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The low frequency stability of a dusty plasma with a nonuniform mass and charge distribution of the
dust component is studied. It is shown that the inverse stratification of the dust mass density in a
gravitational field may lead to a Rayleigh–Taylor-like instability. In the nonlinear regime this
instability can produce an incompressible flow pattern of spontaneously rotating dust plasma fluid.
This result can have potential applications in the interpretation of vortical patterns observed in
laboratory experiments as well as in a variety of astrophysical situations where the generation and
sustenance of angular momentum are important issues. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1881452g

The collective oscillations of dusty plasmas have been
the object of serious study in recent years in view of their
novel character and wide ranging applications.1,2 A dusty
plasma differs from an ordinary electron-ion plasma by the
presence of a heavier dust species which gets dynamically
charged by collisions with the electrons and ions. The col-
lective properties of this medium are significantly influenced
by a number of factors such as the presence of the third
charged speciessthe dust componentd, the amount of charge
on the dust, the dynamic nature of the charge on the dust, the
dust mass, the shape of the dust particles, the conductivity of
the dust particles, etc. In contrast to ordinary plasmas, there-
fore, a dusty plasma can have a wider range of collective
modes and novel dissipation mechanisms which can influ-
ence the stability of these modes. Due to the large amount of
charge on single dust particles the dust fluid can also exhibit
strong coupling behavior which can show up as viscoelastic
properties3 of the medium and even lead to a phase transition
into a “dust crystal.”4,5 For the massive dust particles gravi-
tational effects play an important role in their dynamics
which is another important distinction from the conventional
electron-ion plasmas where gravity effects are normally ne-
glected. The interplay of gravitational and electrodynamic
forces has been well recognized and investigated in the as-
trophysical context such as in explaining the fine structure of
planetary rings6 and in understanding the dynamics of mas-
sive dust objects in galaxies.7,8 The role of gravity is signifi-
cant even for micron sized dust particles in laboratory ex-
periments where sizable external electric fields are needed to
levitate dust plasma formations. Gravity can also bring about
macroscopic instabilities in many equilibrium configurations.
The well known Rayleigh–Taylor instability in neutral fluids
is a classic example of gravity aided instability of multilay-
ered fluids with an unfavorable density gradient. In this pa-
per we discuss the excitation of a similar gravitation induced
Rayleigh–Taylor-like instability for a charged dust fluid aris-
ing as a result of inverse stratification of the dust mass/
number density. We also obtain exact nonlinear solutions
which may ultimately arise due to the saturation of such an
instability. The final nonlinear state is a rotating structure
which for high values of viscosity can take the form of a

rigid rotator. Such rotation effects induced by self-consistent
collective effects in dusty plasmas may have important astro-
physical applications where the generation and sustenance of
angular momentum are important issues. They may also be
relevant for understanding some recent laboratory observa-
tions of vortical motion of dust clouds in the vertical plane
without the presence of any magnetic field.

The linear theory of the instability can be understood
quite simply from a basic fluid model for the dust compo-
nent, namely,
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whererc andrm stand for the dust charge and mass densities,

respectively,VW d is the dust fluid velocity,f is the electro-
static potential,g is the gravitational acceleration, andm is
the coefficient of viscosity for the dust flow velocity. The
equilibrium condition is given by
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rm0
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where=f0 is an external electric field imposed to balance
the dust particles against gravity. We also assume that there

are no equilibrium flows, i.e.,VW 0d=0. The incompressibility
conditions3d implies the neglect of sound waves and is valid
for very low frequency phenomena,] /]t!vda, wherevda is
the dust acoustic frequency. We now restrict our attention to
two-dimensional incompressible perturbations such that all
variations are in thex-z plane. Conditions3d then allows us

to introduce a velocity potentialc such thatVW d= ŷ3 =c.
Taking alternately the curl and divergence of Eq.s2d and

using the definition ofVW d, we can rewrite Eqs.s1d ands2d in
the following form:
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whereVW = ŷ¹2c is the vorticity of dust flow. We now carry
out a linear stability analysis about the equilibrium described
by Eq. s4d for perturbation scale lengths that are much
shorter than the equilibrium scale lengths, namely,k
@rm08 /rm0. It is then straightforward to obtain the following
dispersion relation:
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where g represents the growth rate andrm08 =drm0/dz. In
obtaining Eq.s8d we have ignored the fluctuations in the dust
charge density and treatedrc to be a constant in time. We can
estimate the contribution of the dust fluctuationrc1 from a
simple model dust charging equation that is widely used in
the literature,9
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and the quasineutrality condition, viz.,
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Here,h represents the inverse of the chargingsdischargingd
rate of a dust particle,uIoeu is the magnitude of the
equilibrium electron current falling on each dust particle, and
we have assumed that the electron and ion density perturba-
tions are given by the linearized Boltzmann lawna1

=na0s−eaf /Tad, with a=e, i. For slow perturbationsh

@] /]t we see thatrc1,OsVW d1·=rc0/hd. Thus effects due to
rc1 may be neglected in comparison to those due torm1

,OfVW d1·=rm0/ s] /]tdg in the linearized Eq.s2d. With rc as a
constant in Eq.s2d, the s−rcfd term can be interpreted as a
sort of “pressure” term. Coming back to the linear dispersion
relation, Eq.s8d, an approximate condition for the onset of
gravitational instability can be obtained by ignoring the
imaginary terms in the denominator. We then get the condi-
tion
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with the characteristic growth rateg,skx/kdÎg/L, whereL
is the density scale length.

We next discuss the possibility of a saturated state of this
instability due to nonlinear effects. We note that the instabil-
ity is driven by the torque proportional to=rm3 =f, which
is finite because the density and potential perturbations have
anx dependencesnote that the growth rateg~kxd. Saturation
can occur if the resulting vortex motion mixes up the density

layers giving arm;rmscd, thereby satisfying the continuity
equation. A simple solution of a uniform densityrm arising
through mixing seems a reasonable choice. This will make
the driving torque for the instability vanish. The vorticity
equation, Eq.s6d, would lead to a stationary state ifhc ,Vj
=m¹2V, whereh…, …j denotes a Poisson bracket. If viscos-
ity is negligible then any functionV=Vscd can be a solu-
tion. However, for finite and non-negligiblem the only con-
sistent solution is

V ; Vscd = constant. s12d

Such a solution corresponds to a rigidly rotating dust cloud
structure. An analytic solution of the nonlinear set of Eqs.
s5d–s7d can be written in the form

c = C0r
2 + C1r cosu, s13d

which corresponds to a rotational velocityVu=2C0r. Typical
saturated values of the rotational velocity may be estimated
from the condition of importance of fluid nonlinearities for
saturation, viz.,
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For typical laboratory plasmas withL,10 cm,kx/k,1, one
gets 0øVø10 s−1. In some recent laboratory studies,10,11

self-excitation of rotational motion of dust particles has been
observed in dc glow discharge plasmas with rotational ve-
locities in the range of a few hertz. However, dust densities
in these experiments are quite low and the observed motion
can be well understood in terms of single particle orbits. It
would be interesting to extend the experimental investiga-
tions to higher densities such that collective physics of the
dust component becomes important. Under such a circum-
stance it should be possible to observe the nonlinear vortex
solution we have obtained in this paper. Such a study would
also aid in obtaining some insight into the mechanism of
angular momentum generation in astrophysical objects
where charged dust is often ubiquitous.

ACKNOWLEDGMENT

The authors are grateful to Professor P. K. Kaw for dis-
cussions and encouragement.

1P. K. Shukla and A. A. Mamun,Introduction to Dusty Plasma Physics
sInstitute of Physics, Bristol, 2002d.

2F. Verheest,Waves in Dusty Space PlasmassKluwer, Dordrecht, 2000d.
3P. K. Kaw and A. Sen, Phys. Plasmas5, 3552s1998d.
4H. Thomas, G. Morfill, V. Demmelet al., Phys. Rev. Lett.73, 652s1994d.
5J. H. Chu and I. Lin, Phys. Rev. Lett.72, 4009s1994d.
6K. Avinash and A. Sen, Phys. Lett. A194, 241 s1994d.
7N. N. Rao, F. Verheest, and V. M. Cadez, Phys. Plasmas8, 4740s2001d.
8N. L. Tsintsadze, J. T. Mendonca, P. K. Shuklaet al., Phys. Scr.62, 70
s2000d.

9M. R. Jana, A. Sen, and P. K. Kaw, Phys. Rev. E48, 3930s1993d.
10O. S. Vaulina, A. A. Samarian, A. P. Nefedov, and V. E. Fortov, Phys.

Lett. A 289, 240 s2001d.
11A. K. Agarwal and G. Prasad, Phys. Lett. A309, 103 s2003d.

044506-2 Veeresha, Das, and Sen Phys. Plasmas 12, 044506 ~2005!


