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Theory of free surface flow over rough
seeping beds

BY SUJIT K. BOSE
†

AND SUBHASISH DEY*

Department of Civil Engineering, Indian Institute of Technology,
Kharagpur 721302, West Bengal, India

A new theory is developed for the steady free surface flow over a horizontal rough bed
with uniform upward seepage normal to the bed. The theory is based on the Reynolds
averaged Navier–Stokes (RANS) equations applied to the flow domain that is divided
into a fully turbulent outer layer and an inner layer (viscous sublayer plus buffer layer),
which is a transition zone from viscous to turbulent regime. In the outer layer, the
Reynolds stress far exceeds viscous shear stress, varying gradually with vertical distance.
Near the free surface, the velocity gradient in vertical direction becomes lesser giving rise
to wake flow. On the other hand, in the composite inner layer close to the bed, the
viscous shear stress exists together with the turbulent stress. Thus, for the outer layer, a
logarithmic law having modified coefficients from the traditional logarithmic law is
obtained for the streamwise velocity, whereas for the inner layer, a fifth-degree
polynomial including effective height of protrusions holds. The exact velocity expressions
for inner and outer layer, which contain principal terms in addition to infinitesimally
small terms, are in agreement with the experimental data obtained from laboratory
measurements through an acoustic Doppler velocimeter. The experiments were run on
two conditions of no seepage and a low upward seepage. Expressions for the Reynolds
stress are also derived and computed for validation by the experimental data.

Keywords: open channel flow; turbulent flow; steady flow; non-uniform flow; seepage;
hydraulics
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1. Introduction

The theory of turbulent shear flow of an incompressible fluid over smooth or
rough boundaries, such as free surface flow and closed conduit flow, is a problem
of primary importance in turbulence. The Reynolds averaged Navier–Stokes
(RANS) equations for the simple type of turbulent shear flow contain time-
averaged flow velocity, piezometric pressure and turbulent fluctuations, but the
system is short of one equation for its solution. This is usually supplemented by
an additional physical theory like Prandtl’s mixing-length theory. It is concluded
that in the fully developed turbulent flow, the law of the wall for streamwise flow
velocity is a logarithmic law in depth. There are several competing theories for
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the layer adjacent to the wall (Stanišić 1984). A particular simple theory, by
Tien & Wasan (1963) (see Stanišić 1984), assumes differentiability of the
streamwise flow velocity at any point to a few orders with respect to the depth,
so that the result matches with the logarithmic law.

Free surface flow over a permeable sedimentary bed is important in
hydraulics. In general, the streamwise flow coupled with the seepage from
(injection) or into (suction) the bed is a common occurrence. The seepage can be
normal or tangential to the bed. Normal seepage has the potential to influence
the streamwise velocity distribution even in the outer region of flow. Hence, it is
questionable whether the law of the wall for velocity distribution remains valid
under seepage condition. Based on Prandtl’s mixing-length theory, Clarke et al.
(1955) and Stevenson (1963) put forward a modified law of the wall to describe
the velocity distribution with injection from the boundary. Willetts & Drossos
(1975) proposed an exponential law for the velocity distribution over a bed with
suction. Maclean (1991a) observed through a series of experiments that the
velocity distribution over a bed with suction consists of a suction boundary layer.
To evaluate the bed shear stress, Maclean (1991b) studied the threshold motion
of indicator grains with predetermined threshold shear stress. For downward
(suction) seepage, Oldenziel & Brink (1974) and Maclean (1991b) experimentally
found that the streamwise velocity decreases in the outer region and increases
near the bed. Prinos (1995) studied the effect of bed suction on turbulent (free
surface) flow field by numerically solving the RANS equations. On the other
hand, the modified logarithmic laws for the velocity distributions subjected
to upward and downward seepages were proposed by Cheng & Chiew (1998)
and Chen & Chiew (2004), respectively. Recently, Dey & Cheng (2005) derived
the Reynolds stress profile in non-uniform unsteady flow over a bed having
upward seepage.

In presenting a new theory of free surface flow with uniform upward seepage,
the present study deviates from the traditional method of assuming additional
physical theory like Prandtl’s mixing-length theory, which is not applicable in
the presence of seepage (Tennekes & Lumley 1972). It is hypothesized that in
the fully turbulent outer layer, the Reynolds stress varying gradually with the
vertical distance dominates the viscous shear stress. Using this concept in the
RANS and adopting the methodology of Tien & Wasan (1963), the equation of
streamwise velocity is determined in the inner layer (viscous sublayer plus buffer
layer). The Reynolds stress is then derived from the developed theory of two
layers. Experiments were conducted to measure the velocity and turbulence by
the acoustic Doppler velocimeter (ADV) for validation of the theory.
2. The RANS equations

Under consideration is a unidirectional streamwise flow of nearly constant flow
depth H with low uniform upward seepage v0 from the horizontal permeable bed
into the main flow. To model the flow field, the horizontal bed is assumed to be
rough consisting of sediment particles, as shown schematically in figure 1a. Any
convenient point on the bed is taken as the origin O. The streamwise flow in the
direction of the x-axis, assumed to be fully developed, becomes two dimensional
owing to injection from the bed. According to the Reynolds decomposition, the
Proc. R. Soc. A (2007)
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Figure 1. (a) Definition sketch of steady flow over a sedimentary bed with constant upward seepage
and (b) schematic of laboratory experimental set-up.
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instantaneous velocity components (u, v) are split into time-averaged part ð�u; �vÞ
and fluctuation part (u0, v0) as

u Z �uðx; yÞCu 0ðx; y; tÞ; v Z �vðx; yÞCv 0ðx; y; tÞ; ð2:1Þ

where x and y are the streamwise and normal distances, respectively, and t is the
time. For steady flow, the continuity equations of time-averaged velocity and
fluctuation components are

v�u

vx
C

v�v

vy
Z 0;

vu 0

vx
C

vv 0

vy
Z 0; ð2:2Þ

and the RANS equations are

�u
v�u

vx
C �v

v�u

vy
ZK

v�p

vx
C

vt

vy
Cy

v2�u

vy2
K

v u 02
� �
vx

; ð2:3aÞ

�u
v�v
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v�v

vy
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vy
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Cy

v2�v

vx2
K

v v 02
� �
vy

; ð2:3bÞ
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where �pðx; yÞ is the time-averaged piezometric pressure relative to the mass
density of fluid r, t(x, y) is the Reynolds stress relative to r, i.e.Ku 0v 0 and y is the
kinematic viscosity.

Equations (2.2)–(2.3b) form an undetermined system, since there are six
dependent parameters �u, �v, u0, v0, �p and t. Even if one assumes that flow takes
place under a given pressure gradient, the system remains undetermined.
Focusing on the stresses, it is pertinent to note that since kinematic viscosity y
is small, the viscous stress becomes negligible in the outer layer compared with
the Reynolds stress, while near the bed both the stresses may exist for the low
flow velocity. Thus, the flow zone can be considered to be consisting of (i) fully
turbulent outer layer with negligible viscous stress and (ii) inner layer (viscous
sublayer plus buffer layer), where both the Reynolds and viscous stresses
prevail subject to appropriate boundary conditions. Under suitable mathemat-
ical representation, the two-zone flow solutions are constructed satisfying the
continuity of flow at the interface, as was done by Tien & Wasan (1963) (see
Stanišić 1984).

The mathematical analysis of this study is characterized by four local scales
(Tennekes & Lumley 1972). They are (i) horizontal length-scale conservatively
taken as flow depth H (assuming fully developed flow), (ii) velocity scale as
shear velocity ut, (iii) vertical length-scale as y/ut (used for transitional flow
regime), and (iv) mass-transfer (through the wall) velocity scale as seepage
velocity v0. Importantly, in the smooth flow regime, the shear Reynolds
number Re� (Zlut/y, where l is the equivalent roughness or protrusion
height) being less than 4, the protrusions are well submerged by the viscous
sublayer and the corresponding length-scale is y/ut. On the other hand, in the
rough flow regime (Re�O70), the protrusions are fully exposed (beyond the
viscous sublayer) to the main flow and the corresponding length-scale is l.
However, in the transitional flow regime (4!Re�%70), protrusions are neither
fully exposed to the main flow nor fully submerged by the viscous sublayer.
Though the effects of both viscosity and roughness prevail on the main flow,
its convenient length-scale is y/ut (Reichardt 1951). The present study
corresponds to the transitional flow regime (see table 2) and, therefore, length-
scale is considered as y/ut.
3. Flow in fully turbulent outer layer

It is assumed that the turbulent flow is fully developed in the outer layer
governed by equations (2.1)–(2.3b). The flow parameters vary over x and y owing
to seepage velocity v0 and kinematic viscosity y, respectively. Thus, the
appropriate non-dimensional space variables are

x� Z
x

H
; y� Z

uty

y
; ð3:1Þ

where ut(v0) is the shear velocity, i.e. (t0/r)
0.5 at (x�, 0), t0(v0) is the bed shear

stress at the same point and v0 is the seepage velocity. Apart from v0, as the
seepage velocity is assumed to be low in comparison to the main flow velocity, ut
(obviously t0) may also vary slowly with x�. Using equation (3.1), equations
Proc. R. Soc. A (2007)
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(2.2)–(2.3b) can thus be written as

v�u

vx�
CRe

v�v

vy�
Z 0; ð3:2Þ

�u
v�u

vx�
CRe�v

v�u

vy�
ZK

v�p

vx�
CRe

vt

vy�
CutRe

v2�u

vy�2
K

v u 02
� �
vx�

; ð3:3aÞ

�u
v�v

vx�
CRe�v

v�v

vy�
ZKRe

v�p

vy�
C

vt

vx�
C

y

H
$
v2�v

vx�2
KRe

v v 02
� �
vy�

; ð3:3bÞ

where Re is the Reynolds number, i.e. utH/y. As mentioned in the introduction,
the set of equations (3.2)–(3.3b) are undetermined. For completion, the following
model for turbulence closure is adopted.
(a ) Turbulence closure assumption

In fully turbulent outer layer, the viscous stress contribution in the streamwise
direction is largely dominated by the Reynolds stress contribution, varying
slowly with y�. The nature of the variation with y� is concluded from the fact that
in inviscid flow, such a variation must be absent. Consequently, comparing the
two contributions in equation (3.3a), one gets

v2�u

vy�2

����
����/ 1

utRe
Re

vu 0v 0

vy�
K

v u 02
� �
vx�

������
������; ð3:4Þ

in terms of some slowly varying variable instead of y�. Introducing �u�Z �u=ut and
the slow variable hZln y�, so that dy�Zexp(h)dh, the above condition implies that

v2�u�

vh2

����
����/ expð2hÞ

u2tRe
Re

vu 0v 0

vh
K

v u 02
� �
vx�

������
������: ð3:5Þ

Hence, one can infer that�����
v2�u�

vh2

�����%3/min
1

u2
tRe

�����Re
vu 0v 0

vh

�����C
�����
v u 02
� �
vx�

�����
2
4

3
5

8<
:

9=
;R0; ð3:6Þ

where 3 is a small non-dimensional constant (3R0), such that

K3%
v2�u�

vh2
%3: ð3:7Þ

Integrating equation (3.7), the expression for �u� in terms of y� is obtained as

�u� ZAðx�ÞCBðx�Þln y� Cq3ðln y�Þ2; ð3:8Þ
where q is an uncertain function of x� lying betweenK0.5 and 0.5. As the first two
terms of the right-hand side of equation (3.8) are the principal contributions, the
term containing q is the uncertain residual of the exact solution. The variability of
the functions of integration A and B with x� may be owing to added local flux by
seepage. Experiments by Cheng & Chiew (1998) and those cited here indicate that
in the outer layer, the velocity profile changes with y� in the presence of seepage.
Proc. R. Soc. A (2007)
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(b ) Seepage assumption

When a low upward seepage v0 through the bed is present, it modifies the term
A from that in traditional logarithmic law. It now depends on the seepage
velocity v0, which is practically independent of location x�. However, the term B
is assumed to remain independent of v0, as it is the reciprocal of the von Karman
constant in logarithmic law. Thus, the expressions for A and B are assumed to be

Aðx�ÞZA0ðv̂0Þ; ð3:9aÞ

Bðx�ÞZB0; ð3:9bÞ

where A0 and B0 are the non-dimensional constants and v̂0 is the non-
dimensional seepage velocity, i.e. v0/ut. Thus, the expression for �u� in fully
turbulent outer layer is assumed to be

�u� ZA0ðv̂0ÞCB0ln y� Cq3ðln y�Þ2: ð3:10Þ
The first two terms of the above equation constitute the principal contribution

to the streamwise velocity distribution, and the last term represents the
uncertain residual present in its estimation. Besides the last uncertain term,
equation (3.10) constitutes the generalized logarithmic law. Numerous
experiments on flow over rough boundaries with different kinds of roughness
yield the value of B0Z2.44 (reciprocal of the von Karman constant) as in the case
of smooth boundaries. Here, the same value should hold, since the layer under
consideration is away from the slowly seeping bed.

The low transverse velocity, induced by the seepage, can be estimated from
the continuity equation. Substituting equation (3.10) in equation (3.2) yields

v�v�

vy�
ZK

1

Re
$
v�u�

vx�
K

�u�

Reut
$
vut
vx�

; ð3:11Þ

where �v�Z �v=ut. The first term of the right-hand side of equation (3.11) is of the
order of 3. The second term arising from the seepage from permeable bed
essentially depends on the viscous sublayer and must also be small. With these
considerations, one obtains on integration of equation (3.11)

�v� Z 3v̂0q1ðx�; y�Þ; ð3:12Þ

where q1, like q, is an uncertain term.
The Reynolds stress in non-dimensional form t�Zt=u2

t can be estimated from
equations (3.3a) and (3.3b). Inserting �u and �v from equations (3.10) and (3.12)
into equations (3.3a) and (3.3b), respectively, and eliminating �p by appropriate
differentiations yield the following differential equation:

v2ðRet�Þ
vy�2

K
v2ðt�=ReÞ

vx�2
ZK

2ReB0

y�3
COð3ÞC 1

u2t
$

v2

vx�vy�
u 02Kv 02

� �
: ð3:13Þ

If Re were a constant (as in the case of no seepage), then the general solution of
the linear partial differential equation would consist of the complementary
solution f1(y

�Cx�ReK1)Cf2(y
�Kx�ReK1), where the functions f1 and f2 are linear

in x� for low seepage velocity. But the solution for the inner layer indicates that it
Proc. R. Soc. A (2007)
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does not explicitly depend on x� (see equation (4.23) in the succeeding section).
Hence, the complementary solution may be considered a constant, say C0, even
for variable Re and the general solution of equation (3.13) at any section at a
distance x� from origin O takes the form

t� ZC0K
B0

y�
COð3ÞC fluctuation term containing u 02 and v 02 : ð3:14Þ

It is intuitive that the fluctuation term must be small, in as much as the
streamwise variation of flow is feeble, owing to the low seepage velocity. The first
two terms mainly contribute towards the Reynolds stress t�. Eventually, t�/C0

as y�/N. The constant C0 depends implicitly on v̂0.
(c ) Wake zone

The scale y/ut of measurement of y in y� is very small (of the order of 10K2 mm)
and so y� can be very large even for small flow depth. High streamwise time-
averaged velocity given by equation (3.10) may not be sustainable above some
level, y�Z ŷ2, by the pressure gradient responsible for the flow. The motion in
y�O ŷ2 is thus wake flow. Numerous experiments including the present one
estimate that approximately ŷ2ZRe=5. A model of wake flow was given by Coles
(1956) and Nezu et al. (1997) in the absence of seepage. In the present study, it is
noted that the turbulence assumption (3.4) continues to hold in the wake region
and so the representations (3.10), (3.12) and (3.14) remain valid with new
constants A0

0 and B 0
0 in place of A0 and B0, respectively. As the rate of increase

with ln y� in �u is lower in the wake, B 0
0!B0 or 2.44. The constant A0

0 depends
implicitly on v̂0, owing to the continuity of flow across y�Z ŷ2 of the turbulent
outer layer.
4. Flow in inner layer

The flow is usually considered to be viscous in a sublayer close to the bed,
followed by an intermediate layer (buffer layer), where transition to turbulent
flow takes place (Schlichting 1968). Tien & Wasan (1963) gave an elegant
treatment of the composite two layers, termed inner layer in the present
study, based on the power series expansions in y measured on the scale y/ut.
The only underlying assumption in the method is differentiability of the
velocity components up to a few desired orders, implying smooth matching
with the solution for the outer layer. The method adopted here is based on
(2.2) and (2.3) as governing equations. The boundary conditions are crucial, as
the bed is rough with three-dimensional corrugation. Miksis & Davis (1994)
examined it in the context of the passage of a two-dimensional wave in a
two-layer fluid over a rough boundary. For analysis, the corrugations are
modelled by the equivalent two-dimensional roughness model. Noting that the
scale of roughness is much smaller than the scale of interest in the low viscous
flow close to the boundary, it may be possible to replace the actual boundary
by a mean smooth boundary on which an effective Navier slip condition holds.
After detailed analysis following the method of matched asymptotic
expansions, they conclude that if l represents the effective mean height of
Proc. R. Soc. A (2007)
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protrusions (that is equivalent roughness height) over yZ0, then the
streamwise and vertical velocity components must satisfy for yZ0, the Navier
slip conditions

�uCl
v�u

vy
Z 0; �v Z 0: ð4:1Þ

In the present case, the seepage velocity is present in the vertical direction.
Hence, at yZ0, one can take the Navier slip conditions as

�uCl
v�u

vy
Z 0; �v Z v0; u 0 Z v 0 Z 0: ð4:2Þ

The last condition indicates that turbulence does not exist in the viscous
sublayer. Assuming admissibility of power series expansions satisfying the
boundary conditions (4.2), one obtains

�u ZU1ðyKlÞCU2y
2CU3y

3CU4y
4 CU5y

5 C/ ð4:3Þ

where U1, U2, U3, . are functions of x by virtue of the low seepage velocity.
Substituting equation (4.3) in equation (2.2) (continuity equation of time-
averaged velocity components) and integrating the resulting equation yields

�v Z v0 ClU 0
1yK

1

2
U 0

1y
2K

1

3
U 0

2y
3K

1

4
U 0

3y
4K

1

5
U 0

4y
5K/ ð4:4Þ

where U 0
1, U 0

2, U 0
3,. denote differentiation with respect to x. Similarly,

turbulence fluctuation components are represented by

u 0 Z u1yCu2y
2 Cu3y

3C/ ð4:5aÞ

v 0 Z v1yCv2y
2Cv3y

3 C/ ð4:5bÞ

where u1, u2, u3, . and v1, v2, v3, . are functions of x and t. Inserting
equations (4.5a) and (4.5b) in equation (2.2) (continuity of turbulence
fluctuations) yields

vu1
vx

yC
vu2
vx

y2 C
vu3
vx

y3 C/Cv1C2v2yC3v3y
2 C/Z 0: ð4:6Þ

Equating coefficients of different powers of y to 0, one gets

v1 Z 0; v2 ZK
1

2
$
vu1
vx

; v3 ZK
1

3
$
vu2
vx

;.: ð4:7Þ

The first condition is significant to determine the expression of t from
equations (4.5a) and (4.5b) as

tZKu 0v 0 ZK u1v2y
3 C u2v2 Cu1v3ð Þy4C/

� �
: ð4:8Þ

Using equations (4.3)–(4.5b) and (4.8) in equation (2.3b) with v1Z0 and
differentiating with respect to x, one obtains

v2�p

vxvy
ZK

v2

vx2
u1v2y

3C u2v2 Cu1v3ð Þy4 C/
� �

K 4v22y
3 C10v2v3y

4 C/
� �

: ð4:9Þ
Proc. R. Soc. A (2007)
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Therefore, integrating equation (4.9) with respect to y, one has

v�p

vx
Z

v�p

vx

���
yZ0

K
1

4

v2

vx2
u1v2ð ÞCv22

� �
y4K/: ð4:10Þ

Inserting equations (4.3)–(4.5b) and (4.10) in equation (2.3a) with v1Z0 and
following an integration with respect to y, one obtains another expression for t as

tZ
v�p

vx

���
yZ0

Cl2U1U
0
1 Cv0U1K2yU2

� �
yC KlU1U

0
1C2v0U2K6yU3

� � y2
2

C
1

2
U1U

0
1 ClðU2U

0
1KU1U

0
2ÞC3v0U3K12yU4 C

v

vx
u21

� �� �
y3

3

C
2

3
U1U

0
2Clð2U3U

0
1KU1U

0
3ÞC4v0U4K20yU5 C2

v

vx
u1u2ð Þ

� �
y4

4
C/:

ð4:11Þ
Comparing equations (4.8) and (4.11) and neglecting the O(l2) term, one gets

2yU2 Z
v�p

vx

���
yZ0

Cv0U1; 6yU3 Z 2v0U2KlU1U
0
1: ð4:12Þ

To get more insight, at the bed (yZ0), �vzv0 and turbulence (u0 and v0)
disappears. Thus, equations (2.2)–(2.3b) reduce to

v�u

vx
z0; v0

v�u

vy
zK

v�p

vx
Cy

v2�u

vy2
;

v�p

vy
z0: ð4:13Þ

From the above set of equations, it is inferred that �p is almost independent of y and

y
v2�u

vy2
Kv0

v�u

vy
z

v�p

vx
ZKðxÞ; ð4:14Þ

where K(x) is a function of x, since �p is independent of y. The general solution of
equation (4.14) is given by

�uzC1ðxÞCC2ðxÞexp
v0
y

� �
yK

KðxÞ
v0

y: ð4:15Þ

It is intuitive that since �v cannot increase exponentially, C2(x) equals 0. The
boundary condition in equation (4.2) at yZ0 yields C1(x)ZlK(x)/v0. Hence, the
solution is

�uzK
KðxÞ
v0

ðyKlÞ: ð4:16Þ

Comparing equation (4.16) with equation (4.3), it is possible to assume that
U1ZKK(x)/v0 and equation (4.12) yields

U2 Z 0; U3 ZK
l

6y
U1U

0
1: ð4:17Þ

The bed shear stress t0 and the shear velocity ut are given by

t0 Z ry
v�u

vy

����
yZ0

Z ryU1ðxÞ; ut Z

ffiffiffiffiffi
t0

r

r
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yU1ðxÞ

p
: ð4:18Þ

In the absence of seepage (v0Z0), U1, U4, U5, . are constants, and hence
equation (4.17) yieldsU2ZU3Z0. Thus, in this case, �u is a power series in y given
by equation (4.3), whereas in equation (4.4), all the derivative terms drop out and
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�vZv0. Similar is the case for t, given by equation (4.11), in which the fluctuation
terms v($)/vx also drop out. On the other hand, in the presence of seepage (v0s0),
the expression (4.3) would match with that in equation (3.8) under seepage
assumption if

U 0
1;U

0
3;U

0
4;U

0
5;.Z v̂0!terms of the order of 3: ð4:19Þ

Thus, using the expression for ut in equation (4.18), �u� in the inner layer is
given by

�u� Z y�K
utl

y
CÛ 3y

�3 C Û 4y
�4C Û 5y

�5 C/; ð4:20Þ

�v� Z v̂0 C
ylU 0

1

ut
y�K

1

2
$
y2U 0

1

u2
t

y�2K/; ð4:21Þ

where

Û 3 ZK
ylU 0

1

6u2t
; Û 4 Z

y

U1

	 
3=2 U4

U1

; Û 5 Z
y

U1

	 
2 U5

U1

: ð4:22Þ

The set of expressions in equation (4.22) is obtained using equation (4.17).
The non-dimensional Reynolds stress t� ðZt=u2tÞ, given in equation (4.11),
becomes

t� Z
1

6
1K

v0l

y

	 

y2U 0

1

u3
t

K4Û 4C
1

3U 2
1

ffiffiffiffiffiffi
y

U1

r
$
v u21

� �
vx

2
4

3
5y�3

C
v0
ut

Û 4K5Û 5 C
y

2U 2
1

$
vðu1u2Þ

vx

� �
y�4 C/:

ð4:23Þ

In the series representations of equations (4.20) and (4.23), it is sufficient to
consider the terms up to fifth and fourth power, respectively. In equation
(4.20), the term containing Û 3 may be dropped owing to its smallness. In
equation (4.12), fluctuating terms in both the coefficients of y�3 and y�4 are
proportional to y3 according to equation (4.18). Therefore, the terms are
negligible. Moreover, the first term of the coefficient of y�3 is negligible owing
to the smallness of y2U 0

1.
5. Experimentation

The experiments were conducted in a horizontal glass-walled flume of 0.6 m
wide, 0.71 m deep and 10 m long, as shown in figure 1b. The seepage test zone
consisted of a sand recess 0.3 m deep and 2 m long having a width of the flume
located 6 m downstream of the flume inlet. An arrangement, similar to Chen &
Chiew (2004), was made to apply uniform upward seepage from the bottom of
the recess through the sand bed. A false floor at an elevation of 0.3 m from the
flume bottom was constructed along the length of the flume to maintain the
same level of the sand bed in the sand recess. The uniform sand having same size
used for the test was glued over the false floor to simulate the turbulent flow
over a rough planar sand bed. The flow discharge, controlled by an inlet valve,
was measured using a calibrated V-notch weir fitted at the inlet of the flume. An
adjustable tailgate in the downstream of the flume controlled the flow depth in
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the flume. Two uniform sands of median diameters dZ0.81 and 1.86 mm were
used in the experiments. The degree of uniformity of the particle size
distribution of a sand sample is defined by the value of geometric standard
deviation, given by (d 84/d16)

0.5, which is less than 1.4 for uniform sand (Dey
et al. 1999). The flow conditions were set in such a way that sediment transport
in the sand recess was absent.

The instantaneous velocity components were detected by a SonTek-made 5 cm
downlooking ADV. The ADV functioned on a pulse-to-pulse coherent Doppler
shift to provide instantaneous velocity components at a rate of 50 Hz. Output
data from the ADV was filtered using a spike removal algorithm.
6. Determination of constants

The constants appearing in the representation of flow, equations (3.10), (3.14),
(4.20) and (4.23), are ut, B0, A0, C0, Û 4, Û 5 and A0

0 and B 0
0 for the wake. In the

experiments, the vertical distribution of flow characteristics was measured by the
ADV along the vertical central section xZ50 cm of the test bed, when vertical
seepage was not allowed. The origin of coordinates O is assumed to be located at
the upstream end of the test section. When upward seepage was allowed, flow
measurements were carried out along three sections at xZ33.3, 50 (central
section) and 66 cm downstream. By these choices, any disturbance at the entry
(xZ0) and exit (xZ100 cm) sections was avoided.

The normalization of �u as well as that of Reynolds stress t depends on ut.
The shear velocity ut is essentially a constant for a given bed sediment, seepage
velocity and flow condition. Its direct estimation is difficult in the ambient
motion close to the bed. This difficulty is circumvented by noting that for the
outer layer below the wake, B0Z2.44 as argued earlier. The least-square fit of
the generalized logarithmic law for �u�, namely equation (3.10), to the
experimental dataset for a particular flow condition and section of measurement
was carried out for that value of ut which yields B0Z2.44. The least-square fit
also yields the estimate of A0. The computed value of ut was used to estimate
the constants A0

0 and B 0
0 in the wake region y�O ŷ2ZRe=5. This was done by

least-square fitting of the experimental value of �u� in the region of the
theoretical curve of A0

0CB 0
0ln y�.

The two unknowns Û 4 and Û 5, as in Tien & Wasan (1963), can be numerically
determined by matching �u�, v�u�=vy� and v2�u�=vy�2 at the interface y�Z ŷ1 with
the inner layer. The following equations are obtained from the last three
conditions:

Û 4ŷ
4
1 Z 1:25B0Kŷ1K1:5Û 3ŷ

3
1; ð6:1aÞ

Û 5ŷ
5
1 ZK0:8B0C0:6ŷ1 C0:6Û 3ŷ

3
1; ð6:1bÞ

B0ln ŷ1K0:6ŷ1K0:1Û 3ŷ
3
1K0:45B0C

utl

y
CA0 Z 0; ð6:1cÞ

where ŷ1 is the real-valued solution of equation (6.1c) and can only be solved for
a particular experiment and estimate of l.

The sand bed can be regarded as a dense packing of spherical particles,
assuming spheres to be of equal diameter d. If the protrusion height is considered
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Table 1. Expressions for �u� for dZ0.81 mm.

v0 (cm sK1) ut (cm sK1) expression for �u� range of y�

0 3.484 y�K21.92K1.72!10K5 y�4C2.73!10K7 y�5 27.44%y�%38
K7.08C2.44 ln y� 38!y�%1040
2.62C1.08 ln y� 1040!y�

0.0153 3.505 y�K22.06K1.68!10K5 y�4C2.64!10K7 y�5 27.55%y�%38
K7.05C2.44 ln y� 38!y�%1000
4.85C0.76 ln y� 1000!y�

Table 2. Expressions for �u� for dZ1.86 mm.

v0 (cm sK1) ut (cm sK1) expression for �u� range of y�

0 3.777 y�K54.58K1.05!10K6 y�4C6.48!10K9 y�5 67.11%y�%97
K6.29C2.44 ln y� 97!y�%1170
K1.39C1.75 ln y� 1170!y�

0.0153 4.157 y�K60.07K8.03!10K7 y�4C4.52!10K9 y�5 74.37%y�%110
K6.44C2.44 ln y� 110!y�%1640
K1.31C1.74 ln y� 1640!y�
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to be at the height above the point of contact with the spheres at the base, on
average, it can be proved that lZ0.78d. Using such an estimate of l, ut and A0,
equation (6.1c) can be numerically solved to determine ŷ1, letting us to estimate
Û 4 and Û 5 from equations (6.1a) and (6.1b), respectively. This completes the
method of estimation of all constants ut, B0, A0, Û 4, Û 5, A

0
0 and B 0

0 for any cross-
section, which appear in the principal terms of the expression of �u�, given by
equations (3.10) and (4.20). The same is the case for t� given by equations (3.14)
and (4.23). The resulting expressions for �u� (in the case of no seepage and upward
seepage) along with the ranges (ranges of y�) of their applicability are given in
tables 1 and 2. Here, it is pertinent to point out that the lowest value of y� indicates
the zero-velocity level. For example, the zero-velocity level of the first expression
in table 1 is at y�Z27.44.

The constant C0 appearing in Reynolds stress is estimated by equating
(3.14) and (4.23) at y�Zy1. It turns out to be unity in the case of zero
seepage. This is in accordance with the solution for the corresponding Couette
flow problem (Schlichting 1968). For v̂0O0, the computed value of C0 is found
to be less than unity.
7. Results and discussion

The theoretical curves of non-dimensional streamwise velocity �u� (equations (3.10)
and (4.21)) and the corresponding experimental data are presented in figure 2a–d.
The theoretical curves of non-dimensional Reynolds stress t� (equations (3.14) and
(4.23)) are presented in figure 3a–d. The experimental values of the Reynolds shear
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Figure 2. Distribution of time-averaged velocity �u�ðy�Þ with (a) no seepage for sediment size
dZ0.81 mm, (b) no seepage for sediment size dZ1.86 mm, (c) upward seepage (v0Z0.0153 cm sK1)
for sediment size dZ0.81 mm at different distances, and (d ) upward seepage (v0Z0.0153 cm sK1)
for sediment size dZ1.86 mm at different distances.
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stress t estimated from its definitionKu 0v 0 based on the velocity fluctuations were
relatively small, compared with the data of streamwise time-averaged velocity �u,
by a factor of at least 0.1. Moreover, the ADV has a measuring volume of 0.09 cm3.
This makes values of fluctuating velocity and hence the Reynolds stress subject to
uncertain attenuation and error. In spite of this fact, the data show trends similar to
the theoretical curves.

For the distribution of streamwise velocity �u�ðy�Þ, figure 2a,b, under no seepage
condition ðv̂0Z0Þ with sediment sizes dZ0.81 and 1.86 mm, show that the
experimental data points collapse on the theoretical curves. Similar observations
are made in the case of upward seepage velocity v0Z0.0153 cm sK1 at different
streamwise distances x (figure 2c,d ). For the distribution of the Reynolds stress
t�(y�), figure 3a–d shows a satisfactory agreement between the theory and the
experimental data without and with seepage velocity.
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Figure 3. Distribution of Reynolds stress t�(y�) with (a) no seepage for sediment size dZ0.81 mm,
(b) no seepage for sediment size dZ1.86 mm, (c) upward seepage (v0Z0.0153 cm sK1) for sediment
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8. Conclusions

A theory has been developed for the steady free surface flow over a horizontal
rough bed with uniform upward seepage normal to the bed. It is based on the
concepts that in the fully turbulent outer layer, the Reynolds stress, varying
gradually with vertical distance, is much greater than the viscous shear stress.
Using this concept in the RANS equations and adopting the methodology of
Tien & Wasan (1963) for inner layer, exact expressions for the streamwise and
normal components of velocity have been constructed containing some bounding
and infinitesimal terms. The principal parts of the expressions contain some
unknown constants, which were estimated using the experimental data. In this
way, for the streamwise velocity distribution, a modified logarithmic law and a
fifth-degree polynomial law including effective height of protrusions have been
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obtained in the outer layer and inner layer, respectively. The expressions for the
Reynolds stress have also been derived from the developed theory of two layers.
The exact expressions for all the quantities contain some small bounding or
infinitesimal terms, which are ignored in the computations. The velocity and
Reynolds stress distributions estimated from the present theory are in agreement
with the experimental data for no seepage and upward seepage conditions.

The first author is deeply thankful to the Centre for Theoretical Studies at the Indian Institute of
Technology, Kharagpur for providing fellowship to visit the Institute during the course of this study.
References

Cheng, N. S. & Chiew, Y. M. 1998 Modified logarithmic law for velocity distribution subjected to
upward seepage. J. Hydraul. Eng. 124, 1235–1241. (doi:10.1061/(ASCE)0733-9429(1998)
124:12(1235))

Chen, X. & Chiew, Y. M. 2004 Velocity distribution of turbulent open-channel flow with bed
suction. J. Hydraul. Eng. 130, 140–148. (doi:10.1061/(ASCE)0733-9429(2004)130:2(140))

Clarke, J. H., Menkes, H. R. & Libby, P. A. 1955 A provisional analysis of turbulent boundary
layers with injection. J. Aero. Eng. 22, 255–260.

Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191–226.
(doi:10.1017/S0022112056000135)

Dey, S. & Cheng, N. S. 2005 Reynolds stress in open channel flow with upward seepage. J. Eng.
Mech. 131, 451–457. (doi:10.1061/(ASCE)0733-9399(2005)131:4(451))

Dey, S., Dey Sarker, H. K. & Debnath, K. 1999 Sediment threshold under stream flow on
horizontal and sloping beds. J. Eng. Mech. 125, 545–553. (doi:10.1061/(ASCE)0733-
9399(1999)125:5(545))

Maclean, A. G. 1991a Open channel velocity profiles over a zone of rapid infiltration. J. Hydraul.
Res. 29, 15–27.

Maclean, A. G. 1991b Bed shear stress and scour over bed-type river intake. J. Hydraul. Eng. 117,
436–451.

Miksis, M. J. & Davis, S. H. 1994 Slip over rough and coated surfaces. J. Fluid Mech. 273, 125–139.
(doi:10.1017/S0022112094001874)

Nezu, I., Kodata, A. & Nakagawa, H. 1997 Turbulent structure in unsteady depth-varying open-
channel flow. J. Hydraul. Eng. 123, 752–763. (doi:10.1061/(ASCE)0733-9429(1997)123:9(752))

Oldenziel, D. M. & Brink, W. E. 1974 Influence of suction and blowing on entrainment of sand
particles. J. Hydraul. Div. ASCE 100, 935–949.

Prinos, P. 1995 Bed-suction effects on structure of turbulent open-channel flow. J. Hydraul. Eng.
121, 404–412. (doi:10.1061/(ASCE)0733-9429(1995)121:5(404))

Reichardt, H. 1951 Vollstandige darstellung der turbulenten geschwindig-keitsverteilung in glatten
leitungen. ZAMM 31, 208–219.

Schlichting, H. 1968 Boundary layer theory. New York, NY: McGraw-Hill.
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