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Anomalous energy dissipation of electron current pulses propagating
through an inhomogeneous collisionless plasma medium
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The evolution of fast rising electron current pulses propagating through an inhomogeneous plasma
has been studied through electron magnetohydrodynamic fluid simulations. A novel process of
anomalous energy dissipation and stopping of the electron pulse in the presence of plasma density
inhomogeneity is demonstrated. The electron current essentially dissipates its energy through the
process of electromagnetic shock formation in the presence of density inhomogeneity. A direct
relevance of this rapid energy dissipation process to the fast ignition concept of laser fusion is
shown. © 2009 American Institute of Physics. [DOI: 10.1063/1.3122939]

The interaction of fast rising electron current pulses with
a fully ionized plasma is an important area of research activ-
ity. It has applications in areas as diverse as fast ignition (FI)
concept of laser fusion, the dynamics of plasma opening
switches, the physics of nondiffusive penetration of magnetic
fields in astrophysical plasmas, the kinetics of electron layer
in collisionless magnetic reconnection phenomena, etc.'® An
issue that is of frontline interest in these contexts is the rate
at which the energy associated with the current pulse dissi-
pates in the plasma. For a weakly collisional or collisionless
plasma the energy dissipation can occur only through some
anomalous process. In this work a novel anomalous energy
dissipation is demonstrated for the first time by numerically
simulating the two-dimensional (2D) electron magnetohy-
drodynamic (EMHD) equations describing the propagation
of fast rising electron pulse structures through an inhomoge-
neous plasma.7 The mechanism relies on energy dissipation
in electromagnetic shock structures which form because of
EMHD propagation effects in the presence of plasma density
inhomogeneity. A direct relevance of such a process to FI
concept of laser fusion is also outlined.

The propagation of a short duration electron current
pulse is perceived by the plasma as a propagating low fre-
quency electromagnetic disturbance. The plasma tries to
shield itself from this disturbance by inducing return cur-
rents. The combination of forward current (due to incoming
current pulse) and return shielding currents of the plasma is
unstable to fast electromagnetic instabilities known as Wei-
bel instabilities. This instability separates the forward and
return currents spatially. This leads to the formation of cylin-
drical current channels. The center of the cylindrical channel
carries the forward current which is surrounded by a cylin-
drical shell of return plasma current. The flow configuration,
thus varies along z and the radial direction, and is indepen-

dent of 6. This current configuration produces poloidal )
magnetic fields. For convenience a transverse slice of the
cylinder is represented by the slab x-z coordinate system.
This is strictly valid in the limit when the radius of curvature
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of the cylinder is large compared to the typical gradient
scales. In this representation the magnetic field associated
with the combination of forward and return currents forms
two lobes (a dipolar structure) with positive and negative
magnetic field directed along y.7 Since the dynamical time
scale of the phenomena is associated with fast plasma re-
sponse at electron time scales, this magnetic field configura-
tion can be identified with the axially translating dipole so-
Iution of the EMHD equations.g’9 We have numerically
simulated the propagation of such dipolar configurations in a
plasma with strong plasma density gradients.

The density inhomogeneity is incorporated in the EMHD
formalism through a recently proposed generalized electron
magnetohydrodynamic (G-EMHD) model in 2D x-z plane.’
The G-EMHD model in 2D with magnetic field component
only along the symmetry direction y and inhomogeneity
along z, the propagation direction of dipole, can be written as

G 1 ab a1 ) -
—+—yXVb-VG=G——\|— | =-nV°b+ uV-V-b,
at  ny ox dz\ ny
(1)
1 1 dng db
G=—Vh-b-—5"02
ng ny 9z dz

For Eq. (1) we have chosen to normalize the magnetic field
and electron density by their typical values By, and ng, re-
spectively. Time is normalized by the electron gyroperiod
corresponding to By, w, o= 1/(eBgyy/mc), length by the elec-
tron skin depth d,g=c/ w,, (Where w;eo=47m0062/ m), and 7
is the normalized classical resistivity parameter. We have nu-
merically simulated Eq. (1) for a variety of initial configura-
tions and distinct density inhomogeneities. Here we present
results for the evolution of an initial configuration of a 2D
dipolar structure shown in Fig. 1. The plasma density inho-
mogeneity has been chosen to have a tangent hyperbolic den-
sity profile along z, as shown in the subplots [(g) and (h)] of
Fig. 1. The profile thus has homogeneous regions of both low
and high densities in the simulation domain separated by a
spatial region in which the density varies sharply. The dipole
axis is placed parallel to the z direction and it moves toward
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FIG. 1. (Color online) The contour plots of the mag-
netic field b in the x-z plane is shown in subplots (a)

(b) (e)

Core

and (b) (inertialess case) (d) and (e) (full G-EMHD) at
two different times. The numbers (—2,0,2) on the axis
of these plots show length in units of electron skin
depth (corresponding to the low density plasma). The
magnetic field b profile in x at the midplane of the
structure in z has been depicted at various times in sub-
plots (c) and (f) for inertialess and the full G-EMHD
simulations respectively. Subplots (g) and (h) show the
inhomogeneous plasma density profile through which
the dipolar structure evolves. The cross X and the ar-

increasing plasma density. The simulations show that as the
dipole encounters an increasing plasma density, a transverse
drift velocity proportional to the magnetic field at a given
location, viz., v;==bd(1/ny)/dz is induced. The sign of
magnetic field b being opposite in the two lobes, the lobes
drift in opposite direction. While translating toward increas-
ing plasma density they approach each other forming an
electromagnetic shock structure. The shock formation can be
clearly seen from the constant contour plots of b shown for
simulations for the inertialess case as well as that for full
G-EMHD equations in Fig. 1. In the inertialess case the
shock structure is more prominent. The dipole has no axial
velocity for the inertialess case. Thus for this case the struc-
ture is kept initially itself at a location where the plasma
density gradient exists (the location is shown by the X sym-
bol in the density profile shown in subplots [(g) and (h)] of
Fig. 1). For the simulations with the full G-EMHD equations
including inertia terms the dipole has an axial translational
speed. In this case as the lobes of the dipoles are pushed
closer to each other and their size diminishes, the associated
maximum magnetic field increases, as a result of which the
dipole translates faster through the inhomogeneous region.
The structure, therefore, keeps penetrating toward the higher
density region and it also keeps getting sharper. However,
once it reaches the plateau of the high density side it again
readjusts its shape to a dipolar form corresponding to the
local skin depth.

Density

5 10

row — marks on these subplots show the initial loca-
tion of the dipole for inertialess (dipole has no axial
velocity in this case) and full G-EMHD simulations.

We now evaluate the energy dissipation that occurs as a
result of the formation of sharp structure transverse to the
plasma density gradient. The energy associated with the di-
pole structure is the sum of magnetic and electron kinetic
energies and is given by the expression E=[[(b?
+(Vb)?/n)dxdz, which is conserved in the absence of any
dissipation. The choice of n=u=0 ensures that there is no
energy dissipation while the structure (resolved well by the
spatial grid) moves through the homogeneous region. We
observe that as the dipolar magnetic structures translate
through the inhomogeneous profile region, the energy E ex-
hibits a sharp fall as shown in subplot (a) of Fig. 2. The
timing of this drop in energy content of the dipole is ob-
served to coincide with the interval when the dipolar struc-
ture translates past the inhomogeneous plasma density re-
gion. This sharp fall in energy is due to the shock formation,
which cannot be resolved adequately no matter how fine the
resolution is. The value of AE is typically the same for dif-
ferent values of the grid resolution Ax. The shock width es-
sentially adjusts itself according to the grid resolution. The
total energy dissipation is found to be independent of the
value of the grid dissipation. We have also carried out simu-
lations with finite and various values of 7 and . The energy
dissipation for these cases has been shown in subplots (b)
and (c). It can be seen that in these cases the energy also
dissipates while the structure passes through the homoge-
neous density region of the plasma. However, the drop in
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FIG. 2. (Color online) Evolution of the total energy of the structure for full
G-EMHD simulations, as it propagates through the inhomogeneous plasma
density (a) for various grid resolutions (b) for simulations with finite resis-
tivity parameter 7 and (c) with finite viscosity parameter u in G-EMHD
equations. A thick dashed vertical line shows the time when the dipole enters
the inhomogeneous plasma density region.

energy while the structure moves through the inhomoge-
neous density region remains approximately the same for
different values of 7 and w. Also this AE compares well with
the case of 7=u=0 of subplot (a) of the same figure, where
only grid dissipation was operative. We thus find that the
energy dissipation is independent of the value as well as the
form of dissipation. This, as argued below is due to a suitable
adjustment of shock width /. with the dissipation coefficient.
So, even when the dissipation tends toward zero (is negli-
gible) the total energy dissipation remains unaffected.

We now provide a physical understanding of the process
of shock formation and also show how the magnitude of
energy dissipation would be insensitive to the value of dissi-
pation coefficient. As the two lobes of the dipole approach
each other it leads to the steepening of the electron current
gradients. The steepening has its origin in the influence of
plasma inhomogeneity on the EMHD equations. In the iner-
tialess limit G=—b and Eq. (1) gets simplified to db/dt
—b(db!dx)d(1/ny)/ dz= nV>*b. For a simple density variation
of the form d/dz(1/ny)=-K, (here K, the inverse of the nor-
malized density scale length is assumed to be a positive con-
stant, minus sign signifying an increasing plasma density
with z) this is Burger’s equation. Burger’s equation is known
to produce shock structures. Since shock is along x, for small
7, we have 7V?b~ 5d®b/dx*. The analytical form of the
shock structure can be obtained by seeking stationarity in a
frame moving with a speed u. Thus, upon replacing d/dt by
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—ud/dx and integrating with respect to x, we get in the iner-

tialess limit
boK —
o= 8 (f +1<2) . 2)
2 ]

We have used the condition b=by, and db/dx=0 at the
boundaries. The parameter K, is the second constant of inte-
gration to be determined from the condition x=—o, b=b,. It
is clear from the expression of b that the layer width [,
=27/ (boK—u) scales linearly with 7. The rate of heat dissi-
pation in this sharp layer would be given by

a (L (k[ gp\2
Q:fffq;(—) dxdzdy. 3)
ox

The range of z=L (the shock length) and y (the third dimen-
sion) is the system length along this dimension=a. The x
coordinate, however, has to be integrated over the layer
thickness /,~ 7. Retaining only byK in comparison to u we
obtain the rate of energy dissipation in the shock structure as

b%aL

0= ﬂl—=—=—KLve. (4)

u VboK—-u
b(x)= X + anh

X

Here we have replaced one of the b, by av, to obtain the last
equality. Here v, is the incoming electron velocity. The in-
dependence of energy dissipation Q from the magnitude of
classical resistivity parameter 7 in the presence of sharp den-
sity gradients is known as the EMHD resistance and has been
considered in literature earlier.' It is interesting next to see
what fraction of the incoming energy gets dissipated in the
shock structure in this fashion. The incoming rate of energy
influx is E =(b§/2)vea2, provided one assumes that the typi-
cal current configuration has identical extent in the two trans-
verse dimensions at a large distance from the density profile
region. Here, for the purpose of estimation only magnetic
energy has been considered. Typically, for a structure of the
size of electron skin depth, both kinetic and magnetic ener-
gies are of similar order. This tells us that a fraction (KL) of
the incoming energy gets dissipated in the shock structure of
length L. Thus if the shock length is of the order of the
inhomogenity scale length K~! then the entire incoming en-
ergy would get dissipated.

We next study the influence of electron inertia related
terms. As the density gradient induced drift velocity brings
the two lobes of the dipoles toward each other, it causes an
enhancement of electron velocity shear in the central region.
This enhanced velocity shear region is then susceptible to the
Kelvin—Helmbholtz-like instabilityw’ll in the presence of elec-
tron inertia related terms. This instability essentially mani-
fests through electron inertia dependent nonlinearity y
X Vb-VV?b in the evolution Eq. (1) for G. The instability
converts the electron flow energy into fine scale vortices. In
three-dimensional (3D) the vortex flows cascade the energy
toward finer scales and eventually dissipate into heat through
electron Landau damping in the direction parallel to the mag-
netic field. This effect can be modeled by an anomalous elec-
tron viscosity coefficient u,. In fact in one of our earlier 3D
EMHD simulations,” it has been shown that the nonlinear
stage of the velocity shear driven instability exhibits electro-
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magnetic turbulence and produces an effective viscosity p,.
In the collisionless 7=0 case, this anomalous viscosity u,,
would play a crucial role and define the shock width. Thus
mocking up the electron inertia related effects by an effective
viscous dissipation ~ u,V?V?h, we can write an approximate
equation in the collisionless limit as db/dt+Kbdb/dx=
—u,*b/ dx*. The balance between nonlinear and the dissipa-
tion term defines the shock width, which scales as [,
~ (w,/Kb)'> here. A net energy dissipation rate Q over a
length L in this case is ~[[u,(d?b/dx*)?dx]2mal
~ pu2maKLb?/x* ~2maKLb?. Using, Ampere’s law we have
b~av,, which gives Q~ KLb?a*v,. This leads to a similar
conclusion as before about the effectiveness of the shock
dissipation mechanism and the independence of the energy
dissipation in the shock region from the magnitude of the
anomalous viscosity coefficient .

We now apply our observations to the problem of FIL."
The FI scheme is essentially a variant of the Inertial confine-
ment scheme for which the tasks of target compression and
ignition are carried out separately. In this scheme the electron
pulse generated at the critical density surface of the precom-
pressed target by the relativistically intense second laser
pulse is employed to create a hot spot in the compressed core
for ignition. The observation of higher neutron yield in the
scaled down experiments shows the success of this
concept.13 However, there continue to be doubts on whether
the scheme would be successful in the context of full scale
experiments, where much higher energy electrons (more than
10 MeV) would be required to stop within a length scale of
a few microns in a collisionless plasma. In this context the
anomalous stopping mechanism presented in this paper could
prove extremely important.

Let us now estimate the typical energy of the electrons
that can be stopped through this mechanism. The current 7 in
the channel is related to the magnitude of the magnetic field
B through Ampere’s law as B=2[/ac, where a is the dimen-
sion of the channel. The rate of energy dissipation Q can then
be expressed in dimensional variables as Q=(B*/4m)ma*v,
=l v,/c% v, being the electron velocity. Since the rate of
energy dissipation is essentially the I’R (R the resistance)
heating of the system, for this case the resistance would be
R=v,/c? in cgs units. The effective voltage drop can then be
estimated from V=IR. The typical magnitude of the electron
currents in FI experiments is in the range of several hundreds
of kiloamperes, and the electrons typically have relativistic
energy, their velocity v,~c, the speed of light. R~1/c
~30 . This helps in estimating the energy of those elec-
trons which can get stopped by this mechanism for a given
value of current in the channel. Thus for a 300 kA of current,
electrons with energy as high as 10 MeV can be stopped by
this process. This estimate is certainly very exciting as it
supports the possibility of heating through electron current
pulses for ignition.

We would now like to see whether the energy dissipation
observed in our simulations provides an estimate of R which
is consistent with the derivation above. The current pulse
structure propagates with a normalized velocity vy=0.01.
From Fig. 2 a time of Azy=100, the total dissipated energy is
AEy=5% 1072 from the figure. The suffix N is used to indi-
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cate the normalized values here. This provides us with the
value of normalized resistivity as Ry=5X1073/0.01=0.5.
For the current pulse structures of the typical dimension of
electron skin depth a relationship w.~ w,v,./c can be ob-
tained between the typical values of the magnetic fields and
the electron velocity v,. The value of Ry provided above then
translates to a resistance of R~ 0.5v,/c*~ O(v,/c?). In the
case of FI scenario v,~c which implies that R~0.5/c
=0.5X30 Q=15 €, which is in close agreement with the
analytical estimate made above.

We have presented a new mechanism of rapid energy
dissipation through shock formation for a current pulse mov-
ing past an inhomogeneous plasma medium. The mechanism
was illustrated through G-EMHD fluid simulations and an
analytical understanding was also provided. It is interesting
to note that our proposed mechanism is consistent with some
recent particle-in-cell simulations'*™'® carried out in the con-
text of propagation of energetic electron current toward the
dense target core for the FI plasma. These PIC results show a
predominance of heating in the region where density gradi-
ent is high (the region where the shock structures form). The
role of additional effects arising due to dense plasma, un-
compensated charge, relativistic electrons for true FI param-
eters on this particular mechanism need to be studied. Thus,
a more detailed investigation of the mechanism operating in
the PIC simulations and comparison with G-EMHD fluid
simulations here, promises to be quite rewarding.
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