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This review on dark energy is intended for a wider 
audience, beginners as well as experts. It contains  
important notes on various aspects of dark energy and 
its alternatives. The section on Newtonian cosmology 
followed by heuristic arguments to capture the pre-
ssure effects allows us to discuss the basic features of 
physics of cosmic acceleration without actually resort-
ing to the framework of the general theory of relati-
vity. The brief discussion on observational aspects of 
dark energy is followed by a detailed exposition of  
underlying features of scalar field dynamics relevant 
to cosmology. The review includes pedagogical presen-
tation of generic features of models of dark energy 
and its possible alternatives. 
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Introduction 

THE 20th century has witnessed remarkable developments 
in the field of cosmology. The observation of redshift of 
light emitted by distant objects and the discovery of  
microwave background in 1965 have revolutionized our 
thinking about the universe. The Hot Big Bang model 
then received the status of the standard model of the uni-
verse. However, in spite of the theoretical and observa-
tional successes, cosmology remained confined to a rather 
narrow class of scientists; others considered it as the part 
of a respectable philosophy of science. Cosmology wit-
nessed the first revolution in 1980 with the invent of 
cosmological inflation, making it acceptable to the larger 
community of physicists. Since then, it has been going 
hand-in-hand with high-energy physics. The scenario en-
visages that the universe has gone through a phase of fast 
accelerated expansion at early epochs. Inflation is a para-
digm which can resolve some of the in-built inconsistencies 
of the Hot Big Bang model and provides a mechanism for 
generation of primordial fluctuations needed to seed the 
structure we see in the universe today. In the past two 
decades, observations have repeatedly confirmed the pre-
dictions of inflation. However, its implementation is ad 
hoc and requires support from a fundamental theory of 
high-energy physics. As inflation takes place around the 

Planck epoch, the needle of hope points towards string 
theory – a consistent theory of quantum gravity. 
 The second revolution cosmology witnessed in 1998, is 
related to late time cosmic acceleration1,2. The observa-
tions of high redshift supernovae reveal that the universe 
is accelerating at present. The phenomenon is indirectly 
supported by data of complimentary nature such as cos-
mic microwave background (CMB), large-scale structure, 
baryon acoustic oscillation and weak lensing. It is inter-
esting that the thermal history of our universe is sand-
wiched between two phases of accelerated expansion. In 
the Newtonian language, cosmic repulsion can be real-
ized by supplementing the Newtonian force by a repul-
sive term on phenomenological grounds. The rigorous 
justification of the phenomenon can only be provided in 
the framework of general theory of relativity (see ref. 3 
for early attempts in this direction). Late time accelera-
tion can be fuelled either by an exotic fluid with large 
negative pressure, dubbed the dark energy4–10 or by modi-
fying the gravity itself11. The simplest candidate of dark 
energy is provided by the cosmological constant Λ, 
though there are difficult theoretical issues associated 
with it12–14. Its small numerical value leads to a fine tun-
ing problem and we do not understand why it becomes  
important today a la coincidence problem. 
 Scalar fields provide an interesting alternative to cos-
mological constant16,17. To this effect, cosmological dy-
namics of a variety of scalar fields has been investigated 
in the literature (see Copeland et al.6 for details). They 
can mimic cosmological constant-like behaviour at late 
times and can provide a viable cosmological dynamics at 
early epochs. Scalar-field models with generic features 
are capable of alleviating the fine-tuning and coincidence 
problems. As for the observation, at present, it is abso-
lutely consistent with Λ, but at the same time, a large 
number of scalar-field models are also permitted. Future 
data should allow to narrow down the class of permissible 
models of dark energy. 
 As an alternative to dark energy, the large-scale modi-
fications of gravity could account for the current accel-
eration of the universe. We know that gravity is modified 
at short distance and there is no guarantee that it would 
not suffer any correction at large scales, where it is never 
verified directly. Large-scale modifications might arise 
from extra-dimensional effects or can be inspired by fun-
damental theories. They can also be motivated by phe-
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nomenological considerations such as f (R) theories of 
gravity. However, any large-scale modification of gravity 
should reconcile with local physics constraints and 
should have potential of being distinguished from the 
cosmological constant. To the best of our knowledge, all 
the schemes of large-scale modification, at present, are 
plagued with some other problems. 
 The review is organized as follows: After introduction 
and a brief background, I present cosmology in Newto-
nian framework titled ‘The homogeneous and isotropic 
Newtonian cosmology’ and mention efforts to put it on 
the rigorous foundations in the domain of its validity. 
Next, I titled ‘Beyond Newtonian physics: pressure cor-
rections’ have put forward heuristic arguments to incor-
porate Λ, in particular and pressure corrections, in 
general, in the evolution equations and describe the broad 
features of cosmological dynamics in presence of cosmo-
logical constant. Then a short introduction to relativistic 
cosmology is provided and issues associated with cosmo-
logical constant are discussed. After a brief subsection on 
observational aspects of cosmic acceleration, I will pro-
ceed to highlight the generic features of scalar field dy-
namics relevant to cosmology and mention the current 
observational status of dynamics of dark energy. In the 
last section before summary, I present a discussion on the 
current problems of alternatives to dark energy. 
 Last but not least, a suggestion for the follow-up of this 
review is in order. At present, there exist, a number of 
excellent reviews on dark energy4–10 and cosmological 
constant12–14, which focus on different aspects of the sub-
ject. Four recent and interesting reviews7–10 which try to 
address the theoretical and observational aspects of late-
time cosmic acceleration are highly recommended.  
Humility does not allow me to mention that Copeland et 
al.6 is the most comprehensive theoretical review on dark 
energy with pedagogical exposition. 

The smooth expanding universe 

The universe is clumpy at small scales and consists of a 
rich structure of galaxies, local groups of galaxies, clusters 
of galaxies, super-clusters and voids. These structures 
typically range from kiloparsecs to 100 megaparsecs. The 
study of large-scale structures in the universe shows no 
evidence of new structures at scales larger than 100 
megaparsecs. The universe appears smooth at such scales, 
which leads to the conclusion that it is homogeneous and 
isotropic at large scales, which serves as one of the fun-
damental assumptions in cosmology known as cosmo-
logical principle18. Homogeneity tells us that the universe 
looks the same when observed from any point, whereas 
isotropy indicates that it looks the same in any direction. 
In general, these are two independent requirements. How-
ever, isotropy at each point is a stronger assumption 
which implies homogeneity also. The cosmological prin-

ciple presents an idealized picture of the universe which 
allows us to understand the background evolution. The 
departure from smoothness can be taken into account 
through perturbations around the smooth background. 
Observations confirm the presence of tiny fluctuations 
from smoothness in the early universe. According to 
modern cosmology, these small perturbations via gravita-
tional instability are believed to have grown into the 
structures we see today in the universe19–27. 
 One of the most remarkable discoveries in cosmology 
includes the expansion of the universe and its beginning 
from the Big Bang. The analysis of radiation spectrum 
emitted from distant galaxies shows that wavelengths of 
spectral lines are larger than the actually emitted ones; 
the phenomenon is known as redshift of light. Redshift is 
quantified by the symbol z defined as z = (λob − λem)/λem. 
According to the Doppler effect, the wavelength of light 
emitted by a source receding from the observer appears 
shifted towards the red end of the spectrum and the red-
shift is related to the velocity of recession v as z ≃ v/c for 
v << c. In the beginning of the last century, astronomers 
could measure the distances to a number of distant gala-
xies. Hubble carried out investigations of recession velo-
cities and plotted them against the distances to galaxies. 
He concluded in 1929 that there is a linear relation bet-
ween recession velocity of the galaxies and the distance 
to them – the so called Hubble law. 
 The observational conclusion that the universe expands 
is based upon the redshift of radiation emitted by distant 
galaxies. Can we have another explanation for the red-
shift? It might look surprising that photons from larger 
distances emitted from galaxies reach us redshifted due to 
the recession of galaxies and nothing else happens to 
them. They travel through the intergalactic medium and 
could be absorbed by matter present there and then emit-
ted, losing part of their energy in this process and thereby 
leading to their redshift without resorting to expansion of 
the universe. This apprehension can be refuted by a sim-
ple argument. As for the absorption, the underlying pro-
cess is related to the scattering of photons by the particles 
of the intergalactic medium. If this is true, the source 
should have appeared blurred, which is never observed. 
Other efforts assuming the exotic interactions of photons 
could not account for the observed redshift. Thus the only 
viable explanation of the phenomenon is provided by the 
expansion of universe22. 
 If we imagine moving backward in time, the universe 
was smaller in size, the temperature was higher and there 
was an epoch when the universe was vanishingly small 
with infinitely large energy density and temperature – the 
beginning of the universe dubbed as the Big Bang. Matter 
was thrown away with tremendous velocity; since then, 
the universe is expanding and cooling. At early times, it 
was extremely hot and consisted of a hot plasma of ele-
mentary particles. There were no atoms and no nuclei. 
Roughly speaking, at temperatures higher than the bind-



SPECIAL SECTION: ASTRONOMY 
 

CURRENT SCIENCE, VOL. 97, NO. 6, 25 SEPTEMBER 2009 889

ing energy of hydrogen atom, the photons were freely 
scattering on electrons and atoms could not form. As the 
universe cooled below the temperature characterized by 
the binding energy of hydrogen atom, the electrons com-
bined with the protons to form hydrogen atoms leading to 
the decoupling of radiation from matter. This was an  
important epoch in the history of the universe, known as 
recombination. The decoupled radiation since then is just 
expanding with the expanding universe and cooling. The 
discovery of microwave background, the relic of the Big 
Bang in 1965 confirms the hypothesis of Hot Big Bang. 

The homogeneous and isotropic Newtonian  
cosmology 

Newtonian theory of gravitation allows us to understand 
the expansion of a homogeneous, isotropic universe in a 
simple way. The Newtonian description is valid provided 
the matter filling the universe is non-relativistic and 
scales associated with the problem are much smaller than 
the Hubble radius. For instance, at early epochs, the uni-
verse was hot, dominated by radiation. Hence the early 
universe, strictly speaking, should be treated using rela-
tivistic theory. The general theory effects are also crucial 
at super Hubble scales. Despite its limitations, Newtonian 
cosmology provides a simple and elegant way of under-
standing the expansion of the universe18,22,27,28. 

Hubble law as a consequence of homogeneity  
and isotropy 

Using the Newtonian notions of physics, let us show that 
the Hubble law is a natural consequence of homogeneity 
and isotropy. Let us choose a coordinate system with ori-
gin O, such that matter is at rest there and let us observe 
the motion of matter around us from this coordinate sys-
tem. The velocity field, i.e. the velocity of matter at each 
point p around us at an arbitrary time, depends upon the 
radius vector r and time t. We should now look for the 
most general velocity field in a homogeneous and iso-
tropic universe. Let us assume another observer located at 
point O′ with radius vector rO′ and moving with velocity 
v(rO′) with respect to the observer O. If we denote the  
velocity of point p relative to O and O′ at time t by v(rp) 
and ( ),p′ ′v r  we have, 
 
 ,p p O′′ = −r r r  (1) 

 
 ( ) ( ) ( ),p p O′′ ′ = −v r v r v r  (2) 

 
where rp and p′r  denote the radius vectors of point p with 
respect to O and O′ respectively. The cosmological prin-
ciple tells us that the velocity field should have the same 
functional form at any point, 

 ( ) ( ) ( ),p p O′′ = −v r v r v r  (3) 

 
which clearly implies that the velocity field is a linear 
function of its argument r, 
 
 v(r, t) = T(t)r,  (4) 
 
where T is a 3 × 3 matrix. The matrix can always be dia-
gonalized by choosing a suitable coordinate system. Iso-
tropy then reduces it to Kronecker symbol (Ti,j = H(t)δi,j) 
leading to 
 
 v(r, t) = H(t)r,  (5) 
 
where H is known as the Hubble parameter. In general, a 
velocity field can always be decomposed into a rotational 
part, inhomogeneous part and isotropic part at each point. 
It is not surprising then that the homogeneous and iso-
tropic velocity field has the form given in eq. (5), known 
as the Hubble law. 
 It can easily be verified that the Hubble law holds at 
any point. If we move from O to O′, we can write 
 
 ( ) ( ) .p p O pH H H t′′ ′ ′= − =v r r r r  (6) 

 
The Hubble law gives the most general form of velocity 
field permissible by the homogeneity and isotropy of 
space. 
 Hubble law tells us how the distance between any two 
points in space changes with time provided we know the 
expansion rate given by H(t), 
 

 0 ( )d( ) e , ( 0).
t H t tt t∫= ≡ =r x x r  (7) 

 
The law of expansion depends upon how the Hubble para-
meter H varies with time. Equation (7) shows how dis-
tances in a homogeneous and isotropic universe scale 
with the scale factor a(t), 
 

 0 ( )d( ) e or ( ) ,
t H t t aa t H t a
∫≡ =  (8) 

 
 r(t) = a(t)x.  (9) 
 
Complete information about the dynamics of a homo-
geneous and isotropic universe is contained in the scale 
factor; we thus need the evolution equation to determine 
a(t). In case H is independent of time, we have an expo-
nentially expanding universe dubbed de-Sitter space. In 
what follows I shall confirm that constant Hubble rate is  
allowed in relativistic cosmology provided the energy 
density of matter in the universe is constant. It is believed 
that the universe has passed through an exponentially  
expanding phase known as inflation at early times. 
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 According to the Hubble law, in a homogeneous and 
isotropic universe, all the material particles move away 
radially from the observer located at any point in the uni-
verse. This motion is refereed to as Hubble flow. Indeed, 
any freely moving particle in such a background would 
ultimately follow the Hubble flow. Motion over and 
above the Hubble flow is called peculiar motion, which 
can only arise in a perturbed universe. It often proves 
convenient to change a coordinate system dubbed comov-
ing, which expands with the expanding universe. Matter 
which follows the Hubble flow will be at rest in the co-
moving coordinate system, i.e. matter filling a homo-
geneous, isotropic universe is at rest with respect to the 
comoving observer. Both the frames are physically 
equivalent. Let us clarify that the universe does not  
appear homogeneous and isotropic to any observer; for 
instance, if an observer is moving with a large velocity, 
say, towards a particular galaxy, the universe looks dif-
ferent to him/her. A physical coordinate system is a sys-
tem in which matter is at rest at the origin and moves 
away radially at other points. The radius vector r of any 
point in this system called physical, changes with time, 
whereas its counterpart x in the comoving system is con-
stant. This means that physical distance between any two 
points in the expanding universe is given by the comov-
ing distance multiplied by a factor that depends upon 
time, which is precisely expressed by eq. (7) or equiva-
lently by eq. (9). 

Evolution equations 

I now turn to the evolution equation for the scale factor. 
Thanks to isotropy, we can employ spherical symmetry to 
derive the evolution equation. At a given time t called the 
cosmic time, let us consider a sphere centred at O with 
radius r(t). Let ρb(t) be the density of matter in the homo-
geneous, isotropic space referred to as background space 
hereafter. We assume that the net gravitational force on a 
particle of mass m situated on the surface of the sphere 
due to matter outside the sphere is zero, which means  
that matter inside the sphere alone can influence the  
 
 

 
 
Figure 1. Particle of mass m on the surface of a sphere of radius r(t) 
in an expanding universe with uniform matter density. 

motion of the particle. The total energy of the particle on 
the surface of the sphere (Figure 1) at any time is con-
stant given by the expression29, 
 

 2 2
Tot b

1 4 .
2 3

E mr mG rπ ρ= −  (10) 

 
This equation can be cast in the following convenient 
form, 
 

 
2

2 Tot
b 2

2( ) 8 ( ) ,
( ) 3 ( )

Er tH G t
r t mr t

π ρ⎛ ⎞≡ = +⎜ ⎟
⎝ ⎠

 (11) 

 
which readily translates into an evolution equation for 
a(t) (see eq. (9)) known as the Friedmann equation, 
 

 
2

2 Tot
b 2 2

28 ( ) , ,
3

Ea KH G t K
a a x m

π ρ⎛ ⎞≡ = − =⎜ ⎟
⎝ ⎠

 (12) 

 
where K can be zero, negative or positive depending on 
how kinetic energy compares with the potential energy.  
 In order to solve the evolution equation for a(t), we 
need to know how matter density ρb(t) changes with time, 
i.e. we need the conservation equation in the expanding 
universe. For a non-relativistic fluid, the continuity equa-
tion that gives us the evolution of matter density of the 
fluid is, 
 

 b
b

( ) .( ) 0.t
t

ρ ρ∂ + ∇ =
∂

v  (13) 

 
Remembering that the matter density of the background 
fluid is independent of the coordinates and fluid velocity 
is given by the Hubble law (i.e. eq. (6)), we transform the 
continuity equation to have the usual form, 
 

 b
b

( ) 3 0,t H
t

ρ ρ∂ + =
∂

 (14) 

 
which formally integrates to, 
 

 
3

(0) 0
b b( ) ,at

a
ρ ρ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (15) 

 
where the subscript ‘0’ denotes the quantities at the pre-
sent epoch. The evolution of matter density of nonrelati-
vistic fluid has a simple meaning that the mass of the 
fluid in a comoving volume remains constant. 
 Though eq. (12) formally resembles the evolution 
equation of relativistic cosmology, its derivation presen-
ted above is defective. The expression for the potential 
energy is written with an assumption that gravitational 
potential can be chosen as zero at infinity, which is not 
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true in an infinite universe. Since the mass density ρ 
b is 

constant in space, the total mass of universe diverges as 
r3. As a result, the potential –4π Gρ 

br2/3 cannot be nor-
malized to zero at r = ∞. One could try to circumvent the 
problem by assuming that ρb vanishes for a given large 
value of r, but it would conflict with the underlying as-
sumption of homogeneity. Therefore, conservation of en-
ergy is difficult to understand in an infinite universe with 
uniform matter density. 
 We can also derive the evolution equations using the 
Newtonian force law18. The force on the unit mass situ-
ated on the surface of a homogeneous sphere with radius 
r is given by 
 

 4 .
3 b
Gπ ρ= −F r  (16) 

 
The Euler’s equation 
 

 b

b

.( ) P
t ρ

∇∂ + ∇ = − +
∂
v v v F  (17) 

 
in a homogeneous isotropic background simplifies to 
 
 2( ) ,H H= +F r  (18) 
 
where F is the force per unit mass on the fluid element 
given by eq. (16). We have used the fact that pressure 
gradients are absent in a homogeneous, isotropic back-
ground and the velocity field is given by the Hubble law. 
It should also be noted that the pressure Pb = 0 for the 
non-relativistic background fluid under consideration. 
Using eqs (16) and (18), we obtain the equation for  
acceleration, 
 

 
2

b2
1 d 4 ( ),

3d
a G t

a t
π ρ= −  (19) 

 
which could also be obtained directly from eq. (16). 
Equation (19) can easily be integrated to give the Fried-
mann equation. Indeed, by multiplying the above equa-
tion by a  and using the evolution of mass density allows 
us to write 
 

 2
b 2

8 ( ) ,
3
G KH t

a
π ρ= −  (20) 

 

 
(0)

2 2
0 0

8
.

3
bG

K a H
π ρ⎛ ⎞

≡ −⎜ ⎟⎜ ⎟
⎝ ⎠

 (21) 

 
The above derivation is also problematic as it assumes 
that the mass outside the sphere, used while writing eq. 
(16), can be neglected, which is not true for an infinite 
universe with constant mass density. 

 The problem can be circumvented using the geometric 
reformulation of Newtonian gravity in the language of 
Cartan. According to Cartan’s formulation, orbits of par-
ticles are assumed to be the geodesics of an affine space 
and gravity is then described by the curvature of the  
affine connection (see Tipler30 and references therein). 
According to Tipler30, no pathology in cosmology associ-
ated with Newton’s force law then occurs and the evolu-
tion equations of Newtonian cosmology, 
 

 2
b 2

8 ( ) ,
3
G KH t

a
π ρ= −  (22) 

 

 
(0)

2 2
0 0

8
,

3
bG

K a H
π ρ⎛ ⎞

≡ −⎜ ⎟⎜ ⎟
⎝ ⎠

 (23) 

 

 
2

b2
1 d 4 ( ),

3d
a G t

a t
π ρ= −  (24) 

 

 b
b

( ) 3 ( ) 0,t H t
t

ρ ρ∂ + =
∂

 (25) 

 
can be put on rigorous foundations. Equations (22), (24), 
and (25) are identical to the evolution equations of Fried-
mann cosmology for non-relativistic fluid filling the  
universe. Whether or not one adopts the formulation pre-
sented in Tipler30, Newtonian cosmology is nevertheless 
elegant and simple. 
 Let us point out an important feature of Newtonian 
cosmology. We note that the expression of K/a2 remains 
unchanged under the scale transformation a(t) → Ca(t), C 
being constant. As a result, the evolution equations (i.e. 
eqs (22) and (24)) also respect the scale-invariance. This 
invariance is a characteristic of specially flat Friedmann 
cosmology. The Newtonian cosmology can mimic all 
three topologies of relativistic cosmology corresponding 
to K = 0, ±1, in spite of the fact that the underlying  
geometry in Newtonian cosmology is Euclidean. Let us 
note that the scale factor in Newtonian cosmology can 
always be normalized to a convenient value at the present 
epoch. This is related to a simple fact that the Friedmann 
equation (eq. (22)) does not change if we re-scale the 
scale factor, which leaves the normalization of a arbi-
trary. The often used normalization fixes the scale factor 
a(t) = 1 at the present epoch, i.e. a0 = 1. In case of relati-
vistic cosmology, the latter can only be done in the case 
of K = 0, whereas in the case of K = ±1, the numerical 
value of the scale factor a0 depends upon the matter con-
tent of the universe. 
 The second important feature of Newtonian cosmology 
is that it leads to an evolving universe. Indeed, we could 
ask for a static solution given by ( )a t  and ( )a t = 0, which 
is permitted by the Friedmann equation (eq. (22)) but not 
allowed by the equation for acceleration (eq. (24)). It is 
remarkable that Newtonian cosmology gives rise to an 
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evolving universe. It is an irony that the discovery of  
expansion of the universe had to wait for the general the-
ory of relativity. This is related to the commonly held 
perception of static universe, which was prevalent before 
Friedmann discovered the non-static cosmological solu-
tion of Einstein equations. So much so that Einstein him-
self did not believe in the Friedmann solution in the 
beginning and tried to reconcile his theory with the static 
universe by introducing cosmological constant, which he 
later withdrew. 

The past, future and how old are we? 

The general features of solutions of the evolution equa-
tions can be understood without actually solving them. 
What can we say about the past and the fate of universe? 
The equation for acceleration tells us that 0a <  for stan-
dard form of matter. This means that a(t) as a function of 
time is concave downward. We need input regarding a  at 
present to make important conclusions about the past. 
Observation tells us that ( ) 0a t >  at present. Thus a(t) 
monotonously decreases as t runs backward. It is there-
fore clear that there was an epoch in the history of the 
universe when a(t) vanishes identically. Without the loss 
of generality, we can take t = 0 corresponding to a(t) = 0. 
 As for the fate of the universe, the problem is similar  
to that of escape velocity, namely if K > 0, the kinetic  
energy is less than the potential energy. In this case a(t) 
would increase to a maximum value where ( )a t  = 0, it 
would start decreasing thereafter till it vanishes and the 
universe ends itself in a big crunch. In case K < 0, the 
scale factor would go on increasing forever; K = 0 repre-
sents the critical case. Three different possibilities, K = 0, 
K > 0 or K < 0 correspond to critical, closed and open 
universe respectively. We should emphasize that the fate 
of the universe also crucially depends upon the nature of 
matter filling the universe. In some case, the universe 
may end itself in a singular state or the cosmic doomsday. 
 Which of the three possibilities is realized in nature? 
To answer this question, let us rewrite eq. (12) in a con-
venient form, 
 

 b
b b2

c

( )( ) 1 , ( ) ,
( )( )
tKt t
taH

ρ
ρ

Ω − = Ω =  (26) 

 
where the critical density is defined as, ρc(t) = 3H2(t)/ 
8π G. Specializing eq. (26) to the present epoch, we find 
that, 
 
 (0)0 (0)

b cb1 ( ) 0Kρ ρΩ > > ⇒ > →  closed universe, 
 

 (0)0 (0)
b cb1 ( ) 0Kρ ρΩ = = ⇒ =  → critical universe, 

 

 (0)0 (0)
b cb1 ( ) 0Kρ ρΩ < < ⇒ <  → open universe. 

where the superscript ‘0’ designates the corresponding 
physical quantities at the present epoch. Since we know 
the observed value of (0)

c ,ρ  one of the three types of uni-
verse we live in, depends upon how matter density in the 
universe compares with (0)

c .ρ  Observations on CMB  
indicate that the universe is critical to a good accuracy or 
K ≃ 0, which is consistent with the inflationary para-
digm. 
 Let us come to the solution of the Newtonian cosmo-
logy in case of K = 0. Substituting ρb(t) from eq. (15) in 
eq. (22), we find that, 2 1~ ,a a−  which easily integrates 
giving rise to 
 

 
2 /3

0
( ) ,ta t

t
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (27) 

 

 
2

(0) 0
b b( ) ,tt

t
ρ ρ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (28) 

 

 2 1( ) .
3

H t
t

=  (29) 

 
The above solution is known as Einstein–de-Sitter solu-
tion. We can estimate the age of universe using eq. (29), 
 

 0
0

2 1 .
3

t
H

=  (30) 

 
Interestingly, if gravity were absent, the universe would 
expand with constant rate given by H0. Using the Hubble 
law we would then find, 
 

 0
0

1 ,t
H

=  (31) 

 
which is the maximum limit for the age of the universe in 
the Hot Big Bang model 1

0(2H − /3 ≤ t0 < H−1). The pre-
sence of standard matter always leads to deceleration, 
thereby leading to smaller time taken to reach the present 
Hubble rate of expansion. The presence of cosmological 
constant or any other exotic form of matter can crucially 
alter this conclusion. 

Cosmological constant a la Hooke’s law 

We have seen that Newtonian cosmology gives rise to the 
evolving universe but for the historical reasons, cosmo-
logy had to wait for the general theory of relativity to dis-
cover it. The fact that Newtonian cosmology leads to 
non-stationary solution was known before the general 
theory was discovered, but it could receive attention as it 
conflicted with the perception of the static universe. At-
tempts were then made to modify Newtonian gravity to 
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reconcile it with the static universe. Clearly, the modifi-
cation should be such that it becomes effective at large 
scales, leaving the local physics unchanged. Looking at 
the Newton’s force law (eq. (16)), it is not difficult to 
guess that a static solution is possible provided that we 
add a repulsive part proportional to the radius vector r in 
eq. (16). Newton’s law of gravitation should therefore be 
supplemented by linear force law18,22,31,32 
 

 b
4 1 ,

3 3
Gπ ρ= − + ΛF r r  (32) 

 
where Λ is known as the cosmological constant which is 
positive in the present context. It is interesting to note 
that there are only two central forces, namely the inverse 
square force and the linear force, which give rise to stable 
circular orbits. 
 Our discussion of cosmological constant is heuristic 
and the motivation here is to incorporate the repulsive  
effect in the evolution equations. We rewrite the modified 
force law (eq. (32)) as an equation of acceleration using 
the comoving coordinates, 
 

 
2

b2
1 d 4 ( ) ,

3 3d
a G t

a t
π ρ Λ= − +  (33) 

 
which shows that a positive Λ term contributes to accel-
eration, as it should. The integrated form of eq. (33) is 
given by, 
 

 2
b 2

8 ( ) ,
3 3
G KH t

a
π ρ Λ= − +  (34) 

 
where the integration constant K can be formally written 
again through physical quantities defined at the present 
epoch. The modified force law (eq. (32)) was proposed 
much before Einstein’s general theory of relativity by 
Neumann31 and Seeliger32 in 1895–96. 
 Let us note that adding the cosmological constant to 
Newtonian force is equivalent to adding a constant matter 
density ρΛ = Λ/8π G to the background matter density ρb 
which does not to go well with the continuity equation 
(eq. (14)). Since the acceleration equation also gets modi-
fied in the presence of Λ, we should check whether the 
modified evolution equations allow this possibility. If we 
differentiate eq. (34) with respect to time and respect the 
modified acceleration equation, we find that constant 
matter density is permissible in the expanding universe. 
As for the continuity eq. (14), it is valid for a perfect non-
relativistic fluid. The cosmological constant does not  
belong to this category; the pressure corresponding to 
constant energy density is not zero. The continuity equa-
tion should take the note of pressure and get appropri-
ately modified. As pointed out earlier, the present 
discussion of cosmological constant here is qualitative. 

Rigorously speaking, we are trying to get the right thing 
in the wrong place! I shall come back to this point after I 
incorporating the pressure corrections in the evolution 
equations. 
 The evolution equations, i.e. eqs (34) and (33) admit a 
static solution (a = const = a0) in case of K > 0. Static 
Einstein universe ( a  = 0 and a  = 0) is possible provided 
that Λ has definite numerical value 
 

 (0)
c b4 .Gπ ρΛ = Λ =  (35) 

 
We shall observe after a short while that the static Ein-
stein universe is unstable under small fluctuations. 
 The qualitative features of solutions of the evolution 
equations can be understood without actually solving 
them. Equation (33) can be thought of as an equation of a 
point particle in one dimension4,33, 
 

 ,Va
a

∂= −
∂

 (36) 

 
moving in potential field 
 

 
2 2

b4( ) ,
3 6

G a aV a π ρ⎛ ⎞Λ= − +⎜ ⎟⎜ ⎟
⎝ ⎠

 (37) 

 
where I have used the fact that ρb ~ a−3. The Hubble 
equation acquires the form of the total energy of the  
mechanical particle 
 

 
2

( ),
2

aE V a= +  (38) 

 
where E = −K/2. In order to make the mechanical analogy 
transparent, let us compute the minimum of the kinetic 
energy. If the minimum exists, it should obviously corre-
spond to the numerical value of the scale factor that gives 
rise to the maximum of the effective potential V(a). It is 
easy to see that the kinetic energy is minimum if a = am, 
 
 1/ 3( / ) ,ma A= Λ  (39) 
 

 
2

2/3 1/31 ( ),
2 2

m

a A K
⎛ ⎞

= Λ −⎜ ⎟⎜ ⎟
⎝ ⎠

 (40) 

 
where (0) 3

0b4 .A G aπ ρ=  Note that V(a) is maximum at 
a = am. From eq. (40), we infer that the kinetic energy of 
the system at the top of the potential is, 
 

 
2 3

c 20 if .
2

m

a K
A

⎛ ⎞
≥ Λ ≥ Λ ≡⎜ ⎟⎜ ⎟

⎝ ⎠
 (41) 

 
In case Λ = Λc, the system barely makes to the hump of 
the potential ( 0)a =  corresponding to am = a0, where 
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( 0),a =  as it should be (see eq. (36)); this is nothing but 
the Einstein’s static solution. We can now provide a 
qualitative description of the solutions of the evolution 
equations. For Λ < Λc, the kinetic energy is formally 
negative for a = am, which means that it vanishes before 
the particle reaches the maximum of the potential. In Fig-
ure 2 we have displayed the plot of V(a) vs the scale fac-
tor a. We show three possible configurations of interest: 
(A) corresponds to motion starting from the left of the 
barrier with a = 0. (B) depicts the situation in which the 
potential barrier is approached beginning from the right 
with a large value of the scale factor. (C) represents the 
possibility of static solution. 
 We first analyse the case of K > 0 or E < 0, which 
gives rise to a variety of interesting possibilities. 
 (1) Λ < Λc: In this case, the kinetic energy is insuffi-
cient to overcome the potential barrier giving rise to the 
following interesting solutions. 
 (a) Oscillating solution: In this case, motion starts from 
a = 0 with insufficient kinetic energy to reach the hump 
of the potential. In this situation, the scale factor in-
creases up to a maximum value where 0a =  for a < am, 
marking the turning point followed by the contraction to 
a = 0. 
 (b) Bouncing universe: If the potential barrier is ap-
proached from the right side with a = ∞, the scale factor 
first decreases and reaches a minimum value and then 
bounces to expanding phase as the kinetic energy is not 
enough to overcome the barrier. 
 (c) Einstein static universe: This configuration corre-
sponds to the maximum of the potential with 0a =  and 

0,a =  possible for a particular value of Λ obtained ear-
lier. Clearly, the static universe corresponding to a point 
particle sitting on the hump of the potential, is not stable. 
Small perturbations would derive it to either contracting 
(a → 0) or expanding (a → ∞) universe. 
 
 

 
 
Figure 2. Plot of the effective potential V(a) vs the scale factor a. 
Configurations (A) and (B) correspond to motion of system beginning 
from a = 0 and a = 1 respectively. (C) corresponds to static solution 
unstable under small fluctuations. 

 (2) Λ < Λc: The kinetic energy is sufficient to over-
come the barrier for this choice of Λ. As a result, motion 
first decelerates till the system reaches the top of the  
potential and then slides down the hill with acceleration. 
The scale factor exhibits the point of inflection at 
a(t) = am < a0. If Λ slightly exceeds its critical value, an 
interesting possibility dubbed loitering universe can be 
realized. The scale first increases as it should, approaches 
a0 and remains nearly frozen for a substantial period  
before entering the phase of acceleration. Such a scenario 
has important implications for structure formation. 
 For K ≤ 0 or E ≥ 0, the system always has enough kinetic 
energy to surmount the barrier allowing the scale factor 
to increase from a = 0 to large values as time increases. 
This case is similar to the one with K > 0 and Λ >Λc.  
 For any given value of Λ, the scale factor exhibits the 
point of inflection at a = am = (0) 3 1/3

0b(4 / ) .G aπ ρ Λ  This is 
also clear from eqs (32) and (33) in which the first term is 
the attractive character and dominates in the beginning 
leading to deceleration. However, as the scale factor in-
creases and reaches a particular value, the repulsive term 
takes over; the scale factor exhibits the point of inflection 
and the expansion becomes accelerating thereafter. 
 Observations should tell us when deceleration changed 
into acceleration. This crucially depends upon how 

(0)
b4 Gπ ρ  compares with Λ or how ρΛ compares with 

(0)
M / 2.ρ  The transition from deceleration to acceleration 

should have taken place around the present epoch. Had it 
happened much earlier it would have obstructed structure 
formation34. We shall come back to this point to confirm 
that cosmic acceleration is indeed a recent phenomenon. 

Beyond Newtonian physics: pressure corrections 

The formalism of Newtonian cosmology is not applicable 
to relativistic fluids. Relativistic fluids essentially have 
non-zero pressure. For instance, radiation is a relativistic 
fluid with pressure Pb = ρbc2/3. The cosmological con-
stant also belongs to the category of relativistic systems. 
In the general theory of relativity, pressure appears on the 
same footing as energy density. Here we present heuristic 
arguments to capture the pressure corrections in the evo-
lution equations (see Zel’dovich and Novikov22). 
 Let us consider a unit comoving volume in the expand-
ing universe and assume the expansion to be adiabatic. 
The first law of thermodynamics states that 
 
 dE + PbdV = 0, (42) 
 
where Pb(t) is the pressure of the background fluid. The 
first law of thermodynamics applies to any system, be it 
relativistic or non-relativistic, classical or quantum − 
thermodynamics is a great science. 
 The energy density of the fluid can always be ex-
pressed through the mass density, 
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 3 2
b

4 .
3

E a cπ ρ=  (43) 

 
Substituting eq. (43) into eq. (42), we obtain the continu-
ity equation in the expanding universe, 
 

 b
b b 23 0.PH

c
ρ ρ⎛ ⎞+ + =⎜ ⎟

⎝ ⎠
 (44) 

 
Thus the continuity equation responds to pressure correc-
tions: ρb → ρb + Pb/c2. For a non-relativistic fluid, rest 
energy density dominates over pressure and the second 
term in the parenthesis can be neglected. For instance, for 
dust, Pb ≃ 0. At early times, the universe was hot and 
dominated by radiation. Hence the early universe should 
be treated by relativistic theory; Newtonian description 
becomes valid at late times when matter dominates. For 
the sake of convenience, we shall use the unit c = 1. With 
this choice, relativistic mass density and energy density 
are the same. 
 We can now present the cosmological constant as a 
perfect fluid with constant energy density. The continuity  
equation (eq. (44)) then implies that ρΛ = –PΛ. Next we 
claim that the correct equation of acceleration in the case 
of background fluid with energy density ρb and pressure 
Pb is given by 
 

 b b
4 ( 3 ) .

3 3
a G P
a

π ρ Λ= − + +  (45) 

 
To verify, let us multiply eq. (45) by :a  
 

 2
b b

1 d 4( ) ( 3 ) .
2 d 3 3

Ga a a P a aa
t

π ρ Λ= − + +  (46) 

 
Using the continuity equation, we can express the term 
containing pressure Pb in eq. (46) through ρb, bρ  and :a  
 

 2 2 2
b

1 d 4 d( ) .
2 d 3 d 6

Ga a a
t t

π ρ Λ⎡ ⎤= +⎢ ⎥⎣ ⎦
 (47) 

 
which can be put in the form of the Friedmann equation 
in the presence of matter with non-zero pressure. 
 

 2
b 2

8 ( ) .
3 3
G KH t

a
π ρ Λ= − +  (48) 

 
We again observe that pressure corrects the energy den-
sity. Positive pressure adds to deceleration, whereas 
negative pressure contributes towards acceleration (see 
eq. (45)). It seems completely opposite to our intuition 
that a highly compressed substance explodes out with a 
tremendous impact, whereas in our case the pressure acts 
in the opposite direction. It is important to understand 

that our day-to-day intuition with pressure is related to 
pressure force or pressure gradient. In a homogeneous 
universe pressure gradients cannot exist. Pressure is a 
relativistic effect and can only be understood within the 
framework of general theory of relativity. Pressure gradi-
ent might appear in Newtonian framework in the inho-
mogeneous universe, but pressure can only be induced by 
relativistic effects. Strictly speaking, it should not appear 
in Newtonian cosmology. This applies to Λ also with 
negative pressure which we introduced in Newtonian 
cosmology by hand. Equations (44), (45) and (48) coin-
cide with the evolution equations of relativistic cosmo-
logy. Their derivation presented here is heuristic. The 
rigorous treatment can only be given in the framework of 
the general theory of relativity, where cosmological con-
stant appears naturally. 
 In order to solve the evolution equations, we need a  
relation between the energy density and pressure known 
as equation of state. In case of barotropic fluid, the equa-
tion of state is given by wb = Pb/ρb. Dust and radiation 
correspond to wb = 0, 1/3 respectively. Assuming that the 
universe is filled with perfect fluid with constant equa-
tion-of-state parameter wb, we find from eqs (44) and (34) 
in case of K = 0, 
 
 3(1 )

b ,waρ − +∝  (49) 
 

 
2

3(1 )( ) ( 1),wa t t w+∝ > −  (50) 
 

 3( ) e ( 1).ta t w
Λ

∝ = −  (51) 
 
In the case of radiation, wb = 1/3 and as a result ρb ≡ ρr ∝ 
a−4. In contrast to the case of the dust-dominated uni-
verse, the radiation energy density decreases faster with 
the expansion of the universe. The positive radiation 
pressure adds to the energy density, making the gravita-
tional attraction stronger. Consequently, the Hubble 
damping in the conservation equation increases, allowing 
the energy density to decrease faster than dust in the  
expanding universe. This can also be understood in a 
slightly different way, if we assume that radiation con-
sists of photons. As the universe expands, the number 
density of the photons scales as a−3, as usual. But since 
any length scale in the expanding universe grows propor-
tional to the scale factor, the energy of a photon, hc/λ  
decreases as 1/a, leading to ρr ~ a−4 and a(t) ∝ t1/2. It is 
clear that radiation dominated at early epochs as ρM ~ a−3 
for dust. 
 Let us make an important remark on the dynamics in 
the early universe which was dominated by radiation (for 
simplicity, we ignore here other relativistic degrees of 
freedom). As ρr ~ a−4, the first term on the RHS of evolu-
tion of the Hubble equation dominates over the curvature 
term K/a2; obviously, cosmological constant plays no role 
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in the present case. We therefore conclude that all the 
models effectively behave as the K = 0 model at early 
times, 
 

 
1/ 44 (0)2

(0) 1/ 20 r
r2 4

0

328 ( ) .
3 3

a Ga G a t t
aa a

π ρπ ρ
⎛ ⎞
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 (52) 

 
We next assume that radiation was in thermal equilibrium 
characterized by the blackbody distribution, 
 
 ρ 

r = bT4, (53) 
 
where b is the radiation constant. From eqs (52) and (53), 
we find how temperature scales with the expansion of the 
universe, 
 

 
1/ 4(0)

0r ,aT
b a
ρ⎛ ⎞

= ⎜ ⎟⎜ ⎟
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 (54) 

 
which on using eq. (52) tells us how early universe 
cooled with time, 
 

 
1/ 4

1/ 232 .
3

GT t
b
π −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (55) 

 
At t = 0, both the radiation density and temperature be-
come infinitely large; all the physical quantities diverged 
at that time referred to as the Big Bang. The Big Bang 
singularity is not the artefact of homogeneity and isot-
ropy. It is a generic feature of any cosmological model 
based upon classical general theory of relativity. Classi-
cal physics breaks down as the Big Bang is approached. 
In the framework of classical general relativity, the Big 
Bang is taken to be the beginning of our universe. The 
universe was thus born in a violent explosion-like event, 
throwing away cosmic matter and giving rise to expan-
sion of the universe. Since gravity is attractive (provided 
the universe is filled with matter of non-negative pres-
sure), its roll is to decelerate the expansion. What caused 
Big Bang has no satisfactory answer. The Big Bang is a 
physical singularity which should be treated by quantum 
gravity. The inflationary paradigm can mimic Big Bang 
without singularity, but in that case, we do not know what 
caused inflation. In the cosmic history, there was an ep-
och when matter took over, leading to matter-dominated 
era. It turns out that it took around 105 years for radiation 
energy density to equalize with energy density of matter. 
The age of the universe, i.e., the time elapsed since the 
Big Bang till the present epoch given by eq. (30) changes 
insignificantly, if we consider the universe filled with 
both radiation and dust. This is because the time taken 
from the Big Bang till radiation matter equality is negli-
gibly small compared to the actual age of universe which 

is around 14 Gyr. Thus the age given by eq. (30) is a reli-
able theoretical estimate. Unfortunately, the age given by 
eq. (30) falls short of the age of some old objects found in 
the universe. This is one of the old problems of Hot Big 
Bang model. We shall discuss its possible remedy in the 
dark energy-dominated universe. 

Dark energy 

Equations (48) and (46) tell us that the positive cosmo-
logical constant Λ contributes positively to the back-
ground energy density and negatively to pressure. It can 
be thought of as a perfect barotropic fluid with, 
 

 , ,
8 8

P
G G

ρ
π πΛ Λ
Λ Λ= − =  (56) 

 
which corresponds to wΛ = –1. In general, we find from 
eq. (45) that expansion has the character of acceleration 
for large negative pressure, 
 

 b b
4 ( 3 ),

3
a G P
a

π ρ= − +  (57) 

 b
b0 :

3
a P ρ> ⇒ < −  Dark energy, 

 
where we have included Λ in the background fluid. Thus, 
we need an exotic fluid dubbed dark energy to fuel the 
accelerated expansion of the universe. The various data-
sets of complimentary support the late-time acceleration 
of the universe. The simplest candidate of dark energy is 
provided by the cosmological constant with wΛ = –1.  
Observations at present do not rule out the phantom dark 
energy with w < –1 corresponding to super-acceleration. 
In this case the expanding solution takes the form, 
 
 ( ) ( ) , ( 2 / 3(1 ) 0),n

sa t t t n w= − = + <  (58) 
 

 ,
s

nH
t t

=
−

 (59) 

 
where ts is an integration constant. It is easy to see that 
the phantom-dominated universe will end itself in a sin-
gularity in future, known as big rip or cosmic doomsday, 
as t → ts. Clearly, as t → ts, both the Hubble parameter 
and the background energy density diverge35. 

Age crisis and its possible resolution 

Apart from the cosmic acceleration, dark energy has  
important implications, in particular, in relation to the age 
problem. In any cosmological model with normal form of 
matter, the age of the universe falls short compared to the 
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age of some known objects in the universe. Since the age 
of the universe crucially depends upon the expansion his-
tory, it can serve as an important check on building in 
cosmology. In order to appreciate the problem, let us first 
consider the case of flat dust-dominated universe 
(ΩM = 1) in which case, as shown earlier, 
 

 0
0

2 1 .
3

t
H

=  (60) 

 
The observational uncertainty of H0 gives rise to the fol-
lowing estimate, 
 
 1 1

0 9.8 Gyr,H h− −=  (61) 
 
 0.64 é h é 0.8 → t0 = (8 – 10) Gyr. (62) 
 
This model is certainly in trouble as its prediction for age 
of the universe fails to meet the constraint following from 
the study of ages of old stars in globular clusters36: 
12 Gyr é t0 é 15 Gyr. One could try to address the pro-
blem by invoking the open model with (0) 1.MΩ <  In this 
case the age of universe is expected to be larger than the 
flat dust-dominated universe – for less amount of matter, 
it would take longer for gravitational attraction to slow 
down the expansion rate to its present value. Looking at 
eq. (22), it is not difficult to guess that in this case, 
H0t0 → 1 for (0) 0,MΩ →  which is a substantial improve-
ment. However, this model is not viable for the several 
reasons. In particular, the study of large scale structure 
and its dynamics constrain the matter density: 0.2 < 

(0)
MΩ  < 0.3 and observations on CMB un-isotropy reveal 

that the universe is critical to a good accuracy. 
 The age problem can be resolved in a flat universe 
dominated by dark energy. Let us rewrite the Friedmann 
equation in a convenient form, 
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M DE
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which allows us to write the expression of t0 in the closed 
form 
 

0 (0) (0)3 3(1 ) 1/ 2
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1 d ,
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M DE
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H z z z

∞

+=
+ Ω + +Ω +∫  (64) 

 
where (0)

MΩ  is the contribution of dark matter and 
(1 + z) ≡ a0/a, z being the redshift parameter. The domi-
nant contribution to the age of the universe comes from 
the matter-dominated era and we, therefore, have omitted 
Ωr in eq. (63). In case dark energy is the cosmological 
constant (wΛ = –1), we get the analytical expression for 
the age of the universe, 

 
 
Figure 3. Plot of age of universe vs ΩM (at present epoch) for a flat 
universe with matter and dark energy with constant equation-of-state 
parameter w (from Frieman10). 
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For dark energy other than the cosmological constant, the 
integral in eq. (64) should be computed numerically. In 
Figure 3, we have plotted the age of universe vs (0)

MΩ  for 
various possibilities of dark energy, including the phan-
tom case. The age constraint can be met by flat, dark en-
ergy models provided that −2 é w é –0.5 for (0)

MΩ  lying 
between 0.2 and 0.3 (see Frieman10). It is remarkable that 
the Hot Big Bang model can be rescued by introducing 
the dark energy component. Interestingly, the cosmologi-
cal constant was invoked to address the age problem  
before the invention of cosmic acceleration. The observa-
tion of cosmic acceleration in 1998 was a blessing in dis-
guise for the cosmological constant. 

The discovery of cosmic acceleration and its  
confirmation 

The direct evidence of current acceleration of the uni-
verse is related to the observation of luminosity distance 
by high redshift supernovae in 1998 by two groups, inde-
pendently. The luminosity distance for critical universe 
dominated by non-relativistic fluid and cosmological 
constant is given by 
 

 L (0) (0)3 3(1 )0 0

(1 ) d .
(1 ) (1 )

z

w
M DE

z zd
H z z +

′+=
′ ′Ω + +Ω +∫  (66) 

 
Equation (66) is the expanding universe generalization of 
absolute luminosity Ls of a source and its flux F at a dis-
tance d given by F = Ls/(4πd2). It follows from eq. (66) 
that DL j z/H0 for small z and that 



SPECIAL SECTION: ASTRONOMY 
 

CURRENT SCIENCE, VOL. 97, NO. 6, 25 SEPTEMBER 2009 898 

 (0)1/ 2 1
L 02(1 (1 ) ) , 1,Md z z H −= + − + Ω =  (67) 

 
 (0)1

L 0(1 ) , 1,DEd z z H −
Λ= + Ω = Ω =  (68) 

 
which means that luminosity distance at high redshift is 
larger in the universe dominated by cosmological con-
stant, which also holds true in general for an arbitrary 
equation of state w corresponding to dark energy. There-
fore, supernovae would appear fainter in case the uni-
verse is dominated by dark energy. The luminosity 
distance can be used to estimate the apparent magnitude 
m of the source given its absolute magnitude M 
 

 L5log 25.dm M
Mpc

⎛ ⎞− = +⎜ ⎟
⎝ ⎠

 (69) 

 
Let us consider two supernovae 1997ap at redshift 
z = 0.83 with m = 24.3 and 1992p at z = 0.026 with 
M = 16.08 respectively. Since the supernovae are assu-
med to be the standard candles, they have the same abso-
lute magnitude. Equation (69) then gives the following 
estimate 
 
 0 L 1.16.H d  (70) 
 
Then theoretical estimate for the luminosity distance is 
given by 
 
 (0)1

L 00.95 , 1,Md H − Ω =  (71) 
 
 (0)1

L 01.23 , 0.3, 0.7,Md H −
ΛΩ = Ω =  (72) 

 
where I have used the fact that, dL j z/H0 for small z. The 
above estimate lends a strong support to the hypothesis 
that late-time universe is dominated by dark energy (see 
Figure 4)37,38. 
 The observations related to CMB and large-scale struc-
ture (LSS) provide an independent confirmation of the 
dark energy scenario. The acoustic peaks of angular 
power spectrum of the CMB temperature anisotropies 
contains important information. The location of the major 
peak tells us that the universe is critical to a good accu-
racy, which fixes for us the cosmic energy budget. Spe-
cializing the Friedmann equation, i.e. eq. (63) to the 
present epoch (a = a0), we have 
 
 (0) (0) (0)

b .M DEΩ = Ω +Ω  (73) 
 
The contribution of radiation to total fractional energy 
density (0)

bΩ  is negligible at present. The study of LSS 
and its evolution indicates that nearly 30% of the total 
energy content is contributed by nonluminous component 
of non-barionic nature with dust-like equation-of-state 

popularly known as dark matter. The missing component 
which is about 70% is dark energy. The recent data on 
baryon acoustic oscillation are yet another independent 
probe of dark energy. The combined analysis of data of 
complimentary nature demonstrates that (0) 0.7DEΩ  and 

(0) 0.3MΩ  (see Figure 5)39. The constraint on the equa-
tion-of-state parameter w and (0)

MΩ  shows that w is  
restricted to a narrow strip around wΛ = –1 (Figure 6). It 
is clear from Figure 6 that the combined analysis allows 
super-negative values of w corresponding to phantom  
energy. Let us now confirm that the transition from de-
celeration to cosmic acceleration took place in the recent 
past. Indeed, observations allow us to estimate the time of 
transition from deceleration to acceleration. Let us  
rewrite eq. (38) through dimensionless density parameters, 
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Using eq. (74), we can find out the numerical value of 
(a/a0) corresponding to the minimum of kinetic energy 

2( / 2),a  which precisely gives the transition from decel-
eration to acceleration, 
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Figure 4. Plot of luminosity distance H0dL vs redshift z for a flat 
cosmological model. The black points come from the ‘Gold’ datasets 
by Riess et al.37, whereas the red points show the recent data from 
HST. Three curves show the theoretical values of H0dL for (i) (0) 0,MΩ =  
ΩΛ = 1, (ii) (0)

MΩ = 0.31, ΩΛ = 0.69 and (iii) (0)
MΩ = 1, ΩΛ = 0 (from 

Choudhury and Padmanabhan38). 
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Figure 5. Best-fit regions in the (ΩΛ, ΩM) plane obtained using the 
CMB, Baryon Acoustic Oscillations (BAO) and supernovae data (from 
Kowalski et al.39). 
 

 
 
Figure 6. Constraints on the dark energy equation of w and ΩM ob-
tained from CMB, BAO and supernovae observations (from Kowalski 
et al.39). 
 
 
for the observed values of density parameters (0)( MΩ  j 0.3; 
ΩΛ j 0.7). This confirms that the contribution of Λ to 
cosmic dynamics became important at late times, such that 
the cosmic acceleration is indeed a recent phenomenon. 

Relativistic cosmology 

In the last section I have presented heuristic arguments to 
capture the pressure effects in the evolution equations. 
Pressure in cosmology is a relativistic effect which can be 

consistently understood in the framework of general  
theory of relativity. Einstein equations are complicated, 
nonlinear equations which do admit analytical solutions 
in the presence of symmetries. Homogeneity and isotropy 
of the universe is an example of a generic symmetry of 
space–time. The assumption of homogeneity and isotropy 
forces the metric to assume the FRW form 
 

 
2

2 2 2 2 2 2 2
2

dd d ( ) (d sin d )
1

rs t a t r
Kr

θ θ φ
⎛ ⎞

= − + + +⎜ ⎟⎜ ⎟−⎝ ⎠
 

   0, 1,K = ±  (76) 
 
where a(t) is scale factor. Coordinates (r, θ, φ) are the 
comoving coordinates. A freely moving particle comes to 
rest in these coordinates. 
 Equation (76) is purely a kinemetic statement. The  
information about dynamics is contained in the scale fac-
tor a(t). The Einstein equations allow to determine the 
scale factor provided the matter content of the universe is 
specified. Constant K in the metric (eq. (76)) describes 
the geometry of the spatial section of space-time. K = 0, 
±1 corresponds to spatially flat, sphere-like and hyper-
bolic geometry respectively. 
 The differential equation for the scale factor follows 
from the Einstein equations 
 

 1 8 ,
2

G R g R GTμν μν μν μνπ= − =  (77) 

 
where Gμν is the Einstein tensor and Rμν is the Ricci ten-
sor. The energy momentum tensor Tμν takes a simple 
form reminiscent of ideal perfect fluid in FRW cosmo-
logy 
 
 b b b bDiag( , , , ).T P P Pν

μ ρ= −  (78) 
 
Note that pressure in the general theory of relativity  
appears on the same footing as energy density. In the 
FRW background, the components of Gμν can easily be 
computed: 
 

 0 2 2
0 2 2

3 1( ), (2 ).j
iG a K G aa a K

a a
= − + = + +  (79) 

 
Other components of Gμν are identically zero. The Ein-
stein equations then give rise to the following two inde-
pendent equations: 
 

 2
b 2

8 ,
3
G KH

a
π ρ= −  (80) 

 

 b b
4 ( 3 ).

3
a G P
a

π ρ= − +  (81) 
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Let me remind that ρb designates the total energy density 
of all the fluid components present in the universe. The 
continuity equation bρ  + 3H(ρb + Pb) = 0 can be obtai-
ned by using eqs (80) and (81), which also follows natu-
rally from the Bianchi identity. As mentioned earlier, we 
can normalize the scale factor to a convenient value at the 
present epoch in case of specially flat geometry. In other 
cases, it should be determined from the relation 
a0H0 = (0)

b(| 1 |),Ω −  where (0)
bΩ  defines the total energy 

content of universe at the present epoch. 
 Let us note that the Einstein equations (eq. (77)) with 
the energy momentum tensor of standard fluid with posi-
tive pressure cannot lead to accelerated expansion. The 
repulsive effect can be captured either by supplementing 
the energy momentum tensor (on the right-hand side of 
the Einstein equations) with large negative pressure or by 
modifying the geometry itself, i.e. the left-hand side of 
the Einstein equations. We can ask for a consistent modi-
fication of the Einstein equations (equation of motion 
should be of second order with the highest derivative  
occurring linearly so that the Cauchy problem is well 
posed) in four space–time dimensions within the classical 
framework. Under the said conditions, the only admissi-
ble modification is provided by the cosmological con-
stant. Thus we can add a term Λgμν on the left-hand side 
of eq. (77), which we can formally carry to the right-hand 
side and interpret it as part of energy momentum tensor 
of a perfect fluid12 (see also ref. 40 for a different  
approach to cosmological constant), 
 

 1 8 .
2

G R g R GT gμν μν μν μν μνπ= − = −Λ  (82) 

 
Such a modification is allowed by virtue of the Bianchi 
identity. It is remarkable that the cosmological constant 
does not need ad hoc assumption for its introduction; it is  
always present in the Einstein equations. It could be con-
sidered as a fundamental constant of the classical general 
theory of relativity at par with Newton’s constant G. It is 
also interesting to note that the model based upon cosmo-
logical constant is consistent with all the observational 
findings in cosmology at present. However, there are deep 
theoretical problems related to the cosmological constant. 

Theoretical issues associated with Λ 

There are important theoretical issues related to the cos-
mological constant. The cosmological constant can be as-
sociated with vacuum fluctuations in the quantum field 
theoretical context12–14. Though the arguments are still at 
the level of numerology, they may have far-reaching con-
sequences. Unlike the classical theory, the cosmological 
constant in this scheme is no longer a free parameter of 
the theory. Broadly, the line of thinking takes the follow-
ing route. The ground-state energy, dubbed zero-point 

energy or vacuum energy ρvac of a free quantum field 
with spin j given by 
 

 
3

2 2 2
vac 3

0

1 d( 1) (2 1)
2 2

j j k mρ
π

∞

= − + +∫ k  (83) 

   
2

2 2 2
2

0

( 1) (2 1) d ,
4

j j k k k m
π

∞
− += +∫  (84) 

 
is ultraviolet divergent. This contribution is related to the 
ordering ambiguity of fields in the classical Lagrangian 
and disappears when normal ordering is adopted. Since 
this procedure of throwing out the vacuum energy is ad 
hoc, one might try to cancel it by introducing the counter-
terms. The latter, however, require fine-tuning and may 
be regarded as unsatisfactory. The divergence is related 
to the modes of very small wavelength. As we are igno-
rant of the physics around the Planck scale, we might be 
tempted to introduce a cut-off around the Planck length 
Lp, and associate with this a fundamental scale. Thus we 
arrive at an estimate of vacuum energy 4

vac p~ Mρ  (cor-
responding mass scale, 1/4

vac vac~ ),M ρ  which is away by 
120 orders of magnitude from the observed value of this 
quantity, which is of the order of 10–48 (GeV)4. The vac-
uum energy may not be felt in the laboratory, but plays an  
important role in general theory of relativity through its 
contribution to the energy momentum tensor as 
 
 0 vac vac, / 8 ,T g Gμν μνρ ρ π〈 〉 = − = Λ  (85) 
 
and appears on the right-hand side of the Einstein equa-
tions. 
 The problem of zero-point energy is naturally resolved 
by invoking supersymmetry, which has many other  
remarkable features. In the supersymmetric description, 
every bosonic degree of freedom has its Fermi counter-
part which contributes zero-point energy with opposite 
sign compared to the bosonic degree of freedom thereby 
doing away with the vacuum energy. It is in this sense 
that the supersymmetric theories do not admit a non-zero 
cosmological constant. However, we know that we do not 
live in supersymmetric vacuum state and hence it should 
be broken. For a viable supersymmetric scenario, for  
instance, if it is to be relevant to hierarchy problem, the 
supersymmetry breaking scale should be around Msusy j 
103 GeV. We still remain away from the observed value 
by many orders of magnitude. We do not know how 
Planck scale or SUSY breaking scales are related to the 
observed vacuum scale! 
 At present there is no satisfactory solution to cosmo-
logical constant problem. One might assume that there is 
some way to cancel the vacuum energy. One can then 
treat Λ as a free parameter of classical gravity similar to 
Newton constant G. However, the small value of cosmo-
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logical constant leads to several puzzles including the 
fine tuning and coincidence problems. The energy density 
in radiation at the Planck scale is of the order of Plank 
energy density ρP j 1072 GeV4 and the observed value of 
the dark energy density, ρΛ j 0.7 × (0)

cρ  10–48 GeV4 
which implies that ρΛ/ρP ~ 10–120. Thus ρΛ needs to be 
fine tuned at the level of one part in 10–120 around the 
Planck epoch, in order to match the current universe. 
Such an extreme fine tuning is absolutely unacceptable at 
theoretical grounds. Secondly, the energy density in cos-
mological constant is of the same order as matter energy 
density at the present epoch. The question what causes 
this coincidence has no satisfactory answer. 
 Efforts have recently been made to understand Λ 
within the framework of string theory using flux compa-
ctification. String theory predicts a very complicated 
landscape of about 10500 de-Sitter vacua14. Using  
Anthropic principal, we are led to believe that we live in 
one of these vacua. 
 A novel approach to cosmological constant problem is 
provided in ref. 15. The line of thinking takes following 
route: in the conventional framework, the equations of 
motion for matter fields are invariant under the shift of 
the matter Lagrangian by a constant while gravity breaks 
this symmetry. Thus, one cannot obtain a satisfactory  
solution to the cosmological constant problem until the 
gravity is made to respect the same symmetry. An effec-
tive action suggested by Padmanbhan in ref. 15 is explic-
itly invariant under the ‘shift symmetry’. In his approach, 
the observed value of the cosmological constant should 
arise from the energy fluctuations of degrees of freedom 
located in the boundary of a spacetime region. 

Scalar field dynamics relevant to cosmology 

The fine tuning problem associated with cosmological 
constant led to the investigation of cosmological dynam-
ics of a variety of scalar field systems such as quintes-
sence, phantoms, tachyons and Kessence16,17,41–43 (see ref. 
6 for details). Scalar fields can easily mimic dark energy 
at late times and posses rich dynamics in the past. We 
should note that scalar fields models do not address the 
cosmological constant problem, they rather provide an al-
ternative way to describe dark energy. The underlying 
dynamics of these systems has been studied in great  
detail in the literature. Scalar fields naturally arise in 
models of high energy physics and string theory. It is 
worthwhile to bring out the broad features of their dyna-
mics that make these system viable to cosmology. 

Quintessence 

A standard scalar field (minimally coupled to gravity)  
capable of accounting for the late time cosmic accelera-
tion is termed as quintessence. Its action is given by 

 4 41d ( ) d .
2

S g x g V g xμν
μ νφ φ φ⎛ ⎞= − = − ∂ ∂ + −⎜ ⎟

⎝ ⎠∫ ∫L  

 (86) 
 
The energy momentum tensor corresponding to this  
action is given by 
 

 1 ( ) ,
2

T g g Vαβ
μν μ ν μν α βφ φ φ φ φ⎡ ⎤= ∂ ∂ − ∂ ∂ +⎢ ⎥⎣ ⎦

 (87) 

 
which gives rise the following expression for energy den-
sity and pressure in FRW background 
 

 2 21 1( ), ( ).
2 2

V P Vφ φρ φ φ φ φ= + = −  (88) 

 
The Euler-Lagrangian equation 
 

 
( ) ( )

0,
g gα
α

δ δ
δφδ φ

− −
∂ − =

∂
L L

 (89) 

 
 3 ( ),g a t− =  (90) 
 
for the action (eq. (86)) in FRW background acquires the 
form 
 

 d3 0,
d
VHφ φ
φ

+ + =   (91) 

 
which is formally equivalent to the continuity equation 
and can put in the form 

 0 dexp 3(1 ( )) ,aw
aφ φρ ρ φ

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠
∫  (92) 

where w(φ) = Pφ
 /ρφ. Equation (88) tells us that for a steep 

potential 2φ >> V(φ), the equation of state parameter  
approaches the stiff matter limit, w(φ) → 1 whereas 
w(φ) → –1 in case of a flat potential, 2φ << V(φ). Hence 
the energy density scales as ρφ ~ a–n, 0 ≤ n ≤ 6. Let us 
note that while the field rolls along the steep part of the 
potential, its energy density ρφ scales faster than ρr.  
 From eq. (81) we find that 
 
 2

b b0 3 0 ( ),a P Vρ φ φ> → + < ⇒ <  (93) 
 
which means that we need nearly flat potential to account 
for accelerated expansion of universe such that 
 

 
2

, ,
2

1 1, 1.
V V

V V V
φ φφ⎛ ⎞

<< <<⎜ ⎟
⎝ ⎠

 (94) 
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In case of field domination regime, the two conditions in 
eq. (94) define the slow roll parameters which allow to 
neglect the φ  term in equation of motion for φ. In the 
present context, unlike the case of inflation, the evolution 
of field begins in the matter dominated regime and even 
today, the contribution of matter is not negligible. The 
traditional slow roll parameters cannot be connected to 
the conditions on slope and curvature of potential which 
essentially requires that Hubble expansion is determined 
by the field energy density alone. Thus the slow roll para-
meters are not that useful in case of late time accelera-
tion, though, eq. (94) can still be helpful. 
 The scalar field model aiming to describe dark energy 
should possess important properties allowing it to allevi-
ate the fine tuning and coincidence problems without  
interfering with the thermal history of universe. The  
nucleosynthesis puts an stringent constraint on any rela-
tivistic degree of freedom over and above that of the stan-
dard model of particle physics. Thus, a scalar field has to 
satisfy several important constraints if it is to be relevant 
to cosmology. Let us now spell out some of these features 
in detail, see refs 6 and 16 for details. In case the scalar 
field energy density ρφ dominates the background (radia-
tion/matter) energy ρb, the former should redshift faster 
than the latter allowing radiation domination to commence 
which in turn requires a steep potential. In this case, the 
field energy density overshoots the background and  
becomes subdominant to it. This leads to the locking re-
gime for the scalar field which unlocks the moment the ρφ 
is comparable to ρb. The further course of evolution cru-
cially depends upon the form of the scalar potential. For 
the non-interference with thermal history, we require that 
the scalar field remains unimportant during radiation and 
matter dominated eras and emerges out from the hiding at 
late times to account for late time acceleration. To  
address the issues related to fine tuning, it is important to 
investigate the cosmological scenarios in which the  
energy density of the scalar field mimics the background 
energy density. The cosmological solution which satisfy 
this condition are known as scaling solutions, 

 
b

φρ
ρ

= const.  (95) 

The steep exponential potential V(φ) ~ exp(λφ /MP) with 
λ2 > 3(1 + wb) in the framework of standard GR gives rise 
to scaling solutions whereas the shallow exponential  
potential with λ ≤ 2  leads to a field dominated solution 
(Ωφ = 1). Nucleosynthesis further constraints λ. The  
introduction of a new relativistic degree of freedom at a 
given temperature changes the Hubble rate which cru-
cially effects the neutron to proton ratio at temperature of 
the order of one MeV when weak interactions freeze out. 
This results into a bound on λ, namely6, 
 
 Ωφ ≡ 3(1 + wb)/λ2 é 0.13 ⇒ λ á 4.5. (96) 

In this case, for generic initial conditions, the field ulti-
mately enters into the scaling regime, the attractor of the 
dynamics, and this allows to alleviate the fine tuning 
problem to a considerable extent. The same holds for the 
case of undershoot (Figure 7). 
 Scaling solutions, however, are not accelerating as they 
mimic the background (radiation/matter). One therefore 
needs some late time feature in the potential. There are 
several ways of achieving this: (1) The potential that 
mimics a steep exponential at early epochs and reduces to 
power law type V ~ φ2p at late times gives rise to acceler-
ated expansion for p < 1/2 as the average equation of 
state 〈w(φ)〉 = (p – 1)/(p + 1) < –1/3 in this case44,45. (ii) 
The steep inverse power law type of potential which  
becomes shallow at large values of the field can support 
late time acceleration and can mimic the background at 
early time46. 
 The solutions which exhibit the aforesaid features are 
referred to as tracker solutions. For a viable cosmic evo-
lution we need a tracker like solution. However, on the 
basis of observations, we cannot rule out the non-tracker 
models at present. 
 In the second class of models where trackers are absent, 
there are two possibilities. First, if ρφ scales faster than ρb 
in the beginning, it then overshoots the background and 
enters the locking regime. In case of the undershoot, the 
field is frozen from the beginning due to large Hubble 
damping. In both the cases, for a viable cosmic evolution, 
models parameters are chosen such that ρφ ~ ρΛ during 
the locking regime. Hence at early times, the field gets 
locked (w(φ) = –1) and waits for the matter energy den-
sity to become comparable to field energy density which 
is made to happen at late times. The field then begins to 
evolve towards larger values of w(φ) starting from  
 
 

 
 
Figure 7. Cosmologically viable evolution of field energy density  
vs the scale factor. The dotted line shows the evolution of background 
(matter/radiation) energy density. The field energy density ρφ (with  
different initial conditions) joins the scaling regime and mimics  
the background. At late times it exits the scaling matter regime to  
become the dominant component and to account for the late time accele-
ration. 
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Figure 8. Evolution of ρφ and ρb in absence of scaling regime in case 
of overshoot and undershoot. The field remains trapped in the locking 
regime till its energy density becomes comparable to that of the back-
ground component. It then starts evolving slowly and overtakes the 
background to become dominant at late times. 
 
 
w(φ) = –1 (Figure 8). In this case one requires to tune the 
initial conditions of the field. The two classes of scalar 
fields are called freezing and thawing models7,42. In case 
of tracker (freezing) models, one needs to tune the slope 
of the field potential. Nevertheless, these are superior to 
thawing models as they are capable of addressing both 
the fine tuning and the coincidence problems. 
 Before we proceed further, we should make an honest 
remark about scalar field models in general. These mod-
els lack predictive power: for a given cosmic history, it is 
always possible to construct a field potential that would 
give rise to the desired evolution. Their merits should 
therefore be judged by the generic features which arise in 
them. For instance tracker models deserve attention for 
obvious reasons. Scalar fields inspired by a fundamental 
theory such as rolling tachyons are certainly of interest. 

Tachyon field as source of dark energy 

Next we shall be interested in the cosmological dynamics 
of tachyon field which is specified by the Dirac-Born-
Infeld (DBI) type of action given by (see ref. 6 and refer-
ences therein), 
 

 4( ) 1 d ,V g xμ
μφ φ φ= − − ∂ ∂ −∫S  (97) 

 
where on phenomenological grounds, we shall consider a 
wider class of potentials satisfying the restriction that 
V(φ) → 0 as φ → ∞. In FRW background, the pressure 
and energy density of φ are given by 
 

 2( ) 1 ,P Vφ φ φ= − −  (98) 

 
2

( ) .
1

V
φ

φρ
φ

=
−

 (99) 

 
The equation of motion which follows from eq. (97) is 
 

 2 23 (1 ) (1 ) 0,VH
V

φ φ φ φ′
+ − + − =  (100) 

 
where H is the Hubble parameter 
 

 2
b2

p

1 ( ).
3

H
M φρ ρ= +  (101) 

 
Tachyon dynamics is different from that of the quintes-
sence. Irrespective of the form of its potential 
 

 2( ) 1 1 ( ) 0.w wφ φ φ= − ⇒ − ≤ ≤  (102) 
 
The investigations of cosmological dynamics shows that 
in case of the tachyon field, there exists no solution 
which can mimic scaling matter/radiation regime. These 
models necessarily belong to the class of thawing models. 
Tachyon models do admit scaling solution in presence of 
a hypothetical barotropic fluid with negative equation of 
state. Tachyon fields can be classified by the asymptotic 
behaviour of their potentials for large values of the field: 
(i) V(φ) → 0 faster then 1/φ 2 for φ → ∞. In this case dark 
matter like solution is a late-time attractor. Dark energy 
may arise in this case as a transient phenomenon. (ii) 
V(φ) → 0 slower then 1/φ 2 for φ → ∞; these models give 
rise to dark energy as late-time attractor. The two classes 
are separated by V(φ) ~ 1/φ 2 which is scaling potential 
with w(φ) = const. These models suffer from the fine tun-
ing problem; dynamics in this case acquires dependence 
on initial conditions. 

Phantom field 

The scalar field models discussed above lead to w(φ) ≥ –1 
and cannot give rise to super acceleration corresponding 
to phantom dark energy with w(φ) < –1 permitted by ob-
servations, see Figure 6. The simplest possibility of get-
ting phantom energy is provided by a scalar field with 
negative kinetic energy. Phantom field is nothing but the 
Hoyle-Narlikar’s creation field (C-field) which was  
introduced in the steady-state theory to reconcile the 
model with the perfect cosmological principle. Though 
the quantum theory of phantom fields is problematic, it is 
nevertheless interesting to examine the cosmological con-
sequences of these fields at classical level. Phantom field 
is described by the following action 
 

 41 ( ) d .
2

g V g xμν
μ νφ φ φ⎛ ⎞= ∂ ∂ − −⎜ ⎟

⎝ ⎠∫S  (103) 
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Its corresponding equation of state parameter is given by 
 

 
21

2
21

2

( )
( ) ,

( )
V

w
V

φ φ
φ

φ φ
+

=
−

 (104) 

 
which tells us the w(φ) < –1 for 2φ /2 < V(φ). An unusual 
equation of motion for φ follows from eq. (103) 
 

 d3 0.
d
VHφ φ
φ

+ − =  (105) 

 
It should be noted that the evolution equation of phantom 
field is same as that of the ordinary scalar field but with 
inverted potential allowing the field with zero kinetic  
energy to rise up the hill. As mentioned earlier, phantom 
energy is plagued with big rip singularity which is char-
acterized by divergence of the Hubble parameter and cur-
vature of space time after a finite interval of time. In such 
a situation, quantum effects become important and one 
should include higher curvature corrections to general 
theory of relativity which can crucially modify the struc-
ture of the singularity. To the best of our knowledge, the 
big rip singularity can be fully resolved in the framework 
of loop quantum cosmology47. Big rip can also be avoi-
ded at the classical level in a particular class of models in 
which potential has maximum. In this case, the field rises 
to the maximum of the potential and ultimately settles  
on top of the potential to give rise to de-Sitter like  
behaviour. 
 For a viable cosmic history, the phantom energy den-
sity similar to the case of rolling tachyon should be sub-
dominant at early epochs. The field then remains frozen 
till late times before its energy density becomes compa-
rable to matter energy density. Its evolution begins there-
after. Clearly, dark energy models based upon phantom 
fields belong to the category of thawing models. 

Late time evolution of dark energy 

In the preceding subsections, we have described the cos-
mological dynamics of quintessence, phantoms and roll-
ing tachyon. These scalar field models fall into two broad 
categories: (i) Tracker or freezing models in which the 
field rolls fast at early stages such that it mimics the 
background with wb = 0. At late times, w(φ) starts deviat-
ing from dust-like behaviour and becomes negative mov-
ing towards de-Sitter phase as the field rolls down its 
potential. (ii) Non-tracker or thawing models are those in 
which the field is trapped in the locking regime due to 
large Hubble damping such that w(φ) = – 1. And only at 
late times, as ρφ becomes comparable to the background 
energy density, the field begins to evolve towards larger 
values of w(φ). As demonstrated by Caldwell and 
Linder42, these models occupy narrow regions in the 
(w′ ≡ dw/d ln(a), w) plane, 

  Freezing models: 3w(1 +w) < w′ < 0.2w(1 + w) 
 
  Thawing models: 1 + w < w′ < 3(1 + w) 
 
where the upper and the lower bounds are obtained using 
analytical arguments and numerical analysis of generic 
models belonging to both the classes of models. As 
pointed out earlier (see Figure 6), combined analysis of 
different observations reveal that dark energy equation of 
state parameter lies in the narrow strip around wΛ = –1. 
The observational resolution between the two classes of 
the model which is of the order of 1 + w is therefore a 
challenge to future observations. 
 As mentioned earlier, the phantom and the tachyon 
dark energy models belong to the class of thawing models. 
In this case, we can simplify the dynamics around the 
present epoch by using the approximation that |1 + w| << 1 
and that the slope of the potential is small. The validity of 
the second approximation can be verified numerically in 
each case. In this scheme of a plausible approximation, 
one arrives at an amazing result: all the different dyna-
mical systems, thawing quintessence, phantom, tachyon 
and phantom tachyon follow a unique evolutionary track. 
The distinction between the four classes of scalar field 
systems and the distinction between different models 
within each class is an effect of higher order than |1 + w| 
(ref. 43) which certainly throws a great challenge to future 
generation experiments! Indeed, a recent examination of 
observational data including 397 Type-Ia supernovae at 
redshifts 0.015 ≤ z ≤ 1.55 has shown that evolving dark 
energy models provide a slightly better fit to the data than 
the cosmological constant48. If future data confirms this 
result then it could mean that cosmic acceleration is cur-
rently slowing down which may have important conse-
quences for dark energy model building. 

Quintessential inflation on brane: a beautiful  
model that does not work 

Quintessential inflation refers to attempts to describe  
inflation and dark energy with a single scalar field. The 
unifications of the two phases of accelerated expansion 
could be realized in the framework of Randall–Sundrum 
(RS) brane worlds45,46. In order to achieve this, the field 
potential should be flat during inflation but steep in radia-
tion and matter dominated eras such that ρφ could mimic 
the background energy density at early epochs. At late 
times, it should become flat so as to allow the current  
acceleration of universe. Since the potential does not  
exhibit minimum, the conventional reheating mechanism 
does not work in this scenario. One could employ alterna-
tive mechanisms such as reheating via gravitational parti-
cle production or instant preheating. It is not realistic to 
have a potential which changes from flat to steep and 
back to flat at late times (Figure 9). However, it is gene-
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ric to have a potential which is steep and allows to track 
the background at early epochs and gives rise to a viable 
late time cosmic evolution. 
 In case of a steep potential, the field energy density 
scales faster than radiation energy density leading to the 
commencement of radiative regime. But a steep potential 
cannot support inflation in FRW cosmology. This is pre-
cisely where the brane assisted inflation comes to our 
rescue. In RS brane world model, the Friedmann equation 
is modified to, 
 

 2 b
b

8 1 ,
3 2 B

GH ρπ ρ
λ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (106) 

 
where λB is the brane tension. The presence of quadratic 
density term in the Friedmann equation changes the dyna-
mics at early epochs in crucial manner. Consequently, the 
field experiences greater damping and rolls down its  
potential slower than it would during the conventional in-
flation. This effect is reflected in the slow-roll parameters 
which have the form, 
 

 FRW 2
1 / ,

(1 / 2 )
B

B

V
V

λε ε
λ

+=
+

 (107) 

 
 1

FRW (1 / 2 ) ,BVη η λ −= +  (108) 
 
where εFRW and ηFRW are the standard slow-roll para-
meters in absence of brane corrections. The influence of 
brane corrections becomes specially important when 
V/λB >> 1. In this case, we have, 
 
 1 1

FRW FRW( / ) , 2 ( ) ,B BV Vε ε λ η η λ− −  (109) 
 
which tells us that slow-roll (ε, η << 1) is possible when 
V/λB >> 1 even if the potential is steep (εFRW, ηFRW > 1). 
As the field rolls down its potential, the high-energy 
 
 

 
 
Figure 9. A desired form of potential for quintessential inflation. It is 
generic to have a steep potential at early times with brane corrections 
helping the slow-roll of the field. 

brane correction to Friedmann equation disappears giving 
rise to the natural exit from inflation. 
 It is possible to choose potentials suitable to quintes-
sential inflation and fine tune the model parameters such 
that the model respects nucleosynthesis constraints and 
leads to the observed late time cosmic acceleration45,46. 
However, the problem occurs on the other side. Recent 
measurements of CMB anisotropies place fairly strong 
constraints on inflationary models. The tensor to scalar 
ratio of perturbations turns out to be larger than its obser-
ved value in case of steep brane world inflation. Clearly, 
the brane world unification of inflation and dark energy is 
ruled out by observation. 

Modified theories of gravity and late time  
acceleration 

The second approach to late time acceleration is related 
to the modification of left-hand side of Einstein equations 
or the geometry of space time. It is perfectly legitimate to 
investigate the possibility of late time acceleration due to 
modification of the Einstein–Hilbert action. In the past 
few years, several schemes of large scale modifications 
have been actively investigated. Some of these modifica-
tions are inspired by fundamental theories of high-energy 
physics whereas the others are based upon phenomenol-
ogical considerations. In what follows, I shall briefly de-
scribe the modified theories of gravity and their relevance 
to cosmology. 

String curvature corrections 

It is interesting to investigate the string curvature correc-
tions to Einstein gravity amongst which the Gauss–
Bonnet correction enjoys special status49–57. These models, 
however, suffer from several problems. Most of these 
models do not include tracker like solution and those 
which do are heavily constrained by the thermal history 
of universe. For instance, the Gauss–Bonnet gravity with 
dynamical dilaton might cause transition from matter 
scaling regime to late time acceleration allowing to alle-
viate the fine tuning and coincidence problems. Let us 
consider the low energy effective action, 
 

4

2

1 (1/ 2)
16d ,

( ) ( )
m

GB

R g
GS x g

V f R

μν
μ νφ φ

π
φ φ

⎡ ⎤− ∂ ∂⎢ ⎥= − +⎢ ⎥
− −⎢ ⎥⎣ ⎦

∫ S  (110) 

 
where 2

GBR  is the Gauss–Bonnet term, 
 
 2 2 4 .GBR R R R R Rμν αβμν

μν αβμν≡ − +  (111) 
 
The dilaton potential V(φ) and its coupling to curvature 
f (φ) are given by, 
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 ( ) ( )( ) ~ e , ( ) ~ e .V fαφ μφφ φ −  (112) 
 
The cosmological dynamics of system (eq. (110)) in FRW 
background was investigated in Koivisto and Mota50, and 
Tsujikawa and Sami51. It was demonstrated that scaling 
solution can be obtained in this case provided that μ = α. 
In case μ ≠ α, the de-Sitter solution is a late time attrac-
tor. Hence, the string curvature corrections under consid-
eration can give rise to late time transition from matter 
scaling regime. Unfortunately, it is difficult to reconcile 
this model with nucleosynthesis50,51 constraint. 

DGP model 

In DGP model, gravity behaves as four dimensional at 
small distances but manifests its higher dimensional  
effects at large distances. The modified Friedmann equa-
tions on the brane lead to late time acceleration. The 
model has serious theoretical problems related to ghost 
modes and superluminal fluctuations. The combined ob-
servations on background dynamics and large angle ani-
sotropies reveal that the model performs much worse than 
ΛCDM (ref. 58). However, generalized versions of DGP 
can be ghost free and can give rise to transient accelera-
tion as well as a phantom phase59. 

f (R) theories of gravity 

On purely phenomenological grounds, one could seek a 
modification of Einstein gravity by replacing the Ricci 
scalar in Einstein–Hilbert action by f (R). The action of 
f (R) gravity is given by11, 
 

 4( ) d ,
16 m
f RS g x

Gπ
⎡ ⎤= + −⎢ ⎥⎣ ⎦∫ L  (113) 

 
The modified Einstein equations which follow from eq. 
(113) have the form, 
 

 1 8 .
2

f R f f f g GTμν μ ν μν μνπ⎛ ⎞′ ′ ′−∇ ∇ +  − =⎜ ⎟
⎝ ⎠

 (114) 

 
which are of fourth-order for a nonlinear function f (R). 
Here prime denotes the derivatives with respect to R. The 
Ricci scalar in FRW background is given by 
 

 R = 12H2 + 6 ,H   (115) 

 
which tells us that the modified eq. (114) contains  
de-Sitter space time as a vacuum solution provided that 
f (4Λ) = 2Λf ′(4Λ). The f (R) theories of gravity may  
indeed provide an alternative to dark energy. To see this, 

let us write the evolution equations which follow from eq. 
(114) in a convenient form 
 

 2 8 ,
3 R

GH
f
π ρ=
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 (116) 
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a G P
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′

 (117) 

 
where ρR and PR are energy density and pressure contri-
buted by curvature modification 
 

 3 ,
2R

Rf f HRfρ ′ − ′′= −  (118) 

 

 212 ( ) ,
2RP HRf Rf f f R f R′′ ′′ ′ ′′′= + + − +  (119) 

 
ρR and PR identically vanish in case of Einstein–Hilbert 
action, f (R) = R as it should be. As an example of f (R) 
model let us consider, f (R) = R – αn/Rn, where αn is con-
stant for given n. In case of a power law solution a(t) ~ tn, 
the effective equation of state parameter can be computed 
as 
 

 2
2 2( 2)1 1 .
3 3(2 1)( 1)R

H nw
n nH

+= − − = − +
+ +

 (120) 

 
Choosing a particular value of n, we can produce a  
desired equation of state parameter for dark energy.  
 The functional form of f (R) should satisfy certain  
requirements for the consistency of the modified theory 
of gravity. The stability of f (R) theory would be ensured 
provided that, f ′(R) > 0 and f ″(R) > 0 which means that 
graviton is not ghost and scalar degree is not tachyon. We 
can understand the stability conditions heuristically with-
out entering into their detailed investigations. From evo-
lution equations (eqs (116) and (117), we see that the 
effective gravitational constant Geff = G/f′ which should 
be positive or f ′ > 0 in order to avoid the pathological 
situation. As for the second condition, V. Faraoni60  
has given an interesting interpretation: let us consider  
the opposite case when f ″ < 0 which means that 

2
eff / 0.G f G f′ ′′ ′= − >  This implies that gravitational 

constant increases for increasing value of R making the 
gravity stronger. In view of Einstein equations, it leads to 
yet larger value of curvature and so on which ultimately 
leads to a catastrophic situation. Thus we need f ″ to be 
positive to avoid the catastrophe. 
 Let us note that f (R) gravity theories apart from a spin 
two object necessarily contain a scalar degree of freedom. 
Taking trace of eq. (114) gives the evolution equation for 
the scalar degree of freedom, 
 

 1 8(2 ) .
3 3

Gf f f R Tπ′ ′ ′ = − +  (121) 
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It should be noticed that eq. (121) reduces to an algebraic 
relation in case of Einstein gravity; in general f ′ has dy-
namics. It is convenient to define scalar function φ as, 
 
 φ ≡ f ′ – 1, (122) 
 
which is expressed through Ricci scalar once f (R) is 
specified. We can write the trace equation (eq. (121)) in 
the terms of V and T as 
 

 d 8 .
d 3
V G Tπφ
φ

 = +  (123) 

 
which is a Klein–Gordon equation in presence of a deri-
ving term. Thus φ is indeed a scalar degree of freedom 
which controls the curvature of space time.  
 The effective potential can be evaluated using the fol-
lowing relation 
 

 d d d 1 (2 ) .
d d d 3
V V f f R f
R R

φ
φ

′ ′′= = −  (124) 

 
Models which satisfy the stability conditions belong to 
two categories: (i) Either they are not distinguishable 
from ΛCDM or are not viable cosmologically. (ii) Models 
with disappearing cosmological constant: in these mod-
els, f (R) → 0 for R → 0 and they give rise to cosmologi-
cal constant in regions of high density and differ from the 
latter otherwise. In principal, these models can be distin-
guished from cosmological constant. Models belonging to 
the second category were proposed by Hu–Sawicki61 and 
Starobinsky62 (see also ref. 63 on the similar theme). The 
functional form of f (R) in Starobinsky parametrization is 
given by, 
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0 2
0
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n

Rf R R R
R

λ
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 (125) 

 
Here n and λ are positive. And R0 is of the order of pre-
sently observed cosmological constant, Λ = 8π Gρvac. The 
model satisfies the stability conditions quoted above.  
 In the Starobinsky model, the scalar field φ, in the ab-
sence of matter, is given by 
 

 2

2
0

1
0

2( ) .
(1 )nR

R

n RR
R

λφ
+

= −
+

 (126) 

 
Notice that R → ∞ for φ → 0. For a viable late time cos-
mology, the field should be evolving near the minimum 
of the effective potential. The finite time singularity  
inherent in the class of models under consideration se-
verely constrains dynamics of the field. 

The curvature singularity and fine tuning of parameters: 
The effective potential has minimum which depends upon 
n and λ. For generic values of the parameters, the mini-
mum of the potential is close to φ = 0 (Figure 10) corre-
sponding to infinitely large curvature. Thus while the 
field is evolving towards minimum, it can easily oscillate 
to a singular point64,65. However, depending upon the 
values of parameters, we can choose a finite range of ini-
tial conditions for which scalar field φ can evolve to the 
minimum of the potential without hitting the singularity. 
We find that the range of initial conditions allowed for 
the evolution of φ to the minimum without hitting singu-
larity shrinks as the numerical values of parameters n and 
λ increase. In the presence of matter, the minimum of the 
effective potential moves towards the origin. In case of 
the compact objects such as neutron stars, the minimum 
is extremely near the origin and the singularity problem 
becomes really acute65,66. 
 
Avoiding singularity with higher curvature corrections: 
We know that in case of large curvature, the quantum  
effects become important leading to higher curvature cor-
rections. Keeping this in mind, let us consider the modifi-
cation of Starobinsky’s model67–69, 
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then φ becomes 
 

 2

2
0

1
0

2( ) 2 .
(1 )nR

R

R nR
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λφ α
+

⎡ ⎤
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 (128) 

 
In case |R| is large, the first term which comes from αR2 
dominates. In this case, the curvature singularity, R = ±∞ 
corresponds to φ = ±∞. Hence, in this modification, the 
minimum of the effective potential is separated from the 
curvature singularity by the infinite distance in the φ, 
V(φ) plane. Though the introduction of R2 term formally 
allows to avoid the singularity but cannot alleviate the 
 
 

 
 
Figure 10. Plot of effective potential for n = 2 and λ = 1.2. The red 
spot marks the initial condition for evolution. 
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fine tuning problem as the minimum of the effective  
potential should be near the in generic cases. As for the 
compact objects, Babichev and Langlois70 (see ref. 71 
also on the similar theme) have argued that neutron stars 
can be rescued from singularity if a realistic equation of 
state for these objects is used though the numerical simu-
lation is yet challenging for densities of the order of  
nuclear matter density. The problem deserves further  
investigation. 
 In scenarios of large scale modification of gravity, one 
should worry about the local gravity constraints. The 
f (R) theories are related to the class of scalar tensor theo-
ries corresponding the Brans–Dicke parameter ω = 0 or 
the PPN parameter γ = (1 + ω)/(2 + ω) = 1/2 unlike GR 
where γ = 1 consistent with observation (|γ − 1| é 2.3 × 
10–5). This conclusion can be escaped by invoking the so-
called chameleon mechanism72. In case, the scalar degree 
of freedom is coupled to matter, the effective mass of the 
field depends upon the matter density which can allow to 
avoid the conflict with solar physics constraints. How-
ever, the problem of singularity in these models is genu-
ine and should be addressed. 

Summary 

I have given a pedagogical exposition of physics of late 
time cosmic acceleration. Most of that part of the review 
should be accessible to a graduate student. The discussion 
of Newtonian cosmology is comprehensive and reviews 
the efforts to put the formalism of Newtonian cosmology 
on rigorous foundations in its domain of validity. Heuris-
tic discussion on the introduction of cosmological con-
stant and pressure corrections in evolution equations is 
included. The underlying idea leading to late time cosmic 
acceleration is explained without the use of general the-
ory of relativity. The basic features of cosmological  
dynamics in presence of cosmological constant is pre-
sented in a simple and elegant fashion making it accessi-
ble to non-experts. The review also gives the glimpses of 
relativistic cosmology, contains important notes on the 
dynamics of dark energy and discusses underlying fea-
tures of cosmological dynamics of a variety of scalar 
fields including quintessence, rolling tachyon and phan-
tom. Special emphasis is put on the cosmic viability  
of these models; the cosmological relevance of scaling 
solutions is briefly explained. The review ends with a 
discussion on modified theories of gravity as possible  
alternatives to dark energy. The treatment is simple but 
conveys the successes and problems of cosmology in the 
framework of modified theories of gravity. Basic features 
of f (R) cosmology are explained avoiding the cumber-
some mathematical expressions. The latest developments 
of f (R) theories with disappearing cosmological constant 
are highlighted. The problem of singularities in these 
models and their possible resolution are discussed. I hope 

the review would be helpful to beginners and will also be 
of interest to experts. 
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