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This review on dark energy is intended for a wider
audience, beginners as well as experts. It contains
important notes on various aspects of dark energy and
its alternatives. The section on Newtonian cosmology
followed by heuristic arguments to capture the pre-
ssur e effects allows us to discuss the basic features of
physics of cosmic acceleration without actually resort-
ing to the framework of the general theory of relati-
vity. The brief discussion on observational aspects of
dark energy is followed by a detailed exposition of
underlying features of scalar field dynamics relevant
to cosmology. The review includes pedagogical presen-
tation of generic features of models of dark energy
and its possible alter natives.
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I ntroduction

THE 20th century has witnessed remarkable developments
in the field of cosmology. The observation of redshift of
light emitted by distant objects and the discovery of
microwave background in 1965 have revolutionized our
thinking about the universe. The Hot Big Bang model
then received the status of the standard model of the uni-
verse. However, in spite of the theoretical and observa-
tional successes, cosmology remained confined to a rather
narrow class of scientists; others considered it as the part
of a respectable philosophy of science. Cosmology wit-
nessed the first revolution in 1980 with the invent of
cosmological inflation, making it acceptable to the larger
community of physicists. Since then, it has been going
hand-in-hand with high-energy physics. The scenario en-
visages that the universe has gone through a phase of fast
accelerated expansion at early epochs. Inflation is a para-
digm which can resolve some of the in-built inconsistencies
of the Hot Big Bang model and provides a mechanism for
generation of primordial fluctuations needed to seed the
structure we see in the universe today. In the past two
decades, observations have repeatedly confirmed the pre-
dictions of inflation. However, its implementation is ad
hoc and requires support from a fundamental theory of
high-energy physics. As inflation takes place around the
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Planck epoch, the needle of hope points towards string
theory — a consistent theory of quantum gravity.

The second revolution cosmology witnessed in 1998, is
related to late time cosmic acceleration'. The observa-
tions of high redshift supernovae reveal that the universe
is accelerating at present. The phenomenon is indirectly
supported by data of complimentary nature such as cos-
mic microwave background (CMB), large-scale structure,
baryon acoustic oscillation and weak lensing. It is inter-
esting that the thermal history of our universe is sand-
wiched between two phases of accelerated expansion. In
the Newtonian language, cosmic repulsion can be real-
ized by supplementing the Newtonian force by a repul-
sive term on phenomenological grounds. The rigorous
justification of the phenomenon can only be provided in
the framework of general theory of relativity (see ref. 3
for early attempts in this direction). Late time accelera-
tion can be fuelled either by an exotic fluid with large
negative pressure, dubbed the dark energy*'® or by modi-
fying the gravity itself'!. The simplest candidate of dark
energy is provided by the cosmological constant A,
though there are difficult theoretical issues associated
with it'>'*, Its small numerical value leads to a fine tun-
ing problem and we do not understand why it becomes
important today a la coincidence problem.

Scalar fields provide an interesting alternative to cos-
mological constant'®'”. To this effect, cosmological dy-
namics of a variety of scalar fields has been investigated
in the literature (see Copeland et al.® for details). They
can mimic cosmological constant-like behaviour at late
times and can provide a viable cosmological dynamics at
early epochs. Scalar-field models with generic features
are capable of alleviating the fine-tuning and coincidence
problems. As for the observation, at present, it is abso-
lutely consistent with A, but at the same time, a large
number of scalar-field models are also permitted. Future
data should allow to narrow down the class of permissible
models of dark energy.

As an alternative to dark energy, the large-scale modi-
fications of gravity could account for the current accel-
eration of the universe. We know that gravity is modified
at short distance and there is no guarantee that it would
not suffer any correction at large scales, where it is never
verified directly. Large-scale modifications might arise
from extra-dimensional effects or can be inspired by fun-
damental theories. They can also be motivated by phe-
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nomenological considerations such as f(R) theories of
gravity. However, any large-scale modification of gravity
should reconcile with local physics constraints and
should have potential of being distinguished from the
cosmological constant. To the best of our knowledge, all
the schemes of large-scale modification, at present, are
plagued with some other problems.

The review is organized as follows: After introduction
and a brief background, I present cosmology in Newto-
nian framework titled ‘The homogeneous and isotropic
Newtonian cosmology’ and mention efforts to put it on
the rigorous foundations in the domain of its validity.
Next, I titled ‘Beyond Newtonian physics: pressure cor-
rections’ have put forward heuristic arguments to incor-
porate A, in particular and pressure corrections, in
general, in the evolution equations and describe the broad
features of cosmological dynamics in presence of cosmo-
logical constant. Then a short introduction to relativistic
cosmology is provided and issues associated with cosmo-
logical constant are discussed. After a brief subsection on
observational aspects of cosmic acceleration, I will pro-
ceed to highlight the generic features of scalar field dy-
namics relevant to cosmology and mention the current
observational status of dynamics of dark energy. In the
last section before summary, I present a discussion on the
current problems of alternatives to dark energy.

Last but not least, a suggestion for the follow-up of this
review is in order. At present, there exist, a number of
excellent reviews on dark energy’'® and cosmological
constant'>'*, which focus on different aspects of the sub-
ject. Four recent and interesting reviews’ '’ which try to
address the theoretical and observational aspects of late-
time cosmic acceleration are highly recommended.
Humility does not allow me to mention that Copeland et
al.® is the most comprehensive theoretical review on dark
energy with pedagogical exposition.

The smooth expanding univer se

The universe is clumpy at small scales and consists of a
rich structure of galaxies, local groups of galaxies, clusters
of galaxies, super-clusters and voids. These structures
typically range from kiloparsecs to 100 megaparsecs. The
study of large-scale structures in the universe shows no
evidence of new structures at scales larger than 100
megaparsecs. The universe appears smooth at such scales,
which leads to the conclusion that it is homogeneous and
isotropic at large scales, which serves as one of the fun-
damental assumptions in cosmology known as cosmo-
logical principle'®. Homogeneity tells us that the universe
looks the same when observed from any point, whereas
isotropy indicates that it looks the same in any direction.
In general, these are two independent requirements. How-
ever, isotropy at each point is a stronger assumption
which implies homogeneity also. The cosmological prin-
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ciple presents an idealized picture of the universe which
allows us to understand the background evolution. The
departure from smoothness can be taken into account
through perturbations around the smooth background.
Observations confirm the presence of tiny fluctuations
from smoothness in the early universe. According to
modern cosmology, these small perturbations via gravita-
tional instability are believed to have grown into the
structures we see today in the universe'” >’

One of the most remarkable discoveries in cosmology
includes the expansion of the universe and its beginning
from the Big Bang. The analysis of radiation spectrum
emitted from distant galaxies shows that wavelengths of
spectral lines are larger than the actually emitted ones;
the phenomenon is known as redshift of light. Redshift is
quantified by the symbol z defined as z= (Aop — Aem)/Aem-
According to the Doppler effect, the wavelength of light
emitted by a source receding from the observer appears
shifted towards the red end of the spectrum and the red-
shift is related to the velocity of recession V as Z = Vv/C for
v << c. In the beginning of the last century, astronomers
could measure the distances to a number of distant gala-
xies. Hubble carried out investigations of recession velo-
cities and plotted them against the distances to galaxies.
He concluded in 1929 that there is a linear relation bet-
ween recession velocity of the galaxies and the distance
to them — the so called Hubble law.

The observational conclusion that the universe expands
is based upon the redshift of radiation emitted by distant
galaxies. Can we have another explanation for the red-
shift? It might look surprising that photons from larger
distances emitted from galaxies reach us redshifted due to
the recession of galaxies and nothing else happens to
them. They travel through the intergalactic medium and
could be absorbed by matter present there and then emit-
ted, losing part of their energy in this process and thereby
leading to their redshift without resorting to expansion of
the universe. This apprehension can be refuted by a sim-
ple argument. As for the absorption, the underlying pro-
cess is related to the scattering of photons by the particles
of the intergalactic medium. If this is true, the source
should have appeared blurred, which is never observed.
Other efforts assuming the exotic interactions of photons
could not account for the observed redshift. Thus the only
viable explanation of the phenomenon is provided by the
expansion of universe®.

If we imagine moving backward in time, the universe
was smaller in size, the temperature was higher and there
was an epoch when the universe was vanishingly small
with infinitely large energy density and temperature — the
beginning of the universe dubbed as the Big Bang. Matter
was thrown away with tremendous velocity; since then,
the universe is expanding and cooling. At early times, it
was extremely hot and consisted of a hot plasma of ele-
mentary particles. There were no atoms and no nuclei.
Roughly speaking, at temperatures higher than the bind-
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ing energy of hydrogen atom, the photons were freely
scattering on electrons and atoms could not form. As the
universe cooled below the temperature characterized by
the binding energy of hydrogen atom, the electrons com-
bined with the protons to form hydrogen atoms leading to
the decoupling of radiation from matter. This was an
important epoch in the history of the universe, known as
recombination. The decoupled radiation since then is just
expanding with the expanding universe and cooling. The
discovery of microwave background, the relic of the Big
Bang in 1965 confirms the hypothesis of Hot Big Bang.

The homogeneous and isotropic Newtonian
cosmology

Newtonian theory of gravitation allows us to understand
the expansion of a homogeneous, isotropic universe in a
simple way. The Newtonian description is valid provided
the matter filling the universe is non-relativistic and
scales associated with the problem are much smaller than
the Hubble radius. For instance, at early epochs, the uni-
verse was hot, dominated by radiation. Hence the early
universe, strictly speaking, should be treated using rela-
tivistic theory. The general theory effects are also crucial
at super Hubble scales. Despite its limitations, Newtonian
cosmology provides a simple and elegant way of under-
standing the expansion of the universe'****"**,

Hubble law as a consequence of homogeneity
and isotropy

Using the Newtonian notions of physics, let us show that
the Hubble law is a natural consequence of homogeneity
and isotropy. Let us choose a coordinate system with ori-
gin O, such that matter is at rest there and let us observe
the motion of matter around us from this coordinate sys-
tem. The velocity field, i.e. the velocity of matter at each
point p around us at an arbitrary time, depends upon the
radius vector r and time t. We should now look for the
most general velocity field in a homogeneous and iso-
tropic universe. Let us assume another observer located at
point O" with radius vector ro and moving with velocity
V(ro) with respect to the observer O. If we denote the
velocity of point p relative to O and O’ at time t by v(rp)
and V'(r,), we have,

rl

L=yl (1)

Vi(ry) =v(rp) = v(re), )

where I and r;) denote the radius vectors of point p with
respect to O and O’ respectively. The cosmological prin-
ciple tells us that the velocity field should have the same
functional form at any point,
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V(rp) =Vv(ry) = V(i) 3)

which clearly implies that the velocity field is a linear
function of its argument r,

v(r, t)y=T(r, @

where T is a 3 X 3 matrix. The matrix can always be dia-
gonalized by choosing a suitable coordinate system. Iso-
tropy then reduces it to Kronecker symbol (Tij = H(t)4))
leading to

v(r, t)=H(®r, %)

where H is known as the Hubble parameter. In general, a
velocity field can always be decomposed into a rotational
part, inhomogeneous part and isotropic part at each point.
It is not surprising then that the homogeneous and iso-
tropic velocity field has the form given in eq. (5), known
as the Hubble law.

It can easily be verified that the Hubble law holds at
any point. If we move from O to O’, we can write

V/(rp)=Hr, —Hro =H(br,. 6)

The Hubble law gives the most general form of velocity
field permissible by the homogeneity and isotropy of
space.

Hubble law tells us how the distance between any two
points in space changes with time provided we know the
expansion rate given by H(t),

r(t) =xed Oty =r(t=0) (7

The law of expansion depends upon how the Hubble para-
meter H varies with time. Equation (7) shows how dis-
tances in a homogeneous and isotropic universe scale
with the scale factor a(t),

a(t) = GhHma t)= g, (®)

r(t) = a(t)x. 9)

Complete information about the dynamics of a homo-
geneous and isotropic universe is contained in the scale
factor; we thus need the evolution equation to determine
a(t). In case H is independent of time, we have an expo-
nentially expanding universe dubbed de-Sitter space. In
what follows I shall confirm that constant Hubble rate is
allowed in relativistic cosmology provided the energy
density of matter in the universe is constant. It is believed
that the universe has passed through an exponentially
expanding phase known as inflation at early times.
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According to the Hubble law, in a homogeneous and
isotropic universe, all the material particles move away
radially from the observer located at any point in the uni-
verse. This motion is refereed to as Hubble flow. Indeed,
any freely moving particle in such a background would
ultimately follow the Hubble flow. Motion over and
above the Hubble flow is called peculiar motion, which
can only arise in a perturbed universe. It often proves
convenient to change a coordinate system dubbed comov-
ing, which expands with the expanding universe. Matter
which follows the Hubble flow will be at rest in the co-
moving coordinate system, i.e. matter filling a homo-
geneous, isotropic universe is at rest with respect to the
comoving observer. Both the frames are physically
equivalent. Let us clarify that the universe does not
appear homogeneous and isotropic to any observer; for
instance, if an observer is moving with a large velocity,
say, towards a particular galaxy, the universe looks dif-
ferent to him/her. A physical coordinate system is a sys-
tem in which matter is at rest at the origin and moves
away radially at other points. The radius vector r of any
point in this system called physical, changes with time,
whereas its counterpart X in the comoving system is con-
stant. This means that physical distance between any two
points in the expanding universe is given by the comov-
ing distance multiplied by a factor that depends upon
time, which is precisely expressed by eq. (7) or equiva-
lently by eq. (9).

Evolution equations

I now turn to the evolution equation for the scale factor.
Thanks to isotropy, we can employ spherical symmetry to
derive the evolution equation. At a given time t called the
cosmic time, let us consider a sphere centred at O with
radius r(t). Let p,(t) be the density of matter in the homo-
geneous, isotropic space referred to as background space
hereafter. We assume that the net gravitational force on a
particle of mass m situated on the surface of the sphere
due to matter outside the sphere is zero, which means
that matter inside the sphere alone can influence the

Figure 1. Particle of mass m on the surface of a sphere of radius r(t)
in an expanding universe with uniform matter density.
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motion of the particle. The total energy of the particle on
the surface of the sphere (Figure 1) at any time is con-
stant given by the expression®,

1 ) 4r 2
=—m-——mGp,r-.
) 3 O

Erot (10)

This equation can be cast in the following convenient
form,

e =[fO) 87

r(t) 3

which readily translates into an evolution equation for
a(t) (see eq. (9)) known as the Friedmann equation,

2 ETot

G
O (1) + —

, (1

. \2
sz[aj Sopm-K, k=2Em (1
a 3 a

x*’m

where K can be zero, negative or positive depending on
how kinetic energy compares with the potential energy.

In order to solve the evolution equation for a(t), we
need to know how matter density o,(t) changes with time,
i.e. we need the conservation equation in the expanding
universe. For a non-relativistic fluid, the continuity equa-
tion that gives us the evolution of matter density of the
fluid is,

9P, (1)
ot

+(V-p,V) = 0. (13)

Remembering that the matter density of the background
fluid is independent of the coordinates and fluid velocity
is given by the Hubble law (i.e. eq. (6)), we transform the
continuity equation to have the usual form,

M+3Hpb:0, (14)
ot
which formally integrates to,
3 3
Py (1) =p§,°)(a) : (15)

where the subscript ‘0’ denotes the quantities at the pre-
sent epoch. The evolution of matter density of nonrelati-
vistic fluid has a simple meaning that the mass of the
fluid in a comoving volume remains constant.

Though eq. (12) formally resembles the evolution
equation of relativistic cosmology, its derivation presen-
ted above is defective. The expression for the potential
energy is written with an assumption that gravitational
potential can be chosen as zero at infinity, which is not
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true in an infinite universe. Since the mass density py, is
constant in space, the total mass of universe diverges as
r3. As a result, the potential —47[G,0br2/3 cannot be nor-
malized to zero at r = oo. One could try to circumvent the
problem by assuming that p, vanishes for a given large
value of r, but it would conflict with the underlying as-
sumption of homogeneity. Therefore, conservation of en-
ergy is difficult to understand in an infinite universe with
uniform matter density.

We can also derive the evolution equations using the
Newtonian force law'®. The force on the unit mass situ-
ated on the surface of a homogeneous sphere with radius
r is given by

4rG

F=—"—nr. (16)
3
The Euler’s equation
a—v+(v~V)v:—v—Pb+F 17
ot Oy
in a homogeneous isotropic background simplifies to
F=(H+H%r, (18)

where F is the force per unit mass on the fluid element
given by eq. (16). We have used the fact that pressure
gradients are absent in a homogeneous, isotropic back-
ground and the velocity field is given by the Hubble law.
It should also be noted that the pressure P, =0 for the
non-relativistic background fluid under consideration.
Using eqs (16) and (18), we obtain the equation for
acceleration,

1d’a_ 4G
aqz = 3 2O, (19)
which could also be obtained directly from eq. (16).
Equation (19) can easily be integrated to give the Fried-
mann equation. Indeed, by multiplying the above equa-
tion by a and using the evolution of mass density allows
us to write

877G K
H? =" p, 0, (20)
3 a
(0)
Kzag(g”ipb—HgJ. Q1)

The above derivation is also problematic as it assumes
that the mass outside the sphere, used while writing eq.
(16), can be neglected, which is not true for an infinite
universe with constant mass density.
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The problem can be circumvented using the geometric
reformulation of Newtonian gravity in the language of
Cartan. According to Cartan’s formulation, orbits of par-
ticles are assumed to be the geodesics of an affine space
and gravity is then described by the curvature of the
affine connection (see Tipler’ and references therein).
According to Tipler’®, no pathology in cosmology associ-
ated with Newton’s force law then occurs and the evolu-
tion equations of Newtonian cosmology,

_ 887G K

2

H Tﬂb(t)—?, (22)
(0)

Ksa&(g”ipb—Hé} (3)

1d’a  42G

L X)) 24

a di? 3 Pp (1) (24)

900 4314, =0, (25)

ot

can be put on rigorous foundations. Equations (22), (24),
and (25) are identical to the evolution equations of Fried-
mann cosmology for non-relativistic fluid filling the
universe. Whether or not one adopts the formulation pre-
sented in Tipler’’, Newtonian cosmology is nevertheless
elegant and simple.

Let us point out an important feature of Newtonian
cosmology. We note that the expression of K/a’ remains
unchanged under the scale transformation a(t) — Ca(t), C
being constant. As a result, the evolution equations (i.e.
eqgs (22) and (24)) also respect the scale-invariance. This
invariance is a characteristic of specially flat Friedmann
cosmology. The Newtonian cosmology can mimic all
three topologies of relativistic cosmology corresponding
to K=0, =1, in spite of the fact that the underlying
geometry in Newtonian cosmology is Euclidean. Let us
note that the scale factor in Newtonian cosmology can
always be normalized to a convenient value at the present
epoch. This is related to a simple fact that the Friedmann
equation (eq. (22)) does not change if we re-scale the
scale factor, which leaves the normalization of a arbi-
trary. The often used normalization fixes the scale factor
a(t) = 1 at the present epoch, i.e. 8)= 1. In case of relati-
vistic cosmology, the latter can only be done in the case
of K=0, whereas in the case of K=zx1, the numerical
value of the scale factor a, depends upon the matter con-
tent of the universe.

The second important feature of Newtonian cosmology
is that it leads to an evolving universe. Indeed, we could
ask for a static solution given by a(t) and &(t)= 0, which
is permitted by the Friedmann equation (eq. (22)) but not
allowed by the equation for acceleration (eq. (24)). It is
remarkable that Newtonian cosmology gives rise to an
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evolving universe. It is an irony that the discovery of
expansion of the universe had to wait for the general the-
ory of relativity. This is related to the commonly held
perception of static universe, which was prevalent before
Friedmann discovered the non-static cosmological solu-
tion of Einstein equations. So much so that Einstein him-
self did not believe in the Friedmann solution in the
beginning and tried to reconcile his theory with the static
universe by introducing cosmological constant, which he
later withdrew.

The past, future and how old are we?

The general features of solutions of the evolution equa-
tions can be understood without actually solving them.
What can we say about the past and the fate of universe?
The equation for acceleration tells us that &< 0 for stan-
dard form of matter. This means that a(t) as a function of
time is concave downward. We need input regarding a at
present to make important conclusions about the past.
Observation tells us that &(t) >0 at present. Thus a(t)
monotonously decreases as t runs backward. It is there-
fore clear that there was an epoch in the history of the
universe when a(t) vanishes identically. Without the loss
of generality, we can take t = 0 corresponding to a(t) = 0.

As for the fate of the universe, the problem is similar
to that of escape velocity, namely if K> 0, the kinetic
energy is less than the potential energy. In this case a(t)
would increase to a maximum value where a(t) =0, it
would start decreasing thereafter till it vanishes and the
universe ends itself in a big crunch. In case K <0, the
scale factor would go on increasing forever; K = 0 repre-
sents the critical case. Three different possibilities, K =0,
K>0 or K<0 correspond to critical, closed and open
universe respectively. We should emphasize that the fate
of the universe also crucially depends upon the nature of
matter filling the universe. In some case, the universe
may end itself in a singular state or the cosmic doomsday.

Which of the three possibilities is realized in nature?
To answer this question, let us rewrite eq. (12) in a con-
venient form,

K P (D)
Q —1=—,Q = s
b(t) (aH )2 b(t) ,Oc (t)

(26)

where the critical density is defined as, p.(t) =3H*(t)/
87G. Specializing eq. (26) to the present epoch, we find
that,

Qg >1 (,ot(,o) > péo)) = K >0 — closed universe,
Qg =1 (péo) = ,oc(o)) = K =0 — critical universe,

Qg <1 (pt(,o) < péo)) = K <0 — open universe.
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where the superscript ‘0’ designates the corresponding
physical quantities at the present epoch. Since we know
the observed value of péo), one of the three types of uni-
verse we live in, depends upon how matter density in the
universe compares with '), Observations on CMB
indicate that the universe is critical to a good accuracy or
K = 0, which is consistent with the inflationary para-
digm.

Let us come to the solution of the Newtonian cosmo-
logy in case of K = 0. Substituting p,(t) from eq. (15) in
eq. (22), we find that, a’ ~a’', which easily integrates
giving rise to

2/3
a(t) =(t] , (27)
tO
2
0 (1) = ¥ [tfj , (28)
21
H(t) =it (29)

The above solution is known as Einstein—de-Sitter solu-
tion. We can estimate the age of universe using eq. (29),

to (30)

T3 H,
Interestingly, if gravity were absent, the universe would

expand with constant rate given by H,. Using the Hubble
law we would then find,

(€2))

which is the maximum limit for the age of the universe in
the Hot Big Bang model (2H51/3 <ty<H™"). The pre-
sence of standard matter always leads to deceleration,
thereby leading to smaller time taken to reach the present
Hubble rate of expansion. The presence of cosmological
constant or any other exotic form of matter can crucially
alter this conclusion.

Cosmological constant a la Hooke' s law

We have seen that Newtonian cosmology gives rise to the
evolving universe but for the historical reasons, cosmo-
logy had to wait for the general theory of relativity to dis-
cover it. The fact that Newtonian cosmology leads to
non-stationary solution was known before the general
theory was discovered, but it could receive attention as it
conflicted with the perception of the static universe. At-
tempts were then made to modify Newtonian gravity to
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reconcile it with the static universe. Clearly, the modifi-
cation should be such that it becomes effective at large
scales, leaving the local physics unchanged. Looking at
the Newton’s force law (eq. (16)), it is not difficult to
guess that a static solution is possible provided that we
add a repulsive part proportional to the radius vector r in
eq. (16). Newton’s law of gravitation should therefore be
supplemented by linear force law'***"

3 4G 1

F= r+—Ar, 32
3 Lo 3 (32)

where A is known as the cosmological constant which is
positive in the present context. It is interesting to note
that there are only two central forces, namely the inverse
square force and the linear force, which give rise to stable
circular orbits.

Our discussion of cosmological constant is heuristic
and the motivation here is to incorporate the repulsive
effect in the evolution equations. We rewrite the modified
force law (eq. (32)) as an equation of acceleration using
the comoving coordinates,

1d’a__ 47G A

= )+, 33
a di? 3 A0+ (33)

which shows that a positive A term contributes to accel-
eration, as it should. The integrated form of eq. (33) is
given by,

H 3 25 (1) 23 (34)
where the integration constant K can be formally written
again through physical quantities defined at the present
epoch. The modified force law (eq. (32)) was proposed
much before Einstein’s general theory of relativity by
Neumann®' and Seeliger’® in 1895-96.

Let us note that adding the cosmological constant to
Newtonian force is equivalent to adding a constant matter
density pp = A/87G to the background matter density o,
which does not to go well with the continuity equation
(eq. (14)). Since the acceleration equation also gets modi-
fied in the presence of A, we should check whether the
modified evolution equations allow this possibility. If we
differentiate eq. (34) with respect to time and respect the
modified acceleration equation, we find that constant
matter density is permissible in the expanding universe.
As for the continuity eq. (14), it is valid for a perfect non-
relativistic fluid. The cosmological constant does not
belong to this category; the pressure corresponding to
constant energy density is not zero. The continuity equa-
tion should take the note of pressure and get appropri-
ately modified. As pointed out earlier, the present
discussion of cosmological constant here is qualitative.
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Rigorously speaking, we are trying to get the right thing
in the wrong place! I shall come back to this point after I
incorporating the pressure corrections in the evolution
equations.

The evolution equations, i.e. eqs (34) and (33) admit a
static solution (a= const=a,) in case of K> 0. Static
Einstein universe (& =0 and & = 0) is possible provided
that A has definite numerical value

A=A, =47Gp". (35)
We shall observe after a short while that the static Ein-
stein universe is unstable under small fluctuations.

The qualitative features of solutions of the evolution
equations can be understood without actually solving
them. Equation (33) can be thought of as an equation of a

point particle in one dimension*,

. 0V
a= -, 36
o (36)
moving in potential field
47Gp,a>  Aa’
V(a)=- erT , 37

where I have used the fact that p, ~a>. The Hubble
equation acquires the form of the total energy of the
mechanical particle

2

E =a7+V(a), (38)

where E = —K/2. In order to make the mechanical analogy
transparent, let us compute the minimum of the kinetic
energy. If the minimum exists, it should obviously corre-
spond to the numerical value of the scale factor that gives
rise to the maximum of the effective potential V(a). It is
easy to see that the kinetic energy is minimum if a = a,

a, = (A/A)'3, (39)
)
(E;J :%(AMAW—K), (40)

where A= 47sz{,°>a3. Note that V(a) is maximum at
a=a,. From eq. (40), we infer that the kinetic energy of
the system at the top of the potential is,

) 3
L5 if aza =" (41)
2 ) A

In case A = A, the system barely makes to the hump of
the potential (d=0) corresponding to a,=a,, where

893



SPECIAL SECTION: ASTRONOMY

(8=0), as it should be (see eq. (36)); this is nothing but
the Einstein’s static solution. We can now provide a
qualitative description of the solutions of the evolution
equations. For A <A, the kinetic energy is formally
negative for a = ay, which means that it vanishes before
the particle reaches the maximum of the potential. In Fig-
ure 2 we have displayed the plot of V(a) vs the scale fac-
tor a. We show three possible configurations of interest:
(A) corresponds to motion starting from the left of the
barrier with a= 0. (B) depicts the situation in which the
potential barrier is approached beginning from the right
with a large value of the scale factor. (C) represents the
possibility of static solution.

We first analyse the case of K>0 or E<0, which
gives rise to a variety of interesting possibilities.

(1) A <A In this case, the kinetic energy is insuffi-
cient to overcome the potential barrier giving rise to the
following interesting solutions.

(a) Oscillating solution: In this case, motion starts from
a =0 with insufficient kinetic energy to reach the hump
of the potential. In this situation, the scale factor in-
creases up to a maximum value where a=0 for a<an,
marking the turning point followed by the contraction to
a=0.

(b) Bouncing universe: If the potential barrier is ap-
proached from the right side with a = oo, the scale factor
first decreases and reaches a minimum value and then
bounces to expanding phase as the kinetic energy is not
enough to overcome the barrier.

(c) Einstein static universe: This configuration corre-
sponds to the maximum of the potential with a=0 and
8=0, possible for a particular value of A obtained ear-
lier. Clearly, the static universe corresponding to a point
particle sitting on the hump of the potential, is not stable.
Small perturbations would derive it to either contracting
(a — 0) or expanding (& — oo) universe.

V(a)

Al NeB

Figure 2. Plot of the effective potential V(a) vs the scale factor a.
Configurations (A) and (B) correspond to motion of system beginning
from a=0 and a=1 respectively. (C) corresponds to static solution
unstable under small fluctuations.
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(2) A <A.: The kinetic energy is sufficient to over-
come the barrier for this choice of A. As a result, motion
first decelerates till the system reaches the top of the
potential and then slides down the hill with acceleration.
The scale factor exhibits the point of inflection at
a(t) = am < ay. If A slightly exceeds its critical value, an
interesting possibility dubbed loitering universe can be
realized. The scale first increases as it should, approaches
8, and remains nearly frozen for a substantial period
before entering the phase of acceleration. Such a scenario
has important implications for structure formation.

For K< 0 or E >0, the system always has enough kinetic
energy to surmount the barrier allowing the scale factor
to increase from a=0 to large values as time increases.
This case is similar to the one with K> 0 and A >A..

For any given value of A, the scale factor exhibits the
point of inflection at a=an= (47Gp"a; /A)">. This is
also clear from eqs (32) and (33) in which the first term is
the attractive character and dominates in the beginning
leading to deceleration. However, as the scale factor in-
creases and reaches a particular value, the repulsive term
takes over; the scale factor exhibits the point of inflection
and the expansion becomes accelerating thereafter.

Observations should tell us when deceleration changed
into acceleration. This crucially depends upon how
47[Gpt(,0) compares with A or how p, compares with
o0/2. The transition from deceleration to acceleration
should have taken place around the present epoch. Had it
happened much earlier it would have obstructed structure
formation®*. We shall come back to this point to confirm
that cosmic acceleration is indeed a recent phenomenon.

Beyond Newtonian physics. pressure corrections

The formalism of Newtonian cosmology is not applicable
to relativistic fluids. Relativistic fluids essentially have
non-zero pressure. For instance, radiation is a relativistic
fluid with pressure Py, = 0,c*/3. The cosmological con-
stant also belongs to the category of relativistic systems.
In the general theory of relativity, pressure appears on the
same footing as energy density. Here we present heuristic
arguments to capture the pressure corrections in the evo-
lution equations (see Zel’dovich and Novikov*?).

Let us consider a unit comoving volume in the expand-
ing universe and assume the expansion to be adiabatic.
The first law of thermodynamics states that

dE + Py,dV =0, (42)
where Py(t) is the pressure of the background fluid. The
first law of thermodynamics applies to any system, be it
relativistic or non-relativistic, classical or quantum —
thermodynamics is a great science.

The energy density of the fluid can always be ex-
pressed through the mass density,
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E= %”a%bc2 (43)

Substituting eq. (43) into eq. (42), we obtain the continu-
ity equation in the expanding universe,

Py +3H (pb+ng=0. (44)
C

Thus the continuity equation responds to pressure correc-
tions: 0, — p, + Py/c’. For a non-relativistic fluid, rest
energy density dominates over pressure and the second
term in the parenthesis can be neglected. For instance, for
dust, P, = 0. At early times, the universe was hot and
dominated by radiation. Hence the early universe should
be treated by relativistic theory; Newtonian description
becomes valid at late times when matter dominates. For
the sake of convenience, we shall use the unit ¢ = 1. With
this choice, relativistic mass density and energy density
are the same.

We can now present the cosmological constant as a
perfect fluid with constant energy density. The continuity
equation (eq. (44)) then implies that py =—P,. Next we
claim that the correct equation of acceleration in the case
of background fluid with energy density o, and pressure
Py is given by

a  4nG

ST (0 43R+ (45)
To verify, let us multiply eq. (45) by a:

1d 472G A

—— =———a(p,a+3Ra+—aa 46

2 dt( ’)= 3 (0 ha) 3 (46)

Using the continuity equation, we can express the term
containing pressure Py, in eq. (46) through oy, 0, and a:

**( )=

47G d A
oo )

a+a
3 oat|P? e

which can be put in the form of the Friedmann equation
in the presence of matter with non-zero pressure.

87G
3

H?=""7 b(t)_*‘*?

(48)
We again observe that pressure corrects the energy den-
sity. Positive pressure adds to deceleration, whereas
negative pressure contributes towards acceleration (see
eq. (45)). It seems completely opposite to our intuition
that a highly compressed substance explodes out with a
tremendous impact, whereas in our case the pressure acts
in the opposite direction. It is important to understand
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that our day-to-day intuition with pressure is related to
pressure force or pressure gradient. In a homogeneous
universe pressure gradients cannot exist. Pressure is a
relativistic effect and can only be understood within the
framework of general theory of relativity. Pressure gradi-
ent might appear in Newtonian framework in the inho-
mogeneous universe, but pressure can only be induced by
relativistic effects. Strictly speaking, it should not appear
in Newtonian cosmology. This applies to A also with
negative pressure which we introduced in Newtonian
cosmology by hand. Equations (44), (45) and (48) coin-
cide with the evolution equations of relativistic cosmo-
logy. Their derivation presented here is heuristic. The
rigorous treatment can only be given in the framework of
the general theory of relativity, where cosmological con-
stant appears naturally.

In order to solve the evolution equations, we need a
relation between the energy density and pressure known
as equation of state. In case of barotropic fluid, the equa-
tion of state is given by W, = Py/0,. Dust and radiation
correspond to W, = 0, 1/3 respectively. Assuming that the
universe is filled with perfect fluid with constant equa-
tion-of-state parameter W, we find from eqs (44) and (34)
in case of K=0,

Py o a—3(1+w)’ (49)
a(t) o< U (w> 1), (50)
at)yo e (w=-1). (51

In the case of radiation, W, = 1/3 and as a result g, = o, o<

a*. In contrast to the case of the dust-dominated uni-
verse, the radiation energy density decreases faster with
the expansion of the universe. The positive radiation
pressure adds to the energy density, making the gravita-
tional attraction stronger. Consequently, the Hubble
damping in the conservation equation increases, allowing
the energy density to decrease faster than dust in the
expanding universe. This can also be understood in a
slightly different way, if we assume that radiation con-
sists of photons. As the universe expands, the number
density of the photons scales as a°, as usual. But since
any length scale in the expanding universe grows propor-
tional to the scale factor, the energy of a photon, hc/A
decreases as 1/a, leading to o, ~ * and a(t) o<t It 1s
clear that radiation dominated at early epochs as py ~a >
for dust.

Let us make an important remark on the dynamics in
the early universe which was dominated by radiation (for
simplicity, we ignore here other relativistic degrees of
freedom). As p, ~ @ *, the first term on the RHS of evolu-
tion of the Hubble equation dominates over the curvature
term K/a’; obviously, cosmological constant plays no role

895



SPECIAL SECTION: ASTRONOMY

in the present case. We therefore conclude that all the
models effectively behave as the K=0 model at early
times,

a 812G g a _a(t)|322Gp” v 2
S=2 p0 S S S SRR 2, (52)
a 3 a a, 3

We next assume that radiation was in thermal equilibrium
characterized by the blackbody distribution,

p:=DbT, (53)
where b is the radiation constant. From eqs (52) and (53),

we find how temperature scales with the expansion of the
universe,

) \I/4
T=[prJ @3 (54)

b a

which on using eq. (52) tells us how early universe
cooled with time,

T-= (327[6)1/4 t,l/z.

b (55)

At t=0, both the radiation density and temperature be-
come infinitely large; all the physical quantities diverged
at that time referred to as the Big Bang. The Big Bang
singularity is not the artefact of homogeneity and isot-
ropy. It is a generic feature of any cosmological model
based upon classical general theory of relativity. Classi-
cal physics breaks down as the Big Bang is approached.
In the framework of classical general relativity, the Big
Bang is taken to be the beginning of our universe. The
universe was thus born in a violent explosion-like event,
throwing away cosmic matter and giving rise to expan-
sion of the universe. Since gravity is attractive (provided
the universe is filled with matter of non-negative pres-
sure), its roll is to decelerate the expansion. What caused
Big Bang has no satisfactory answer. The Big Bang is a
physical singularity which should be treated by quantum
gravity. The inflationary paradigm can mimic Big Bang
without singularity, but in that case, we do not know what
caused inflation. In the cosmic history, there was an ep-
och when matter took over, leading to matter-dominated
era. It turns out that it took around 10° years for radiation
energy density to equalize with energy density of matter.
The age of the universe, i.e., the time elapsed since the
Big Bang till the present epoch given by eq. (30) changes
insignificantly, if we consider the universe filled with
both radiation and dust. This is because the time taken
from the Big Bang till radiation matter equality is negli-
gibly small compared to the actual age of universe which
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is around 14 Gyr. Thus the age given by eq. (30) is a reli-
able theoretical estimate. Unfortunately, the age given by
eq. (30) falls short of the age of some old objects found in
the universe. This is one of the old problems of Hot Big
Bang model. We shall discuss its possible remedy in the
dark energy-dominated universe.

Dark energy

Equations (48) and (46) tell us that the positive cosmo-
logical constant A contributes positively to the back-
ground energy density and negatively to pressure. It can
be thought of as a perfect barotropic fluid with,

(56)

which corresponds to w, =—1. In general, we find from
eq. (45) that expansion has the character of acceleration
for large negative pressure,

é 4G

a=_T(pb+3Pb)’ (57

a>0=h <—%: Dark energy,

where we have included A in the background fluid. Thus,
we need an exotic fluid dubbed dark energy to fuel the
accelerated expansion of the universe. The various data-
sets of complimentary support the late-time acceleration
of the universe. The simplest candidate of dark energy is
provided by the cosmological constant with wy, =-1.
Observations at present do not rule out the phantom dark
energy with w<-1 corresponding to super-acceleration.
In this case the expanding solution takes the form,

at) = (t,—t)", (n=2/3(1+w)<0), (58)

(59)

where s is an integration constant. It is easy to see that
the phantom-dominated universe will end itself in a sin-
gularity in future, known as big rip or cosmic doomsday,
as t o> ts. Clearly, as t — ts, both the Hubble parameter
and the background energy density diverge™.

Age crisis and its possible resolution

Apart from the cosmic acceleration, dark energy has
important implications, in particular, in relation to the age
problem. In any cosmological model with normal form of
matter, the age of the universe falls short compared to the
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age of some known objects in the universe. Since the age
of the universe crucially depends upon the expansion his-
tory, it can serve as an important check on building in
cosmology. In order to appreciate the problem, let us first
consider the case of flat dust-dominated universe
(Q2nm = 1) in which case, as shown earlier,

21
t,=—"—. 60
°=3H, (60)

The observational uncertainty of H, gives rise to the fol-
lowing estimate,

Hy' =9.8h7" Gyr, (61)

0.64 <h<0.8 > ty=(8-10) Gyr. (62)
This model is certainly in trouble as its prediction for age
of the universe fails to meet the constraint following from
the study of ages of old stars in globular clusters®:
12 Gyr £ty < 15 Gyr. One could try to address the pro-
blem by invoking the open model with Q(O) <1. In this
case the age of universe is expected to be larger than the
flat dust-dominated universe — for less amount of matter,
it would take longer for gravitational attraction to slow
down the expansion rate to its present value. Looking at
eq. (22), it is not difficult to guess that in this case,
Hoty — 1 for Qf\ﬂ) — 0, which is a substantial improve-
ment. However, this model is not viable for the several
reasons. In particular, the study of large scale structure
and its dynamics constrain the matter density: 0.2 <
Q) < 0.3 and observations on CMB un-isotropy reveal
that the universe is critical to a good accuracy.

The age problem can be resolved in a flat universe
dominated by dark energy. Let us rewrite the Friedmann
equation in a convenient form,

a 2 80 3 a() 3(1+w)
21 =H 2 Q(O) S Q(O) “o

which allows us to write the expression of t, in the closed
form

(63)

dz
(0) (1 + 2)3 + Q([;)% (1 + Z)3(1+W) ]1/2 4

|-
- 64
b= j(1+z) (64)

where Q) is the contribution of dark matter and
(1 +2) =ay/a, z being the redshift parameter. The domi-
nant contribution to the age of the universe comes from
the matter-dominated era and we, therefore, have omitted
Q, in eq. (63). In case dark energy is the cosmological
constant (W, =—1), we get the analytical expression for
the age of the universe,
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Figure 3. Plot of age of universe vs Qy (at present epoch) for a flat
universe with matter and dark energy with constant equation-of-state
parameter W (from Frieman'’).
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For dark energy other than the cosmological constant, the
integral in eq. (64) should be computed numerically. In
Figure 3, we have plotted the age of universe vs Qg\ﬂ) for
various possibilities of dark energy, including the phan-
tom case. The age constraint can be met by flat, dark en-
ergy models provided that -2 <w < -0.5 for Q(,&) lying
between 0.2 and 0.3 (see Frieman'®). It is remarkable that
the Hot Big Bang model can be rescued by introducing
the dark energy component. Interestingly, the cosmologi-
cal constant was invoked to address the age problem
before the invention of cosmic acceleration. The observa-
tion of cosmic acceleration in 1998 was a blessing in dis-
guise for the cosmological constant.

(65)

The discovery of cosmic acceleration and its
confirmation

The direct evidence of current acceleration of the uni-
verse is related to the observation of luminosity distance
by high redshift supernovae in 1998 by two groups, inde-
pendently. The luminosity distance for critical universe
dominated by non-relativistic fluid and cosmological
constant is given by

(1+2) J‘ dz
Ho §JQQa+2) +QQ (1+2) ™

d, = (66)

Equation (66) is the expanding universe generalization of
absolute luminosity L of a source and its flux F at a dis-
tance d given by F=L/(4zd). It follows from eq. (66)
that Dy ~ Z/H, for small z and that
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d, =2(+z-(1+2"HH,", QY = (67)

d. =zl+2H;', QY =0, =1, (68)
which means that luminosity distance at high redshift is
larger in the universe dominated by cosmological con-
stant, which also holds true in general for an arbitrary
equation of state W corresponding to dark energy. There-
fore, supernovae would appear fainter in case the uni-
verse is dominated by dark energy. The luminosity
distance can be used to estimate the apparent magnitude
m of the source given its absolute magnitude M

d.
m-M =51 +25. 69
Og(Mpcj (69)

Let us consider two supernovae 1997ap at redshift
z=0.83 with m=24.3 and 1992p at z=0.026 with
M =16.08 respectively. Since the supernovae are assu-
med to be the standard candles, they have the same abso-
lute magnitude. Equation (69) then gives the following
estimate

H,d, =1.16. (70)
Then theoretical estimate for the luminosity distance is
given by

d; =0.95H,",

o =1, (71)

d =123H;", Qfy =03,Q, =07, (72)
where I have used the fact that, d; ~ z/H, for small z. The
above estimate lends a strong support to the hypothesis
that late-time universe is dominated by dark energy (see
Figure 4)°7%.

The observations related to CMB and large-scale struc-
ture (LSS) provide an independent confirmation of the
dark energy scenario. The acoustic peaks of angular
power spectrum of the CMB temperature anisotropies
contains important information. The location of the major
peak tells us that the universe is critical to a good accu-
racy, which fixes for us the cosmic energy budget. Spe-
cializing the Friedmann equation, i.e. eq. (63) to the
present epoch (a = &), we have

QY =) + Q). (73)
The contribution of radiation to total fractional energy
density QEO) is negligible at present. The study of LSS
and its evolution indicates that nearly 30% of the total
energy content is contributed by nonluminous component
of non-barionic nature with dust-like equation-of-state
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popularly known as dark matter. The missing component
which is about 70% is dark energy. The recent data on
baryon acoustic oscillation are yet another independent
probe of dark energy. The combined analysis of data of
complimentary nature demonstrates that Q. ~0.7 and
9(13) ~0.3 (see Figure 5)*. The constraint on the equa-
tion-of-state parameter w and Q) shows that w is
restricted to a narrow strip around w, =—1 (Figure 6). It
is clear from Figure 6 that the combined analysis allows
super-negative values of W corresponding to phantom
energy. Let us now confirm that the transition from de-
celeration to cosmic acceleration took place in the recent
past. Indeed, observations allow us to estimate the time of
transition from deceleration to acceleration. Let us
rewrite eq. (38) through dimensionless density parameters,

(74)

SO
2 2 a

+QAa2J.

Using eq. (74), we can find out the numerical value of
(a/ay) corresponding to the minimum of kinetic energy
(&’ /2), which precisely gives the transition from decel-
eration to acceleration,

a Q(O) 1/3 20 1/3
[J - {ng =2 :[ (OA)J 12067, (75)
aO tr A QM

Flat Models (i)

(ii)

15 (it |

#;it"**vf
By
¥
_?* @ 0,=0.,0,=1 .
(ii)

(iii) 0, =1,0,=0

]ng[HodL('A}/c]

Figure 4. Plot of luminosity distance Hodp vs redshift z for a flat
cosmological model. The black points come from the ‘Gold’ datasets
by Riess et al.”’, whereas the red points show the recent data from
HST. Three curves show the theoretical values of HodL for (i) Q (0 — =0,
Q, =1, (ii) QO =0.31, Q,=0.69 and (iii) Q?vl =1, Q,\fo (from
Choudhury and Padmanabhan”)
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Figure 5. Best-fit regions in the (Q4, Qu) plane obtained using the

CMB, Baryon Acoustic Oscillations (BAO) and supernovae data (from
Kowalski et al.*”).
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Figure 6. Constraints on the dark energy equation of w and Qy ob-
tained from CMB, BAO and supernovae observations (from Kowalski
et al.®).

for the observed values of density parameters (Qf\g) ~0.3;
Q, ~0.7). This confirms that the contribution of A to
cosmic dynamics became important at late times, such that
the cosmic acceleration is indeed a recent phenomenon.

Relativistic cosmology

In the last section I have presented heuristic arguments to
capture the pressure effects in the evolution equations.
Pressure in cosmology is a relativistic effect which can be
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consistently understood in the framework of general
theory of relativity. Einstein equations are complicated,
nonlinear equations which do admit analytical solutions
in the presence of symmetries. Homogeneity and isotropy
of the universe is an example of a generic symmetry of
space—time. The assumption of homogeneity and isotropy
forces the metric to assume the FRW form

dr?
1-Kr?

ds’ = —dt’ +a’ (t)[ +12(d6? +sin® 0d¢2)J

K=0,z%1, (76)
where a(t) is scale factor. Coordinates (r, 6, ¢) are the
comoving coordinates. A freely moving particle comes to
rest in these coordinates.

Equation (76) is purely a kinemetic statement. The
information about dynamics is contained in the scale fac-
tor a(t). The Einstein equations allow to determine the
scale factor provided the matter content of the universe is
specified. Constant K in the metric (eq. (76)) describes
the geometry of the spatial section of space-time. K =0,
*1 corresponds to spatially flat, sphere-like and hyper-
bolic geometry respectively.

The differential equation for the scale factor follows
from the Einstein equations

1

Gy =Ry = 9y R=87GT,,,

v v (77)

where G, is the Einstein tensor and R,, is the Ricci ten-
sor. The energy momentum tensor T,, takes a simple
form reminiscent of ideal perfect fluid in FRW cosmo-

logy

T/f = Diag(_pbs H)e H)s Pb) (78)
Note that pressure in the general theory of relativity
appears on the same footing as energy density. In the
FRW background, the components of G,, can easily be
computed:

e =—%(32+K), G/ =i2(2aa+ &’ +K). (79)
a a

Other components of G, are identically zero. The Ein-
stein equations then give rise to the following two inde-
pendent equations:

871G K
H? =75 Ao (80)
a 47G
i (0, +3R). (81)
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Let me remind that p, designates the total energy density
of all the fluid components present in the universe. The
continuity equation o, + 3H(0, + P,) =0 can be obtai-
ned by using eqs (80) and (81), which also follows natu-
rally from the Bianchi identity. As mentioned earlier, we
can normalize the scale factor to a convenient value at the
present epoch in case of specially flat geometry. In other
cases, it should be determined from the relation
ayHo = (| Q{)O) —1|), where QEO) defines the total energy
content of universe at the present epoch.

Let us note that the Einstein equations (eq. (77)) with
the energy momentum tensor of standard fluid with posi-
tive pressure cannot lead to accelerated expansion. The
repulsive effect can be captured either by supplementing
the energy momentum tensor (on the right-hand side of
the Einstein equations) with large negative pressure or by
modifying the geometry itself, i.e. the left-hand side of
the Einstein equations. We can ask for a consistent modi-
fication of the Einstein equations (equation of motion
should be of second order with the highest derivative
occurring linearly so that the Cauchy problem is well
posed) in four space—time dimensions within the classical
framework. Under the said conditions, the only admissi-
ble modification is provided by the cosmological con-
stant. Thus we can add a term Ag,, on the left-hand side
of eq. (77), which we can formally carry to the right-hand
side and interpret it as part of energy momentum tensor
of a perfect fluid'? (see also ref. 40 for a different
approach to cosmological constant),

1

G, =R —EgWR=87zGTW —AQ,,-

v \uv (82)

Such a modification is allowed by virtue of the Bianchi
identity. It is remarkable that the cosmological constant
does not need ad hoc assumption for its introduction; it is
always present in the Einstein equations. It could be con-
sidered as a fundamental constant of the classical general
theory of relativity at par with Newton’s constant G. It is
also interesting to note that the model based upon cosmo-
logical constant is consistent with all the observational
findings in cosmology at present. However, there are deep
theoretical problems related to the cosmological constant.

Theoretical issues associated with A

There are important theoretical issues related to the cos-
mological constant. The cosmological constant can be as-
sociated with vacuum fluctuations in the quantum field
theoretical context'>'*. Though the arguments are still at
the level of numerology, they may have far-reaching con-
sequences. Unlike the classical theory, the cosmological
constant in this scheme is no longer a free parameter of
the theory. Broadly, the line of thinking takes the follow-
ing route. The ground-state energy, dubbed zero-point
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energy or vacuum energy p.,. of a free quantum field
with spin j given by

= 3
Pyac = %(_l)zj (ZJ +l)jL5 v k2 + m2 (83)
7 27
_C07ai+n +I)Tdk A+ (84)
4’ 0 ’

is ultraviolet divergent. This contribution is related to the
ordering ambiguity of fields in the classical Lagrangian
and disappears when normal ordering is adopted. Since
this procedure of throwing out the vacuum energy is ad
hoc, one might try to cancel it by introducing the counter-
terms. The latter, however, require fine-tuning and may
be regarded as unsatisfactory. The divergence is related
to the modes of very small wavelength. As we are igno-
rant of the physics around the Planck scale, we might be
tempted to introduce a cut-off around the Planck length
L,, and associate with this a fundamental scale. Thus we
arrive at an estimate of vacuum energy p,,. ~ Mé (cor-
responding mass scale, M, ~pl%) which is away by
120 orders of magnitude from the observed value of this
quantity, which is of the order of 10** (GeV)*. The vac-
uum energy may not be felt in the laboratory, but plays an
important role in general theory of relativity through its
contribution to the energy momentum tensor as
Puvac =N /87G,

<T,uv>0 =~PvacYuv» (85)

and appears on the right-hand side of the Einstein equa-
tions.

The problem of zero-point energy is naturally resolved
by invoking supersymmetry, which has many other
remarkable features. In the supersymmetric description,
every bosonic degree of freedom has its Fermi counter-
part which contributes zero-point energy with opposite
sign compared to the bosonic degree of freedom thereby
doing away with the vacuum energy. It is in this sense
that the supersymmetric theories do not admit a non-zero
cosmological constant. However, we know that we do not
live in supersymmetric vacuum state and hence it should
be broken. For a viable supersymmetric scenario, for
instance, if it is to be relevant to hierarchy problem, the
supersymmetry breaking scale should be around Mg, =
10° GeV. We still remain away from the observed value
by many orders of magnitude. We do not know how
Planck scale or SUSY breaking scales are related to the
observed vacuum scale!

At present there is no satisfactory solution to cosmo-
logical constant problem. One might assume that there is
some way to cancel the vacuum energy. One can then
treat A as a free parameter of classical gravity similar to
Newton constant G. However, the small value of cosmo-
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logical constant leads to several puzzles including the
fine tuning and coincidence problems. The energy density
in radiation at the Planck scale is of the order of Plank
energy density pp ~ 10’* GeV* and the observed value of
the dark energy density, pp=~0.7 X pc(o) ~ 10* GeV*
which implies that py/pp ~ 107, Thus p, needs to be
fine tuned at the level of one part in 107'*° around the
Planck epoch, in order to match the current universe.
Such an extreme fine tuning is absolutely unacceptable at
theoretical grounds. Secondly, the energy density in cos-
mological constant is of the same order as matter energy
density at the present epoch. The question what causes
this coincidence has no satisfactory answer.

Efforts have recently been made to understand A
within the framework of string theory using flux compa-
ctification. String theory predicts a very complicated
landscape of about 10°* de-Sitter vacua'®. Using
Anthropic principal, we are led to believe that we live in
one of these vacua.

A novel approach to cosmological constant problem is
provided in ref. 15. The line of thinking takes following
route: in the conventional framework, the equations of
motion for matter fields are invariant under the shift of
the matter Lagrangian by a constant while gravity breaks
this symmetry. Thus, one cannot obtain a satisfactory
solution to the cosmological constant problem until the
gravity is made to respect the same symmetry. An effec-
tive action suggested by Padmanbhan in ref. 15 is explic-
itly invariant under the ‘shift symmetry’. In his approach,
the observed value of the cosmological constant should
arise from the energy fluctuations of degrees of freedom
located in the boundary of a spacetime region.

Scalar field dynamicsrelevant to cosmology

The fine tuning problem associated with cosmological
constant led to the investigation of cosmological dynam-
ics of a variety of scalar field systems such as quintes-
sence, phantoms, tachyons and Kessence'®'"*'™* (see ref.
6 for details). Scalar fields can easily mimic dark energy
at late times and posses rich dynamics in the past. We
should note that scalar fields models do not address the
cosmological constant problem, they rather provide an al-
ternative way to describe dark energy. The underlying
dynamics of these systems has been studied in great
detail in the literature. Scalar fields naturally arise in
models of high energy physics and string theory. It is
worthwhile to bring out the broad features of their dyna-
mics that make these system viable to cosmology.

Quintessence

A standard scalar field (minimally coupled to gravity)
capable of accounting for the late time cosmic accelera-
tion is termed as quintessence. Its action is given by
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S= j £~gd*x= —'[G 9“9 .0 8V¢+V(¢)Jﬁd4x.
(86)

The energy momentum tensor corresponding to this
action is given by

T,uv =a/l¢av¢_g/lv |:; gaﬁaa¢aﬂ¢+V(¢):|, 87)

which gives rise the following expression for energy den-
sity and pressure in FRW background

Po =562 V(@) B =26 -V() (88)
The Euler-Lagrangian equation
ge 06-90) _oG-0) _ (#9)
50%p 0¢
J-g =2, (90)

for the action (eq. (86)) in FRW background acquires the
form

v

¢+3H¢+H¥

0, oD

which is formally equivalent to the continuity equation
and can put in the form

Py =1} exp[— [3a+ w<¢))‘:‘} (92)

where W(¢) = P,/p,. Equation (88) tells us that for a steep
potential ¢2 >>V(¢), the equation of state parameter
approaches the stiff matter limit, W(¢) — 1 whereas
W(¢) — —1 in case of a flat potential, ¢2 << V(¢). Hence
the energy density scales as p;~a", 0<Nn<6. Let us
note that while the field rolls along the steep part of the
potential, its energy density p, scales faster than p..

From eq. (81) we find that

4>0- p, +3R <0=¢* <V(9), (93)
which means that we need nearly flat potential to account
for accelerated expansion of universe such that

2
\Y, \Y,
l U 1, L4
ViV

v <<1. (94)
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In case of field domination regime, the two conditions in
eq. (94) define the slow roll parameters which allow to
neglect the ¢ term in equation of motion for ¢. In the
present context, unlike the case of inflation, the evolution
of field begins in the matter dominated regime and even
today, the contribution of matter is not negligible. The
traditional slow roll parameters cannot be connected to
the conditions on slope and curvature of potential which
essentially requires that Hubble expansion is determined
by the field energy density alone. Thus the slow roll para-
meters are not that useful in case of late time accelera-
tion, though, eq. (94) can still be helpful.

The scalar field model aiming to describe dark energy
should possess important properties allowing it to allevi-
ate the fine tuning and coincidence problems without
interfering with the thermal history of universe. The
nucleosynthesis puts an stringent constraint on any rela-
tivistic degree of freedom over and above that of the stan-
dard model of particle physics. Thus, a scalar field has to
satisfy several important constraints if it is to be relevant
to cosmology. Let us now spell out some of these features
in detail, see refs 6 and 16 for details. In case the scalar
field energy density p, dominates the background (radia-
tion/matter) energy p,, the former should redshift faster
than the latter allowing radiation domination to commence
which in turn requires a steep potential. In this case, the
field energy density overshoots the background and
becomes subdominant to it. This leads to the locking re-
gime for the scalar field which unlocks the moment the o,
is comparable to p,. The further course of evolution cru-
cially depends upon the form of the scalar potential. For
the non-interference with thermal history, we require that
the scalar field remains unimportant during radiation and
matter dominated eras and emerges out from the hiding at
late times to account for late time acceleration. To
address the issues related to fine tuning, it is important to
investigate the cosmological scenarios in which the
energy density of the scalar field mimics the background
energy density. The cosmological solution which satisfy
this condition are known as scaling solutions,

o)
LA const.
Py

(95)

The steep exponential potential V(¢) ~ exp(A¢/Mp) with
A*>3(1 + W,) in the framework of standard GR gives rise
to scaling solutions whereas the shallow exponential
potential with A < V2 leads to a field dominated solution
(Q,=1). Nucleosynthesis further constraints A. The
introduction of a new relativistic degree of freedom at a
given temperature changes the Hubble rate which cru-
cially effects the neutron to proton ratio at temperature of
the order of one MeV when weak interactions freeze out.
This results into a bound on A, namely®,

Q=31 +W)/ A <0.13 = 12 45. (96)
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In this case, for generic initial conditions, the field ulti-
mately enters into the scaling regime, the attractor of the
dynamics, and this allows to alleviate the fine tuning
problem to a considerable extent. The same holds for the
case of undershoot (Figure 7).

Scaling solutions, however, are not accelerating as they
mimic the background (radiation/matter). One therefore
needs some late time feature in the potential. There are
several ways of achieving this: (1) The potential that
mimics a steep exponential at early epochs and reduces to
power law type V ~ ¢° at late times gives rise to acceler-
ated expansion for p<1/2 as the average equation of
state (W(@)) =(p—1)/(p+1)<—1/3 in this case™™*. (ii)
The steep inverse power law type of potential which
becomes shallow at large values of the field can support
late time acceleration and can mimic the background at
early time*’.

The solutions which exhibit the aforesaid features are
referred to as tracker solutions. For a viable cosmic evo-
lution we need a tracker like solution. However, on the
basis of observations, we cannot rule out the non-tracker
models at present.

In the second class of models where trackers are absent,
there are two possibilities. First, if o, scales faster than p,
in the beginning, it then overshoots the background and
enters the locking regime. In case of the undershoot, the
field is frozen from the beginning due to large Hubble
damping. In both the cases, for a viable cosmic evolution,
models parameters are chosen such that p,~ p, during
the locking regime. Hence at early times, the field gets
locked (W(¢@) =—1) and waits for the matter energy den-
sity to become comparable to field energy density which
is made to happen at late times. The field then begins to
evolve towards larger values of W(¢) starting from

log(p)

%= Present epoch

log(a)

Figure 7. Cosmologically viable evolution of field energy density
vs the scale factor. The dotted line shows the evolution of background
(matter/radiation) energy density. The field energy density p; (with
different initial conditions) joins the scaling regime and mimics
the background. At late times it exits the scaling matter regime to
become the dominant component and to account for the late time accele-
ration.
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log(p)

= Present epoch

log(a)

Figure 8. Evolution of p, and p, in absence of scaling regime in case
of overshoot and undershoot. The field remains trapped in the locking
regime till its energy density becomes comparable to that of the back-
ground component. It then starts evolving slowly and overtakes the
background to become dominant at late times.

W(¢@) =—1 (Figure 8). In this case one requires to tune the
initial conditions of the field. The two classes of scalar
fields are called freezing and thawing models”**. In case
of tracker (freezing) models, one needs to tune the slope
of the field potential. Nevertheless, these are superior to
thawing models as they are capable of addressing both
the fine tuning and the coincidence problems.

Before we proceed further, we should make an honest
remark about scalar field models in general. These mod-
els lack predictive power: for a given cosmic history, it is
always possible to construct a field potential that would
give rise to the desired evolution. Their merits should
therefore be judged by the generic features which arise in
them. For instance tracker models deserve attention for
obvious reasons. Scalar fields inspired by a fundamental
theory such as rolling tachyons are certainly of interest.

Tachyon field as source of dark energy

Next we shall be interested in the cosmological dynamics
of tachyon field which is specified by the Dirac-Born-
Infeld (DBI) type of action given by (see ref. 6 and refer-
ences therein),

5= [V\1-9"99,0\-g d*x.

where on phenomenological grounds, we shall consider a
wider class of potentials satisfying the restriction that
V(@) > 0 as ¢ — . In FRW background, the pressure
and energy density of ¢ are given by

Ry =-V(ON1-¢°,
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o7

(98)

V(o)

. (99)
1-¢?

Py =

.

The equation of motion which follows from eq. (97) is

¢'+3H¢<l—¢2)+\§(1—¢52)=0, (100)
where H is the Hubble parameter
H =L (p,+p) (101)
3m2 '

Tachyon dynamics is different from that of the quintes-
sence. Irrespective of the form of its potential

W(P) = ¢* -1 = -1<W(@) < 0. (102)
The investigations of cosmological dynamics shows that
in case of the tachyon field, there exists no solution
which can mimic scaling matter/radiation regime. These
models necessarily belong to the class of thawing models.
Tachyon models do admit scaling solution in presence of
a hypothetical barotropic fluid with negative equation of
state. Tachyon fields can be classified by the asymptotic
behaviour of their potentials for large values of the field:
(i) V(¢) — 0 faster then 1/¢” for ¢ — oo. In this case dark
matter like solution is a late-time attractor. Dark energy
may arise in this case as a transient phenomenon. (ii)
V(¢) — 0 slower then 1/¢* for ¢ — oo; these models give
rise to dark energy as late-time attractor. The two classes
are separated by V(@) ~ 1/¢? which is scaling potential
with W(¢) = const. These models suffer from the fine tun-
ing problem; dynamics in this case acquires dependence
on initial conditions.

Phantom field

The scalar field models discussed above lead to W(¢) = —1
and cannot give rise to super acceleration corresponding
to phantom dark energy with w(¢@) <—1 permitted by ob-
servations, see Figure 6. The simplest possibility of get-
ting phantom energy is provided by a scalar field with
negative kinetic energy. Phantom field is nothing but the
Hoyle-Narlikar’s creation field (C-field) which was
introduced in the steady-state theory to reconcile the
model with the perfect cosmological principle. Though
the quantum theory of phantom fields is problematic, it is
nevertheless interesting to examine the cosmological con-
sequences of these fields at classical level. Phantom field
is described by the following action

S= j G g“’o Wam-wmjﬁ d*x. (103)
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Its corresponding equation of state parameter is given by

14> +V(9)

W(Q) = = ,
@) 14°-V(9)

(104)

which tells us the w(¢) <—1 for ¢*/2 < V(¢). An unusual
equation of motion for ¢ follows from eq. (103)

dv _

¢+3H¢—ag

0. (105)

It should be noted that the evolution equation of phantom
field is same as that of the ordinary scalar field but with
inverted potential allowing the field with zero kinetic
energy to rise up the hill. As mentioned earlier, phantom
energy is plagued with big rip singularity which is char-
acterized by divergence of the Hubble parameter and cur-
vature of space time after a finite interval of time. In such
a situation, quantum effects become important and one
should include higher curvature corrections to general
theory of relativity which can crucially modify the struc-
ture of the singularity. To the best of our knowledge, the
big rip singularity can be fully resolved in the framework
of loop quantum cosmology*’. Big rip can also be avoi-
ded at the classical level in a particular class of models in
which potential has maximum. In this case, the field rises
to the maximum of the potential and ultimately settles
on top of the potential to give rise to de-Sitter like
behaviour.

For a viable cosmic history, the phantom energy den-
sity similar to the case of rolling tachyon should be sub-
dominant at early epochs. The field then remains frozen
till late times before its energy density becomes compa-
rable to matter energy density. Its evolution begins there-
after. Clearly, dark energy models based upon phantom
fields belong to the category of thawing models.

Late time evolution of dark energy

In the preceding subsections, we have described the cos-
mological dynamics of quintessence, phantoms and roll-
ing tachyon. These scalar field models fall into two broad
categories: (i) Tracker or freezing models in which the
field rolls fast at early stages such that it mimics the
background with w, = 0. At late times, W(¢) starts deviat-
ing from dust-like behaviour and becomes negative mov-
ing towards de-Sitter phase as the field rolls down its
potential. (ii) Non-tracker or thawing models are those in
which the field is trapped in the locking regime due to
large Hubble damping such that w(@) =— 1. And only at
late times, as p, becomes comparable to the background
energy density, the field begins to evolve towards larger
values of W(¢). As demonstrated by Caldwell and
Linder®, these models occupy narrow regions in the
(W = dw/d In(a), w) plane,
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Freezing models: 3w(1 +w) <w < 0.2w(1 + w)
Thawing models: 1 + w<w < 3(1 +w)

where the upper and the lower bounds are obtained using
analytical arguments and numerical analysis of generic
models belonging to both the classes of models. As
pointed out earlier (see Figure 6), combined analysis of
different observations reveal that dark energy equation of
state parameter lies in the narrow strip around w, =—1.
The observational resolution between the two classes of
the model which is of the order of 1+ w is therefore a
challenge to future observations.

As mentioned earlier, the phantom and the tachyon
dark energy models belong to the class of thawing models.
In this case, we can simplify the dynamics around the
present epoch by using the approximation that |1 +w| <<
and that the slope of the potential is small. The validity of
the second approximation can be verified numerically in
each case. In this scheme of a plausible approximation,
one arrives at an amazing result: all the different dyna-
mical systems, thawing quintessence, phantom, tachyon
and phantom tachyon follow a unique evolutionary track.
The distinction between the four classes of scalar field
systems and the distinction between different models
within each class is an effect of higher order than |1 + w|
(ref. 43) which certainly throws a great challenge to future
generation experiments! Indeed, a recent examination of
observational data including 397 Type-la supernovae at
redshifts 0.015 <z<1.55 has shown that evolving dark
energy models provide a slightly better fit to the data than
the cosmological constant®. If future data confirms this
result then it could mean that cosmic acceleration is cur-
rently slowing down which may have important conse-
quences for dark energy model building.

Quintessential inflation on brane: a beautiful
model that does not work

Quintessential inflation refers to attempts to describe
inflation and dark energy with a single scalar field. The
unifications of the two phases of accelerated expansion
could be realized in the framework of Randall-Sundrum
(RS) brane worlds***. In order to achieve this, the field
potential should be flat during inflation but steep in radia-
tion and matter dominated eras such that p, could mimic
the background energy density at early epochs. At late
times, it should become flat so as to allow the current
acceleration of universe. Since the potential does not
exhibit minimum, the conventional reheating mechanism
does not work in this scenario. One could employ alterna-
tive mechanisms such as reheating via gravitational parti-
cle production or instant preheating. It is not realistic to
have a potential which changes from flat to steep and
back to flat at late times (Figure 9). However, it is gene-
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ric to have a potential which is steep and allows to track
the background at early epochs and gives rise to a viable
late time cosmic evolution.

In case of a steep potential, the field energy density
scales faster than radiation energy density leading to the
commencement of radiative regime. But a steep potential
cannot support inflation in FRW cosmology. This is pre-
cisely where the brane assisted inflation comes to our
rescue. In RSbrane world model, the Friedmann equation
is modified to,

szserpb(Hpb}

106
3 2 (106)

where Ag is the brane tension. The presence of quadratic
density term in the Friedmann equation changes the dyna-
mics at early epochs in crucial manner. Consequently, the
field experiences greater damping and rolls down its
potential slower than it would during the conventional in-
flation. This effect is reflected in the slow-roll parameters
which have the form,

1+V /g
E=E = 107
Y 14V /225) (17
1=y 14V /24g) 7", (108)

where &prw and 7prw are the standard slow-roll para-
meters in absence of brane corrections. The influence of
brane corrections becomes specially important when
V/Ag >> 1. In this case, we have,

€~ Epry (V //13)713 N~ 2nrw (VAg ), (109)
which tells us that slow-roll (& 7<<1) is possible when

V/Ag >> 1 even if the potential is steep (&rw, Mrrw > 1).
As the field rolls down its potential, the high-energy

Brane

V(@) \ Damping

¢
Figure 9. A desired form of potential for quintessential inflation. It is
generic to have a steep potential at early times with brane corrections

helping the slow-roll of the field.
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brane correction to Friedmann equation disappears giving
rise to the natural exit from inflation.

It is possible to choose potentials suitable to quintes-
sential inflation and fine tune the model parameters such
that the model respects nucleosynthesis constraints and
leads to the observed late time cosmic acceleration®>*.
However, the problem occurs on the other side. Recent
measurements of CMB anisotropies place fairly strong
constraints on inflationary models. The tensor to scalar
ratio of perturbations turns out to be larger than its obser-
ved value in case of steep brane world inflation. Clearly,
the brane world unification of inflation and dark energy is
ruled out by observation.

Modified theories of gravity and late time
acceleration

The second approach to late time acceleration is related
to the modification of left-hand side of Einstein equations
or the geometry of space time. It is perfectly legitimate to
investigate the possibility of late time acceleration due to
modification of the Einstein—Hilbert action. In the past
few years, several schemes of large scale modifications
have been actively investigated. Some of these modifica-
tions are inspired by fundamental theories of high-energy
physics whereas the others are based upon phenomenol-
ogical considerations. In what follows, I shall briefly de-
scribe the modified theories of gravity and their relevance
to cosmology.

String curvature corrections

It is interesting to investigate the string curvature correc-
tions to Einstein gravity amongst which the Gauss—
Bonnet correction enjoys special status**’. These models,
however, suffer from several problems. Most of these
models do not include tracker like solution and those
which do are heavily constrained by the thermal history
of universe. For instance, the Gauss—Bonnet gravity with
dynamical dilaton might cause transition from matter
scaling regime to late time acceleration allowing to alle-
viate the fine tuning and coincidence problems. Let us
consider the low energy effective action,

1
L R-(1/2)g"

S=Id4x1/—g 1orG R 1/297 9,099 +S,,  (110)
~V(9) - f ()R

where R3g is the Gauss—Bonnet term,

Ris =R —4R,, R" + RWVR“/W (111)

The dilaton potential V(¢) and its coupling to curvature
f (@) are given by,
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V(g)~e ™, f(g)~e M. (112)
The cosmological dynamics of system (eq. (110)) in FRW
background was investigated in Koivisto and Mota®, and
Tsujikawa and Sami’'. It was demonstrated that scaling
solution can be obtained in this case provided that u = c.
In case u# «, the de-Sitter solution is a late time attrac-
tor. Hence, the string curvature corrections under consid-
eration can give rise to late time transition from matter
scaling regime. Unfortunately, it is difficult to reconcile
this model with nucleosynthesis®””' constraint.

DGP model

In DGP model, gravity behaves as four dimensional at
small distances but manifests its higher dimensional
effects at large distances. The modified Friedmann equa-
tions on the brane lead to late time acceleration. The
model has serious theoretical problems related to ghost
modes and superluminal fluctuations. The combined ob-
servations on background dynamics and large angle ani-
sotropies reveal that the model performs much worse than
ACDM (ref. 58). However, generalized versions of DGP
can be ghost free and can give rise to transient accelera-
tion as well as a phantom phase™.

f(R) theories of gravity

On purely phenomenological grounds, one could seek a
modification of Einstein gravity by replacing the Ricci
scalar in Einstein—Hilbert action by f (R). The action of
f (R) gravity is given by,

szj[f(mwm}ﬁ d*x, (113)

167G

The modified Einstein equations which follow from eq.
(113) have the form,

fRW—VyVVf’+[Df’—;fjgw=87rGTW. (114)

which are of fourth-order for a nonlinear function f (R).
Here prime denotes the derivatives with respect to R. The
Ricci scalar in FRW background is given by

R=12H*+6H, (115)

which tells us that the modified eq. (114) contains
de-Sitter space time as a vacuum solution provided that
f(4A) =2Af’(4A). The f(R) theories of gravity may
indeed provide an alternative to dark energy. To see this,
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let us write the evolution equations which follow from eq.
(114) in a convenient form

872G
H2 = , 116
31;/ IOR ( )

4

4G
== (0r+3R0), (117)

where pr and Pr are energy density and pressure contri-
buted by curvature modification

Ri‘- 1 —3HRf”,

Pr = (118)

PR=2HRf”+F\'>f”+%(f—fR)+f’”R2, (119)

pr and Pg identically vanish in case of Einstein—Hilbert
action, f (R) =R as it should be. As an example of f(R)
model let us consider, f (R) = R— a/R", where o, is con-
stant for given n. In case of a power law solution a(t) ~ t",
the effective equation of state parameter can be computed
as

_ 2n+2) (120)
32n+1)(n+1)

Choosing a particular value of n, we can produce a
desired equation of state parameter for dark energy.

The functional form of f(R) should satisfy certain
requirements for the consistency of the modified theory
of gravity. The stability of f (R) theory would be ensured
provided that, f’(R) > 0 and f”(R) > 0 which means that
graviton is not ghost and scalar degree is not tachyon. We
can understand the stability conditions heuristically with-
out entering into their detailed investigations. From evo-
lution equations (eqs (116) and (117), we see that the
effective gravitational constant G = G/f” which should
be positive or f*>0 in order to avoid the pathological
situation. As for the second condition, V. Faraoni®
has given an interesting interpretation: let us consider
the opposite case when f”<0 which means that
Gl =—f”G/f?>0. This implies that gravitational
constant increases for increasing value of R making the
gravity stronger. In view of Einstein equations, it leads to
yet larger value of curvature and so on which ultimately
leads to a catastrophic situation. Thus we need f” to be
positive to avoid the catastrophe.

Let us note that f (R) gravity theories apart from a spin
two object necessarily contain a scalar degree of freedom.
Taking trace of eq. (114) gives the evolution equation for
the scalar degree of freedom,

87G

Df’:%(Zf'—f'R)+TT. (121)
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It should be noticed that eq. (121) reduces to an algebraic
relation in case of Einstein gravity; in general f” has dy-
namics. It is convenient to define scalar function ¢ as,
p=f" -1, (122)
which is expressed through Ricci scalar once f(R) is

specified. We can write the trace equation (eq. (121)) in
the terms of V and T as

L = d—V+—8”GT.
do 3

(123)
which is a Klein—Gordon equation in presence of a deri-
ving term. Thus ¢ is indeed a scalar degree of freedom
which controls the curvature of space time.

The effective potential can be evaluated using the fol-
lowing relation

NV_dVd Lot tRryf
R~ dpdR 3

(124)
Models which satisfy the stability conditions belong to
two categories: (i) Either they are not distinguishable
from ACDM or are not viable cosmologically. (ii) Models
with disappearing cosmological constant: in these mod-
els, f (R) — 0 for R— 0 and they give rise to cosmologi-
cal constant in regions of high density and differ from the
latter otherwise. In principal, these models can be distin-
guished from cosmological constant. Models belonging to
the second category were proposed by Hu—Sawicki®' and
Starobinsky® (see also ref. 63 on the similar theme). The
functional form of f (R) in Starobinsky parametrization is
given by,

)"
f(R)= R+ AR, (1+P5J -1, (125)

Here n and A are positive. And Ry is of the order of pre-
sently observed cosmological constant, A = 8 7G0,,.. The
model satisfies the stability conditions quoted above.

In the Starobinsky model, the scalar field ¢, in the ab-
sence of matter, is given by

2niR

R)(l+%; n+l -’

PR)=— (126)

Notice that R— oo for ¢ — 0. For a viable late time cos-
mology, the field should be evolving near the minimum
of the effective potential. The finite time singularity
inherent in the class of models under consideration se-
verely constrains dynamics of the field.
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The curvature singularity and fine tuning of parameters:
The effective potential has minimum which depends upon
n and A. For generic values of the parameters, the mini-
mum of the potential is close to ¢=0 (Figure 10) corre-
sponding to infinitely large curvature. Thus while the
field is evolving towards minimum, it can easily oscillate
to a singular point®*®. However, depending upon the
values of parameters, we can choose a finite range of ini-
tial conditions for which scalar field ¢ can evolve to the
minimum of the potential without hitting the singularity.
We find that the range of initial conditions allowed for
the evolution of ¢ to the minimum without hitting singu-
larity shrinks as the numerical values of parameters n and
A increase. In the presence of matter, the minimum of the
effective potential moves towards the origin. In case of
the compact objects such as neutron stars, the minimum
is extremely near the origin and the singularity problem
becomes really acute®®,

Avoiding singularity with higher curvature corrections:
We know that in case of large curvature, the quantum
effects become important leading to higher curvature cor-
rections. Keeping this in mind, let us consider the modifi-
cation of Starobinsky’s model®”®’,

o 1
Ry
then ¢ becomes
¢(R)=:) 2a—(l+2:fn+l . (128)
R

In case |R| is large, the first term which comes from oR’
dominates. In this case, the curvature singularity, R = too
corresponds to ¢ =teo. Hence, in this modification, the
minimum of the effective potential is separated from the
curvature singularity by the infinite distance in the ¢,
V(¢) plane. Though the introduction of R* term formally
allows to avoid the singularity but cannot alleviate the

Figure 10. Plot of effective potential for n=2 and A= 1.2. The red
spot marks the initial condition for evolution.
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fine tuning problem as the minimum of the effective
potential should be near the in generic cases. As for the
compact objects, Babichev and Langlois’ (see ref. 71
also on the similar theme) have argued that neutron stars
can be rescued from singularity if a realistic equation of
state for these objects is used though the numerical simu-
lation is yet challenging for densities of the order of
nuclear matter density. The problem deserves further
investigation.

In scenarios of large scale modification of gravity, one
should worry about the local gravity constraints. The
f (R) theories are related to the class of scalar tensor theo-
ries corresponding the Brans—Dicke parameter w=0 or
the PPN parameter y= (1 + w)/(2 + w) = 1/2 unlike GR
where y=1 consistent with observation (|y—1]<2.3 %
107). This conclusion can be escaped by invoking the so-
called chameleon mechanism’”. In case, the scalar degree
of freedom is coupled to matter, the effective mass of the
field depends upon the matter density which can allow to
avoid the conflict with solar physics constraints. How-
ever, the problem of singularity in these models is genu-
ine and should be addressed.

Summary

I have given a pedagogical exposition of physics of late
time cosmic acceleration. Most of that part of the review
should be accessible to a graduate student. The discussion
of Newtonian cosmology is comprehensive and reviews
the efforts to put the formalism of Newtonian cosmology
on rigorous foundations in its domain of validity. Heuris-
tic discussion on the introduction of cosmological con-
stant and pressure corrections in evolution equations is
included. The underlying idea leading to late time cosmic
acceleration is explained without the use of general the-
ory of relativity. The basic features of cosmological
dynamics in presence of cosmological constant is pre-
sented in a simple and elegant fashion making it accessi-
ble to non-experts. The review also gives the glimpses of
relativistic cosmology, contains important notes on the
dynamics of dark energy and discusses underlying fea-
tures of cosmological dynamics of a variety of scalar
fields including quintessence, rolling tachyon and phan-
tom. Special emphasis is put on the cosmic viability
of these models; the cosmological relevance of scaling
solutions is briefly explained. The review ends with a
discussion on modified theories of gravity as possible
alternatives to dark energy. The treatment is simple but
conveys the successes and problems of cosmology in the
framework of modified theories of gravity. Basic features
of f(R) cosmology are explained avoiding the cumber-
some mathematical expressions. The latest developments
of f (R) theories with disappearing cosmological constant
are highlighted. The problem of singularities in these
models and their possible resolution are discussed. I hope
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the review would be helpful to beginners and will also be
of interest to experts.
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