
or, alternatively,
D (R, S) —sz ir.R/Ir|? (S grad )dr (15)

Integrating by parts, we obtain

. L |
D(R,S) =-—iNfF-_—r:I—S-grad(ei'-R/|”“) dr. (16)
Explicitly, equation (16) has the form

D (R, S)—Nf (17)

eir.R/|r]? gs -R 3 (r.R) (T'S) Edr
|r—r1| ’

HEN irf®
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It is of interest to note that, according to equatlon (17),D (R, S) regarded as a func-
tion of r, satisfies the differential equation

~divgrad D = 41rNeiT'R/l'1”;S'R— 3 (r-R) (r-S) % .
r|? |r]®
It is possible that the existence of this differential equation of the Poisson type has a
deeper significance than is apparent at first sight.
3. The evaluation D(p, 0).—To evaluate the integral defining D(R, S), we shall chose
a Cartesian system of co-ordinates in which the z-axis is in the direction of R (i.e., P)
and the xz-plane contains the vector ri. Let the components of S in this system of co-
ordinates be 51, Se, and S3. With this choice of the orientation of the co-ordinate system
and transforming to polar co-ordinates, equation (17) reduces to

D(R,S) = —NIR{ff]%I,”mm S3Py ()

+3p(1—p?)12(Sycos o+.Sysin ) | drdude,

where we have used u to denote cos #. Further, the P,’s denote, as usual, the Legendre
functions.

We now expand |r — r|~%, which occurs under the 1ntegra1 sign in equation (19) in
spherical harmonics. We have

(18)

(19)

1 [ee]
_ l
|r——r1| FZ P, (cos 0) , (20)
where .
¥ is the larger of r and 7, (21)
and y "
_ r/ry 1 rry .
_371/7’ if r>r1$' (22)

Further, in équation (20) © denotes the angle between the directions of r and r1. Ac-
cordingly,
cos © = cos ¢ cos ¢#; +sin ¢ sin ¢ cos ¢, (23)

=L (R,r1). (24)

Moreover, by the addition theorem of spherical harmonics

where

—m)!

),Pz (ﬂ)Pz (u1) cos me, (25)

Py(cos©) =Py () Py () +2§_) 0T

where we have written u; for cos ¢#;. Combining equations (19), (20), and (25), we have

12 i Rlu/r?
D(R,S) =—N1R1fff [2S3P; () + 35 (1= w?) 12

0 —1

J

X (Sycos o+.S;sin ¢) ] [Z {Pz(#)PZ(M) +22 (H_m)' (26)
1=0

X P7* (u) P7* (u1) cos mso” drdude.
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Integration over ¢ is now readily performed, and we get

eI Rlu/r?
D (R, S)=_27"N]R|ff -l {2 fz(#)lePz(#)Pl(ﬂl)
01 (27)
+3Sw (1 — p?) 1/22 G SR WP | drdu.
Now, introduce the new variable
z=|R|r? (28)
and let
z1=[R|ri’=GM |p|r7?. (29)
With this change of the variables, equation (27) takes the more convenient form
D®,S) =—nN|Rin[ [ocin [253&(#) > £8P (1) Pa ()
0 =1 (30)
+3S#(1—u2)1/22£”2 2L P P [ dzdu
1 (l+ 1)1 i (g ’
where '
, . % 1s the smaller of 2z and 2, : (31)
and ' .
_ Z/Zl if 2 < 31
E_gzl/z if z>z1%' (32)

To perform the integration over u, we expand exp (42u) in spherical harmonics. We
have the well-known expansion

1/2 2
em:({;) > @nt DitTuwa () Pau) (33)

in which the J »+1/2’S are the Bessel functions of half odd-integral orders. Hence,

32N |R|1/zf F1/2 )

D(R,S) = — 312 Y [2532 El/zpz(ﬂl)fdﬂpz(#)])z(#)

X 2 (27 +1) i ns12(2) Py (1) +3512 EV2P] () > (34)

n=0

— 1 -
U= faun (= w0 2P () D <2n+1>infn+u2<z>Pn(u>] :
n=0

XOFDL

It is seen that in the foregoing equation we have to perform integrations over the prod-
uct of three tesseral harmonics, the upper suffix of one being the sum of the upper suffixes
of the other two. Such integrals have been studied by J. A. Gaunt.” However, the par-

* Phil. Trans. Roy. Soc. (London), Ser. A, 228, 151, 1929. (See particularly the appendix to this pa-
" per, pp. 192-196.)
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" ticular results needed for our purposes can be derived more directly. Thus, using the .
recursion formulae

P =ﬁl+_1[ (n—m+1) P+ (n+m)Pi]

. (35)
(1= ) VP = 5 (P = P
we readily obtain the equations
_ 3(n+1) (n+2) n(n+1)
o=y ansy et s an=n
3n(n—1)
T E D Gn=1) >
+1 1 (36)
_ " 1 1
/2 Pl
T 2n+1) 2n—1) "

Substituting these formulae in equation (34) and using the orthogonality properties of
the Legendre functions, we find

/ /2 ;o 51/2 © W
D(R,S) = _ﬁf_l_ZR%i_‘zv_fdz 2?72_ |:2S32il£l/2Pl(p,1)'
0 1=0
31 —1) 20314 1) |
Xg_ 2141y (21—1) Ji—a/2+ (21+3) (2ZI— 1) Jitye
3(+2) G+1) s (37)
- J 2.5 Lgl/2p (
(2l+ 1) (2l_|_3) l+5/2§+ I;is 1 I-’gl) %
3(-1) 3 |
X g T (2I+1) (21-1) Ji-s2t+ (2I+3) 2I—1) Jivya
3(1+2)
TR 2IE3) JH*”/Z%]

Returning to our original variables P and & (cf. eq. [13]), it is apparent that we can ex- .
press D(P, 0) in the form :

D(Pso')=_0'32Az(iP[; 21) Py () —01EBZ(IP|; 21)P%(M) , (38)
1=0 1=1

where

Eff[ 31(1—1)

: — §1Q1/2,3/2 3/2 1/2 1/2 —
A, =4121213/2 (GM)3/2N |p | Ddz‘g’ gy ZI+D CI=1D) Ji—3/2

(39)

210+1) 3U+2) U+1)
+ (2143) (21—1) Jrrve— Q21+ 1) (2Ii+3) Jz+5/2]
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and

By = §121203/2 (GM) /2N | p | /2 dzéz/gg_l/f [ 3(-1)
0

AT Q=D 7 40)
\ 3 3(14+2)
T (214+3) (21—1) Jitye+ 21+ 1) (21+3) Jl+5/2] .

Further, in equation (38) we have suppressed the suffix “1” in u;, thus now letting u
denote the cosine of the angle between the directions of P and r.

4. The expression for A(P, 0) for |o| — 0.—According to equation (4), A(P, o) is
the six-dimensional Fourier transform of the distribution function W(F,, F;). Conse-
quently, for the purposes of this equation the vectors P and & must be referred to a fixed

T~

~
~N
Stk

Fic. 1

system of co-ordinates. But in equation (38) for D(p, o) we have expressed & = (o4, o3,
o3) in a variable system of co-ordinates depending on the direction of p. We shall now
pass from this variable xys-system to a fixed &n¢-system (see Fig. 1). This fixed &n¢-
system is so chosen that the {-axis is in the direction of r, and the £¢-plane contains the
vector Fo. Let P be along an arbitrary direction in this system of co-ordinates. The linear
transformation which allows us to pass from the xyz- to the &n{-system is clearly

01=—0%COS ¥ COS ¢ — g, COS & sin ¢+ o¢ sin &,
gy =Fogsin ¢ — 0, C08 ¢, (41)
g3=+osin ¢ cos ¢+ o, sin & sin ¢+ oy cos ¢ .

Thus, in this fixed system of co-ordinates D(p, o) has the form

D (p, 0) = — (¢ sin & cos ¢+ o4 sin & sin ¢ + o¢ cos &) z AP (p)
1=0
(42)

(o]

+ (ot cos & cos ¢+ o5 cos & sin ¢ — o¢ sin &) ZBzP% (u) .
=1
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Finally, combining equations (6), (11), and (42), we obtain

4 (p, o) = e"’“’ls/*[l—l— (oesin & cos ¢+ oy sin & sin o+ orcos &) Z AP ()
: 1=0

| - (43)
— (ozcos ¥ cos o+ aycos P sin op— g¢sin ) EB;P% (v) +0(|o|? |,
1=1
where .
a =75 (27GM) 32N . (44)
We can express (43) more simply in the form
A (py o) = el [1 —D(p, o) +0(|o | ], (45)

where D(p, 0) is defined as in equation (42).

5. The first moments of F.—To détermine the average values of F; (for a given F) in
any specified direction, it would clearly be sufficient to evaluate the first moments of
the components of Fy (namely, Fy, ¢, Fi 4, and Fy, ;) along the three principal direc-
tions of the &n¢-system as defined in § 4.

According to equation (4), ’

+ 4o 4 4o .
1 .
_[nW(Fo,Fl)Fl,TdFIE*_MWG _[” _[w _fwe—mm«-mm(p, o) Fy, -dpdodFy, (46)

wherewe have used 7 to denote either of £ 9, or {. From this equation we readily de-
rive (cf. I, egs. [73]-[76])

. +oo
1 d

—+ oo
- Y [,—ip-F, .
W E R = — g e R [ A o) | e (D)
or, using equation (45) for A(p, o), we have
’ 4 . 4o
=_* [ ,—ipF,—al o2 0D
_[nW (F,, FI)FI,,dFl-—Srs__{;e o-FoelPI/ 2= dp, (48)

sinte D(p, 0) is linear in 0. On the other hand, the left-hand side of the foregoing equa-
tion defines Fy, ,, for

W (Fo) Fr = W (Fo, F)) F, ,dF;. (49)
Hence,
. + o0
T oot [omipFy—alpli 9D 4.
W (E)Fr =g [emiePoelel 2= dp; (50)

— 00

or, using polar co-ordinates, we have

. © +1. 2%
_ ; _ a 9D
W(Fo)Fl,f=§r§ff[e**“’“i‘ol°°s o~elel S| p|%d|p| dude,  (51)

0—1
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where O denotes the angle between the directions of Fo and p. Putting (cf. I, eq. [134],
and II, eq. [81])
|p|[Fol =25  [Fo| =a**8=0auB - (52)

in equation (51), we obtain
© _+1. 2%

= oD
7% = —izcos z/B)8/t .
(Fo) Fy, - 3 30233fffe 6—(z/8) PP x?’dxdude . (53)

0

Substituting for W(F,) in the foregoing equation from I, equation (117), we obtain the
general formula
+1.27

= oD
—izcos O— (:v/ﬁ)3/2 2
Fi .= 27r26H(3) /ff 7. x2dxdude, (54)

where it might be recalled that H(B) is the “Holtsmark function,”
2 [ee)
= — —(=/B)3/2 1
H(B) 1r6~0/e % sin xdx . (55)

To carry out the integrations over u and ¢ in equation (54), we first expand
exp (—ix cos O) in spherical harmonics. We have (cf. eqs. [25] and [33])

1/2 > ‘
e o= ()2 D) (=D Vaa () {2 () By ()

(56)
+2m2=1 En_,_ g 7 Pa’ () P7* () cos Mqu ,
where
/~“1=C0801; 291={(F0_r1). (57)

Combining equations (54) and (56) and substituting for D from equation (42), we obtain

+1.27

= ) m\2 %
P (e —(2/8)3/% 53/2
Fy, - 2728 H (B) (2> _[__[-[dxdﬂdﬂpe x

X [2 (—i>"<2n+1>Jﬂ+u2(o&){Pn<u>Pﬂ<ul>
n=0

+23] §”+’”§,P"‘ () B (1) cos msﬂH

i o o 1 y o 698)
sin ¢ cos gazAle(,u.) — cos ¢ cos <p2BlP%(p,) (r=¢§)
1=0 I=1

- s

X sin ¢ sin <p2 AP;(u) —cos & sin gozBlP%(y) (r=1)

| 1=0 =1 ]
[cos 02 APy (u) +sin 02B1P%(,u)} (r=¢)
1=0 i=1 J )
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The integration over ¢ can be carried out directly, and we are left with

0] 3" E (—’)”P1<“1)fdx" L5 et ()

><<2n+1>( _H),fduP (8) 4 D A (1= ) V2P (w) (59)
— ZBzﬂP%(u)},
=1
1_?1,11=0, (60)

and

1 T\ /2 & ) *
. —_— = —_\n —(z/6)3/2 48/2
Fy ¢ 2BH (B) (2) n§=0 (—1) Pn(ﬂl)-[dxe 2321170 (1)

(61)
+1 © . ©
X (2n+1) [duP, (u){z AP (p) + D Bi(1 = p?) V2P () } :
—1 1=0 =1

The result (60) is, of course, to be expected. Using the recursion formulae (35) and the
orthogonality relations among the Legendre functions, we can readily effect the integra-
tions over u in equations (59) and (61). We find

Fri=—=(3)" 2(—0@ (uof ~ElB) T,y ()

(62)
X[an—l{ _(n—l)Bn—l}—E;I—_ﬁ{An+1+ (”+2)Bn+1}]dx
and |
J— 1/ . @ ‘
Fue=— ﬁH(ﬁ) ( ) (—i)nPn(m)fe—(x/3)3/2x3/2Jn+1/2 (x)
0
(63)

n+1
2n+ 3

It is seen that the foregoing expressions for Fy, ¢ and 7y, ¢ can be written somewhat
more compactly if we introduce the quantities

1

X [ o {Api— (n—=1)Byy} +

= TL {Awsit (142) B} |dc.

1

Ci=grrg!4i—1Bi) and Di=5r {4+ U+ DB . (64)
Then
P~ (3) 2 (=P, U‘)fe GO T (®) (65)
X [Cn 1 Dn-l-l] dx
and
F1,§= WﬂH(B) ( ) E (—3)"P, () /e (2/8)3/2 33/2 ] +1/2(x) (66)

>< [#Co—1+ (n+ 1) Doti] dx,
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where we have further suppressed the suffix “1” in y;, thus letting u denote the cosine
of the angle between the directions of r; and Fo.

Using equations (39) and (40), we shall now obtain explicit formulae for C; and D..
First, we notice that the factor which occurs in front of the integrals on the right-hand
sides of the equations (39) and (40) can be re-written as (cf. egs. [44] and [52])

Next, evaluating C; and D; as defined in equation (64), we find that

- 1505 1/2 B
Co=i s sy orrny (3) fdzs’ [Wira =3 U+ 2) Juvasl - (68)
and
" 1504
Di=il gy (ﬁ) fdzs” [~3 (=1 Tyt G+1) Tisual, (69)

where it might be recalled that the range of integration over 2 has to be broken at z,
according to the scheme (31) and (32). Thus, the “infinite’’ integrals occurring on the
right-hand sides of the foregoing equations are really functions of z, and therefore also
of [P| and [ri], according to equation (29). In terms of our new variables x and 8
(eq. [52]), we can express 2; as follows:

GM|p||Fo| GM «

2= = = 70
| STIPTRT  Tnl0a 8 (7o)
or, alternatively,
15273 x
Z'1=42/321rN2/3|r1[2§ (71)
This suggests that we measure |r;| in units of the distance
= s 0.619804 N1 (72)8
41/3 (27,.) 1/2 :
If s denotes |ry] measured in this unit, we clearly have
x
Z1= _\S?E . (7 3)

Thus, the integrals occurring in the formulae for C; and D; are functions of «, s, and 8
only through the combination x/s%8.

Equations (60), (65), (66), (68), and (69) together provide the complete formal solu-
tion to the problem of spatial correlations.

6. The first moment of F1 in the direction of ¥y and its average.—A quantity of con-
siderable interest is the average value of Fy in the direction of Fo. Since (see Fig. 1)

Fi, Fy,=cos 9Fy, ¢ +sin 0F, ¢, (74
we have

Fi, Fo=puFy, ¢+ (1 — p2) V2R, ¢ . (75)

8 Since the average distance D between the stars is 0.55396N~1/3 (cf. S. Chandrasekhar, Rev. Mod.
Phys., 15, 1, 1943, eq. [676]), it follows that the unit of distance adopted is of the same order as D.
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Hence, according to equations (65) and (66),

N

- 2 - 12 2 . o
F,r, = _m(g) {; (—i)"Pi(#)Pi(M){G_(”/‘B)a/zx"'/zfnﬂ/z(x)

X [Com1— Duril d+ D (= 1Py (w) P () [ e~/ a3 (2)  (76)
n=0 0

X [#Co—1+ (n+1) Dyi4l dx} .

Now, from the point of view of the applications of the theory, greatest interest is at-

tached to Fy, F, only after it has been further averaged over all mutual orientations of
the vectors Fo and r,.° When this additional averaging is performed, it is seen that the
only two terms in the infinite series in equation (76) which survive are those with
n = 1. We are thus left with

= 12 &
Fori= =gy (5) [o e ue) Cuds. (77)
0
On the other hand (cf. eq. [68]), :
15 1/2 ;2 Z1/2
Co=—0u g (5)" [a5 25 T (s . (78)
0

Hence, combining equations (77) and (78), we obtain the relatively simple formula
= _ 15Qx 1r>1/2 m_(z/ﬁ)s/z . ( x
Fl, FO—W —2— [6 xfg/g(x)fl 526 dx, (79)

where we have used 2(y) to denote the function

CO

2t = [ 2 3/2f5/2<z>dz - (80)
0
Letting
F1=QHB1 and F0=QHB’ (81)
we can re-write equation (79) more conveniently in the form
§1,B=—15— e~ @B/ 3/2< — cos x) ( )dx (82)
2xB32H (B) 4 8.

where we have further substituted explicitly for J3/5(x).

We now proceed to a closer discussion of the equations (80) and (82).

i) Q(y) and its asymptotic behavior—According to the scheme (31) and (32), the equa-
tion defining 2(y) has explicitly the form

2(y) =/%Jm<z)dz+y1/ﬂf Splm(Dds.  (83)
0

9 E.g., see the paper “On The Stability of Binary Systems’” appearing later in this same issue of the
Astrophyswal Journal (p. 54).
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Using the formula ,
L (5=7) = — 5T, (84)
dz

well known in the theory of Bessel functions, we can directly evaluate the second of
the two integrals occurring on the right-hand side of equation (83), while the first can be
simplified by an integration by parts. The two integrated parts cancel each other, and
we are left with

v1
2(y) =%f 2o (2) dz; (85)
0
or, using the formula for J3/5, we have
1 v 1 .
0

After two further integrations by parts the foregoing equation can be reduced to the
form

4 v 1 /2\/ 1 .
20) =57mym) o ds—5(3) 55l (1+H2yMsiny —yeosy], (8
0

or, somewhat differently,

1 1
2 =5[4F 3 =S Tsn(3) 2710 |, (88)

where we have used f(y) to denote the Fresnel integral,

1 Ycos 2 1 rv
F(y) = (27)1/2[ . dz=§[f_y2(z)dz. (89)

The form (88) for 2(y) is particularly convenient for the purposes of numerically evalu-
ating the function.

From equation (88) and the known asymptotic expansions for the Fresnel integral'®
© -it can be readily shown that

2 1 siny s
2(y) =§—Ww+0(3’ /2) (y—>wo) (90)
and
1/2
2(» =5 (%) yr+o0m (3—-0). (91)

ii) The asymptotic behavior of El_, g for s— 0 and s — o —It is of interest to con-

sider the asymptotic behavior of 8;, g. First, considering the behavior for s — 0, we
have, according to equations (82) and (90),

3 fw sin x
= —— e—(2/B)3/? x3/2 (
"B xg2H (B) Y x

10 Cf. G. N. Watson, Tkeory of Bessel Functions, p. 545, Cambridge, England, 1922.

ol

— cos x) dzx . (92)
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The integral occurring on the right-hand side of this equation can be expressed simply
in terms of the Holtsmark function. For, writing it in the form

33/2/ ddx [e—(=/8)/*] (sin x — « cos x) dx (93)

- and integrating by parts, we have

(s o] (o]

fe‘(z/ﬁ)3/2x1/2 (sin x — x cos x) dx = %63/2fe—(z/ﬁ>a/zx sin xdx
0 0 (94)
=3 BVH (B) .
Hence, \
B1.g—B as s—0, (95)

a result which is to be expected. On the other hand, according to equations (82) and
(91), we have for s — =

27”323([3) (2>1/ 1_/6 @B/ % (sin x — x cos ) dx  (s—»). (96)

Eou

In other words,

B, g= st for s—o, (97)

the constant of proportionality depending, however, on B; this behavior for S — <« has
important consequences for the applications of the theory.!t

7. The average value of ¥y, ¥, for all Fo and the correlation in the forces acting simul-
taneously a two different points.—In the preceding section we have evaluated the aver-
age value of Fy, g, for all mutual directions between Fo and ri. The result of this averag-
ing was to yield a function Fy, r, of the two variables | Fo| and [r;|. If we now average
F\, F, still further over all initial values of |Fy| (with the appropriate weight function
W(|Fo|)), we shall obtain a function of || only which will describe the correlation
in the forces acting simultaneously at points separated by a distance |r;|. For,

Fopo= [ By raW(Fa]) d|Rl; (98)
0
and this is clearly the same as
Fy ro= [ [Fi-18,W (Fo, Fy) dFodFy, (99)

where we have used 1p, to denote a unit vector in the direction of Fo.
Since the distribution of | Fo| is directly governed by the Holtsmark function H 8)
(cf. I, eq. [115]), we have

Ba(s) = —/ Br gH (8) 48, (100)

©| el

‘I See IV, p. 52.
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where it might be recalled that s measures [r1| in units of the distance / introduced in
equation (72). Substituting for B;, g from equation (82), we can write

Ba(s) = [1(p)ag, (101)
[4]
where .
15 * sin x x .
= —(z/B)3/? x3/2 — i
I(B) 27rﬁ3/2.[6 x ( p cosx)2<826) dx . (102)
Putting x = By in equation (102), we can express I(8) alternatively in the form
1(8) = [2(y) (M—ﬁcosﬁy> dy, (103)
0 y
where, for the sake of brevity, we have written
15 y
= —— ¢~ ¥/ y3/2 2
®(y) PR Q(s2>' (104)
Integrating by parts the term in cos By in equation (103), we find
1(5)=f‘1>(y)S—lzlg,ﬁzdy—{—_[fb’(y)sinﬁydy, (105)
0 0
where &’ denotes the derivative of ®.
Now, multiplying both sides of equation (105) by sin 8z/8z (where % is some posi-
tive constant) and integrating over 8 from 0 to «, we obtain
® sin 82 7 sin By sin 82 .
I aB = b(y)———— dBd
ST =g ap= [ [en=ELERER apay
' ‘ o o (106)
,, ~sin By sin Bz
+ [ Jo = sy
Since
“sin By sin Bz . (y -+ z>2 0
[——~——6 a8 =1log(37) . (107)
equation (106) reduces to
S Bz 1 (y + z>2
[I(B) 82 dﬁ—{é(y)4yzlog v —z dy
(108)

+ oo (30,

a formula which is valid for all positive z. Passing now to the limit 2 = 0, we obtain

J1@ra8= 20Dt [o L. (109)
0 0 0
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Integrating By parts the second of the two integrals occurring on the right-hand side,
we find that

Jr@as=2fa(n%3. (110)
0 0 y
According to equations (101), (104), and (110), we therefore have

Ba(s) = —W*Q( ) gy (111)

We shall find that the function __EB(J‘) plays an important role in the applications of
the theory. We shall therefore discuss the integral defining this function somewhat
closely.

First, we shall derive a useful alternative form of equation (111). Writing y = xs*in

this equation and substituting for 9(x) according to equation (85), we find that Bg(s)
can be expressed as a double integral in the form

15 “dx dz

Bg () =375 wr T S Ten(e), (112)
or, inverting the order of the integration,
= 15 d 3/258
Ba(s) = f ng/z(z)f e~/ (113)
Putting
t=x32s3 (114)
equation (113) becomes
Ba(s) f ﬁfw(z)fdn /st (115)

332372

which is the form required. Since the incomplete I'-function is defined by

z

L.(p+1) = fe~wat, (116)

0

we can re-write equation (115) alterﬁatively in the form
= 5 7d
Ba(9) = [ G 7w(5) [D@) —Twan (D] (117)

1) The asymplotic expansion for BB(S) for s— 0.—The behavior of BB(s) for s— 0 can
be derived from equation (117) by using an appropriate expansion for the incomplete
I'-function which occurs under the integral sign in this equation. Thus, since

g823/2 3
T (3) = [e~t-as
0
R . < (118)
=f ( ——t+——....>r2/3dt
/ 21
=3sg¥2—254524+0(s7), J
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we have

Bg(s) = —57; ill—zfa/z(Z) [T(3) —3sz24 354524 ....] (s—0). (119)

0

Substituting explicitly for J3/s in the foregoing equation, we obtain
= _5(2 1/2
Bg ( ( ) 7/2(sm g—zcos z) [['(§) — 3522+ 254224+ ....].(120)

Now the integrals

Q0

/% (sin 2 — % cos 2) (121)

0

for j = 7/2, 3, and 3/2 are readily expressible in terms of known integrals and have

respectively the values
4 /m\V2 T m\1/2 .

Accordingly, equation (120) leads to the following asymptotic expansion for /ESB(S) valid
for s—0:

= 4 C 15 /2\V? 15
Ba(o) =1 @) — 2 (2) s st C23)
™ ™
Numerically, this series has the form
?B(s) =3.41093—2.992067s+1.193662s*4 ... .. (124y
According to equation (123), B 4
Bg(0) =—T(3) . (125)

On the other hand, it is clear that, as s — 0, Bg(s) must simply tend to the first moment
of the Holtsmark function (cf. egs. [95] and [100]). We have thus incidentally proved that

e ]
4
[eE@® d8==TR) . (126) 2
0
12Tt is perhaps of interest to establish equation (126) directly. We have (cf. eq. [55])
BH(B) = gfme_("’/‘s)3/2:1: sin xdx . 1n
™ 0
Putting ¥ = By in the right-hand side of this equation, we can write
BH(B) = £ “®(y) sin pydy, @)
where
a() =20y, (3)

Integrating equation (2') twice successively by parts, we obtain
BH() = — [ 72" (y) sin Bydy . @)

[Footnote continued on following page]
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i) A series expansion for 63(5) for s— o .—A rapidly converging series for 63(3)
for s — » can be obtained in the following manner:
Differentiating equation (115) with respect to s, we find that

dﬁﬁ(s) 15 Pdz

Ja2(3) =52 (127)
ds T Y% 232
or, substituting for J3/5, we have
dBg(s) 15 (2)1/2 PR
- =\ [e ;(smz 3 Cos 2)dz. (128)

Replacing sin z and cos z in the foregoing equation by their respective series expansions
and inverting the order of the integration and the summation, we obtain

dﬁB(S) 15(2)1/22 (=) (2n+1)tfe~83z“/"z2"“2dz. (129)

If we now introduce the variable ¢ = s333/2) equation (129) becomes

(oo}

dﬂB__ 10 2\ B 2n 1 i

Hence,

Now multiplying both sides of equation (4’) by sin 8z/8z (where z is some positive constant) and inte-
grating over 8 from 0 to «, we find that

SerB) sin f’z dg=~f° g L I log (y + Z) y. _ (5")
Passing now to thé limit z = 0, we obtain
STeB (B =— f° °°4>"<y> (6")
But, accordmg to our definition of ®(y) (eq [3 ])
@/(3) = — o= (592 — 3V S G
Thus,
JToH e = 5= f "5y — 3L ®)

The integrals which occur on the right-hand side of this equation can be reduced to I'-function integrals
by the substitution ¢ = %2, In this manner we find that

f*sH(B)IL = nl J‘°°(5t1/3 344/t dt )
7%[51‘(1/3) — 37(4/3)] )
=2ras,

which is the required result.
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Integrating this series, term by term, and remembering that EB(J) must tend to O as
s — o, we obtain the following expansion for Bg(s):

= 10 [2NAL i 2n 4n—2\ 1
ﬁﬂ(”‘?(;;) 2 (O gy (2n+1>zr( ) 5o (132)

The dominant term of this series is

= 10 /2\2 72\ 1 _
Bg(s) =§<;) P(§>§+0(8 5) (s—>w®), (133)

or, numerically,
Bg (5) —>1'—1ffs—6—31 (s—w). (134)

5
s —>

Fia. 2

This behavior of Bg(s) for s — = is, of course, to be expected on the basis of our earlier
result (97). "

In a later paper we shall undertake a full numerical discussion of the various formulae
obtained in this paper: but in the meantime we may refer to Figure 2, in which the run

of the function Bg(s) is illustrated.

8. The average value of Fi1 in the direction of ri.—In §§ 6 and 7 we have considered
in some detail the various functions which arise from a discussion of the first moment
of F;in the direction of Fo. We shall now consider certain other functions of comparable
interest which result from a similar discussion of the first moment of F, in the direction
of .. Since the {-axis of our co-ordinate system is in the direction of r; (see Fig. 1), we
have (cf. eq. [66])

- ; 12 2 © '
fon= “ﬁﬂ(@ 2, (=B [ e~ LT 1y () 135)
X [#Co—1+ (n+1) Dpyi] do .

As in the case of Fi, g, greatest interest is attached to the foregoing equation only
after it has been further averaged over all directions of Fy (keeping r; and | Fq|, how-
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ever, fixed). When this further averaging process is carried out, it is seen that the only
term in equation (135) which survives is that with » = 0, and we are left with

Fin= - Wﬁ;(ﬂ) 2) f ¢TI s (3) Dad, (136)
where, according to equation (69),
/2
Di=itnz (5) fd or 2 T (s). (137)

Combining equations (136) and (137) and expressing F1, 5, in units of O, we have

Ebu

é‘ﬂ_ﬂm‘—ﬂ.—(ﬁ)fe (1’/3)3/2333/251115\719{( 26) dx (138)

where, for the sake of brevity, we have written
R (9) —fdzsw T (a). (139)
Now, according to the scheme (31) and (32), equation (139) has expiicitly the form

Ry) = 1/2/' 1/213/2(z)dz+yf —zl—EJa/z(z)dz. - (140)

Yy

It is seen that, of the two integrals which occur in the foregoing equation, the first can
be directly evaluated (cf. eq. [84]), while the second can be related quite simply to the
function Q(y) introduced in § 6 (cf. egs. [85] and [90]). Thus,

2\ 1
8 =(55) —57m0) +23 =201 (141)
or, substituting for 2(y) from equation (88), we have
2\ 1
R (y) =<;r—y—> + 332 (y) + %3”‘; Jy2 () +Ey[5—-F ()], (142)

or, more explicitly,

R (y) —<~——> 3 sin y—-% cos y 4-#y sin y]+%y[—%—?(y)]- (143)

From equation (143) the behavior of R(y) for y— 0 and y — = can be readily de-
duced. We find that

R(y) =4y+0(y) (y—0) (144)
and '

/2
) =(2) ym o) (y—=). (145)
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The asymptotic relations (144) and (145) for R(y) enables us to derive the behavior
of B, s for s— 0 and s — . Thus, according to equations (138) and (145),

- 5 2\2 % :
;I . — (_) s | e~ @8 Py sin xdx  (s—0), (146)
. 278H (B) \« ‘[

or, remembering our definition of H (6),

/2
B, s—>4 (2)1 (s—0). (147)

In other words, for short separations between two points, there is, on the average, a
repulsive force (proportional to the distance) operating on one relative to the other.
On the other hand, for s — «, we have (cf. egs. [138] and [144])

2 1
—— e —(z/B)3/245/2 i
B2 H (B) 32/0-8 x52gin xdx  (s—o). (148)

=l

Since, however,

o]

r;"/z /‘(3—(’”/"3)“/2955/2 sin xdx , (149)
0

d
BE[BH B =

we can re-write equation (148) in the form
2 1

'mll

(s> ), (150)

or, somewhat differently,

dlog H
dg

= 2
31,8—93-;5(14-3 (s—w®). (151)

According to this equation,
Busos (B0 and  Brem - (Boe). (152)

In other words, for large s, the sign of By, s depends on the magnitude of 8. In this re-

spect. By, s differs from By, g, which is always positive and is, moreover, a monotonic de-
creasing function of 8. An even more fundamental dlﬁ'erence in the character of the

functions 61, s and ;81, g is revealed when we average ﬂl, sover all § to obtain a quantity
similar to 63(s) considered in § 7; for, as we shall now show,

By, sH (8) dp=0. sy
0
To prove this, write x = By in equation (138) and express By, sH(B) in the form
Bu, sH (8) =5fq>(y> sin ydy, . (154)
0
where
2 () = ey (%), - 55)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1944ApJ....99...25C

J: .99 C.25C!

P

rF1932A

46 S. CHANDRASEKHAR

Integrating equation (154) by parts, we have
B1, sH (B) =f<1>’(y) cos Bydy . (156)
0

Multiplying both sides of this equation by sin Bz/Bsz (where 2 is some positive con-
stant) and integrating over 8 from 0 to «, we obtain

i sin Bz . [,  ,cosBysin Bz
SBusH®FpFas= [ for ) FEEE agay . asD)
On fhe other hand, since | |
c’Dcos{iysinﬁz o .
/0-*—6———(%—5 if 2>y (158)
=0 if z<y,
equation (157) becomes
= sinz ., ™ [Z,
B sl B %5 ds =5 [# () dy
(159)
_72(2)
2 gz !

a formula which is valid for any positive finite z. Passing now to the limit z = 0, we find

7 limit [?_(ﬁ)_] (160)

051,83(5)d3=/'2—z_)0 2

According to our definition of ® (eq. {155]), the quantity on the right-hand side vanishes.
Hence,

By, s=0, (161)
which was the result to be proved.
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