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Abstract

The theory of mean field electrodynamics for diffusive processes in Electron

Magnetohydrodynamic (EMHD) model is presented. In contrast to Magne-

tohydrodynamics (MHD) the evolution of magnetic field here is governed by

a nonlinear equation in the magnetic field variables. A detailed description of

diffusive processes in two dimensions are presented in this paper. In particu-

lar, it has been shown analytically that the turbulent magnetic field diffusivity

is suppressed from naive quasilinear estimates. It is shown that for complete

whistlerization of the spectrum, the turbulent diffusivity vanishes. The ques-

tion of whistlerization of the turbulent spectrum is investigated numerically,

and a reasonable tendency towards whistlerization is observed. Numerical

studies also show the suppression of magnetic field diffusivity in accordance

with the analytical estimates.
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I. INTRODUCTION

The transport and amplification properties of a large scale magnetic field remains an

area of active investigation. This is primarily due to its relevance in a variety of physical

phenomena. For example, the existence of magnetic field in the universe is being under-

stood on the basis of amplification process by some kind of dynamo mechanism. Another

interesting phenomenon is the release of high energy bursts in solar flares etc. It is believed

to occur as a result of the reconnection of magnetic fields, which can happen in the pres-

ence of finite diffusivity. However, there is only modest quantitative understanding of these

processes. The amount of magnetic energy released by reconnection depends on the value

of diffusivity, which turns out to be too small to provide an explanation of the vast energy

released in these bursts. There have been attempts then to understand these phenomenon

on the basis of turbulent magnetic field diffusivity, which is directly related to the question

of transport of a large scale magnetic field in the presence of turbulence. Most theories put

forward in these areas are cast within the Magnetohydrodynamic system. Lately, however,

there has been some work which make use of models pertaining to faster time scales. It is

on this regime that we are going to focus here.

In the present work we address the question of the diffusion of a long scale magnetic

field in the presence of small scale turbulent magnetic fluctuation ocurring at time scales

which are faster than the ion response time. For such phenomena the evolution of magnetic

field is governed by the electron flow velocity. The ions being stationary, the flow velocity

of the electrons determines the current and hence is thus directly related to the curl of

magnetic field. Thus unlike MHD, in this approximation, heretofore referred as the Electron

Magnetohydrodynamic (EMHD) approximation, the magnetic field itself evolves through an

explicitly nonlinear equation. This should be contrasted to the MHD model in which the

nonlinear effects creep indirectly through the lorentz force operating on the plasma flow.

The paper is organized as follows. In section II we present the salient features of the

Electron Magnetohydrodynamics (EMHD) model. In section III we study the evolution
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of mean magnetic field in two dimensions within the framework of EMHD description. In

two dimensions there is no amplification of the large scale field, it can only diffuse. We

obtain an expression for the effective diffusion coefficient and show that it is suppressed

from the naive quasilinear estimates. For complete whistlerization, i.e. when the turbulence

is comprised only of randomly interacting whistler waves (whistler modes being the normal

modes of the EMHD model), we show that there is no turbulent contribution to diffusivity.

This, then raises the pertinent question about the constituents of the turbulent state in

this particular model. It becomes important to know whether the turbulent state comprises

entirely of randomly interacting whistler waves or is it merely a collection of random eddies

or is it that a combination of both whistlers and eddies which represent the true scenario?

We address these question in section IV by numerically simulating the decaying turbulence

for EMHD equations. The initial condition is chosen to be random, i.e. no whistlers to

begin with. The study of final state reveals evidence of whistlerization. In section V we

numerically investigate the problem of diffusion, which shows suppression of magnetic field

diffusivity, essentially confirming our analytical findings of section III. Section VI contains

the discussion and conclusion.

II. THE MODEL

Electron Magnetohydrodynamics (EMHD) is the theory of the motion of magnetized

electron fluid in the presence of self consistent and external electric and magnetic fields. Such

a theory is applicable when the time scales of interest are fast (e.g. lying between electron

and ion gyrofrequencies) so that ions being massive and unmagnetized play a passive role

as a neutralizing background, and the dominant role in dynamics is played by a strongly

magnetized electron species. Phenomena having such time scales are often encountered in

a number of plasma operated devices (e.g. switches, focusing devices, fast Z-pinches etc.

[1]). Moreover, in the description of collisionless magnetic reconnection [2] as well as in

certain problems related to ionosphere, the EMHD paradigm is invoked frequently. The

3



entire whistler physics is premised on the EMHD regime of dynamics.

The EMHD model is obtained by using the (i) electron momentum equation (ii) the

current expressed in terms of electron velocity ~J = −neeve as the ions are stationary at fast

time scales depicted by the model; and (iii) the Ampere’s law, where displacement current

is ignored under the assumption (ω << ω2
pe/ωce). The magnetic field then evolves through

the following equation

∂

∂t
(∇× ~P ) = ∇× (~ve × (∇× ~P )) −meν∇× ~ve (1)

Here me and ~ve are the electron mass and the velocity respectively, ~P is the canonical

momenta defined as ~P = me~ve − e ~A/c ( ~A being the vector potential of the magnetic field),

ν represents the electron ion collision frequency. Using the current and electron velocity

relationship we obtain ∇× ~P = e(d2
e∇

2 ~B − ~B)/c; where de = c/ωpe is the skin depth.

It is clear from Eq.1 that the (d2
e∇

2 ~B − ~B) is frozen in the electron fluid flow. In

the limit when the electron inertia can be ignored, it is simply the magnetic field which

is carried along with the electron fluid. Since ve ∼ −∇ × ~B; the evolution equation for

magnetic field is nonlinear in ~B. This can be contrasted with the MHD model where the

magnetic field evolution is governed by an equation which is intrinsically linear in ~B. In

MHD, the nonlinear effects then arise as a result of back reaction on the fluid flow through

the Lorentz force terms. Basically, in EMHD ~ve ∼ −∇ × ~B, and so the flow is directly

related to the instantaneous magnetic field; whereas in MHD the evolution of flow velocity

~v depends on magnetic field through the Lorentz force term and hence ~v has a memory of

the past magnetic field configuration. The MHD model is applicable for scale lengths which

are longer than the ion skin depth. EMHD on the other hand depicts phenomenon having

scale lengths shorter than the ion skin depth. Another distinction from MHD arises from

the presence of intrinsic scale, viz. the electron skin depth de = c/ωpe in the EMHD model,

which separates the two regimes one in which electron inertia is important and the other

where the electron inertia plays no role. The character of the EMHD equation changes in

these two disparate regimes of scale lengths.
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In two dimensions (i.e. when the variations are confined in x − y plane) Eq.1 can be

simplified and cast in terms of two scalar variables ψ and b which define the total magnetic

field by the expression ~B = ẑ ×∇ψ + bẑ. The following coupled set then represents the

evolution of these scalar variables

∂

∂t
(ψ −∇2ψ) + ẑ ×∇b · ∇(ψ −∇2ψ) = η∇2ψ (2)

∂

∂t
(b−∇2b) − ẑ ×∇b · ∇∇2b+ ẑ ×∇ψ · ∇∇2ψ = η∇2b (3)

Here we have chosen to normalize length by electron skin depth de = c/ωpe, magnetic field

by a typical amplitude B0 and time by the corresponding electron gyrofrequency. In the

nonresistive limit the above coupled equations support the following quadratic invariants

E =
1

2

∫

[(∇ψ)2 + b2 + (∇2ψ)2 + (∇b)2]dxdy

which represents the total energy (sum of the magnetic and the kinetic energy),

H =
∫

(ψ −∇2ψ)2dxdy

the mean square magnetic potential and

K =
∫

(ψ −∇2ψ)(b−∇2b)dxdy

the cross helicity. The fields b and ψ are chosen to be uncorrelated initially in our numerical

simulations. On the basis of the existence of these quadratic invariants it can be infered

that the mean square magnetic potential cascades towards longer scale. We will be making

use of this later in our derivation for turbulent diffusivity.

Linearizing the evolution equations in the presence of uniform magnetic field B0 pointing

in the y direction leads to the following dispersion relation

ω = ±
kkyd

2
eωci

(1 + k2d2
e)

for whistlers, the normal mode of oscillations in the EMHD regime. It is clear form the dis-

persion relation that the propagation of these waves is preferentially parallel to the magnetic
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field. Furthermore, the whistler wave excitation leads to the coupling of the form bk = ±kψk

between the two perturbed fields. This relation between the perturbed fields then leads to

an equipartition between the energy associated with the poloidal and the axial fields. An

initial unequal distribution of energy in the poloidal and axial fields ultimately has a ten-

dency towards redistribution and achieving equipartition as a result of the whistlerization of

the spectrum. It is observed that time asymptotically the turbulent state in EMHD consists

of a gas of whistlers interspersed with a collection of random eddies.

There has been considerable interest lately to understand features of EMHD turbulence

both in two and three dimensions in terms of power spectra and the cascade properties of the

square invariants supported by the model [3]. Our attempt here, however, is to understand

the role of EMHD turbulence in determining the diffusion of long scale magnetic field.

III. SUPPRESSION OF TURBULENT MAGNETIC DIFFUSIVITY IN 2D

In this section we concentrate on the transport of magnetic field in two dimension. In

2D the magnetic field can only diffuse, thus our endeavour here is to estimate the effective

magnetic diffusivity in the presence of turbulence.

We will concentrate here on turbulent scale lengths longer than the electron skin depth.

In this regime of scale lengths i.e. for kde << 1 the electron inertia effects are unimportant

and as mentioned in earlier section the magnetic field lines are frozen in the electron fluid

flow. Thus turbulence in the electron velocity leads to the diffusion of magnetic flux. This

diffusion of magnetic field lines, arising as a result of turbulence and not due to resistivity, is

termed as the turbulent diffusivity of the magnetic field. The effective turbulent diffusivity

would thus depend on the electron fluid flow velocity. A naive quasilinear estimate would

thus predict that the magnetic field diffusivity β ∼ τv2
e ∼ τ(∇b)2, where τ is some averaged

correlation time for the electron flow velocity ve = ẑ ×∇b in the x − y plane, and b is the

z component of the turbulent small scale magnetic field. This suggests that the magnetic

field diffusion in the x − y plane is solely determined by the turbulent properties of the
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z (i.e. the axial) component of the magnetic field. However, this does not represent the

complete picture. We will now show that the presence of small scale turbulence in the

poloidal magnetic field results in the suppression of such estimates of diffusivity. This is

similar to the work carried out by Gruzinov [4], Cattaneo [5] and others in the context of

MHD. In MHD the magnetic field lines are tied to the plasma flow velocity. It is observed

that the magnetic field diffusivity is suppressed from the quasilinear estimates given solely in

terms of plasma flow velocity. The presence of small scale turbulence in the magnetic field,

which opposes the fluid motion through the ~J × ~B backreaction is found to be responsible

for such a suppression.

We choose to represent the small scale turbulence in the fields b and ψ as

b(x, t) =
∑

k

bk(t)exp(i~k · ~r)

ψ(x, t) =
∑

k

ψk(t)exp(i~k · ~r)

In addition to this we assume the existence of a large scale magnetic field pointing along y

direction characterized by the magnetic stream function of the following form

ψ0 = ψqexp(iqxx) + c.c

This magnetic field has a scale length q−1 >> k−1 and hence when considering averaging

over the scale of turbulence this field can be essentially treated as a constant in space. We

are interested in understanding the process of diffusion of this long scale field in the presence

of small scale turbulence in the variables b and ψ, i.e. we seek an equation of the kind

∂ψq

∂t
= −βq2

xψq (4)

and are interested in determining β in terms of the properties of small scale turbulence. The

qth fourier component of Eq.2 yields

(1 + q2
x)
dψq

dt
+ < ẑ ×∇b · ∇(ψ −∇2ψ) >q= −ηq2

xψq (5)
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The second term in the equation signifies the generation of qth mode as the result of nonlinear

coupling between the high k turbulent fields. The angular brackets indicate the ensemble

average. The above equation can be rewritten as

(1 + q2
x)
dψq

dt
+ i~q· < ẑ ×∇b(ψ −∇2ψ) >q= −ηq2

xψq

We denote < ẑ ×∇b(ψ − ∇2ψ) >q by ~Γ representing the nonlinear flux. Since qy = 0,

i~q · ~Γ = iqxΓx. The suffix x stands for the x component. Now

Γx =< −
∂b

∂y
(ψ −∇2ψ) >q= −

∑

k

iky(1 + k2
1) < bkψk1

>

where k1 = q − k.

To estimate the correlation < bkψk1
> we make use of the quasilinear approximation

where each of these fields gets generated from the other through the interaction with the

large scale field. Thus we can write

< bkψk1
>=< bkδψk1

> + < δbkψk1
>,

where it is understood that δψk1
is the magnetic perturbation in the plane arising as the

result of turbulent stretching of the mean magnetic field by the electron flow velocity ẑ×~kbk;

and δbk is the perturbation in the elecron flow (viz.ẑ × ~kδbk) arising from the Lorentz force

ẑk2
1ψk1

× ŷqxψq. It should be noted here that the first term corresponds to that derived from

a kinematic treatment, wherein the response of magnetic field on flow is not considered. The

second term takes account of the back reaction of the magnetic field on the electron velocity.

Thus dropping the second term would be tantamount to a purely kinematic approximation.

We will now show that the second term leads to a significant suppression of the estimates of

diffusivity obtained purely from the kinematic treatment. The equations for δbk and δψk1

are

(1 + k2
1)(−iωk + δωk)δψk1

= −ηk2
1δψk1

− ikyb−kiqx(1 + q2)ψq

and

(1 + k2)(−iωk + δωk)δbk = −ηk2δbk − iky1(k
2
1 − q2)ψ−k1

iqxψq
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Here ω represents the linear frequency and δω stands for the eddy decorrelation effect arising

from the coherent mode coupling. Substituting the above expression for δbk and δψk1
we

obtain the following expression for the nonlinear flux

Γx = −
∑

k

(

τk(k
2
y | bk |2 −k2

1yk
2
1 | ψk1

|2)
)

iqxψq (6)

where

τk =
1

(1 + k2)(−iωk + δωk) + ηk2

Here τk represents the spectral correlation times for the turbulent fields. We have assumed

that the turbulent scales are much longer compared to the electron skin depth (i.e. k << 1)

in the above derivation. The evolution equation for ψq under the approximation q << k <<

1 can then be written as

dψq

dt
= −q2

x

[

∑

k

τkk
2
y(| bk |2 −k2 | ψk |2)

]

ψq − ηq2
xψq (7)

The factor inside the square bracket in the right hand side of the above equation represents

the turbulent contribution to diffusivity. It is made up of two parts. The first part, depending

on k2
y | bk |2 represents the kinematic contribution and the second part arises as the result

of small scale turbulence in the poloidal component of magnetic field. It is clear that

turbulence in the poloidal component of magnetic field contributes towards suppressing

the magnetic field diffusivity. It should be noted here that for complete whistlerization,

the spectral components of the two fields would be related as bk = ±kψk, for which the

turbulent diffusivity vanishes exactly. For this extreme case, diffusion of ψq is determined

by resistivity alone. It appears then, that the understanding of the question of whistlerization

of the spectrum in the turbulent state is of paramount importance. We will study this issue

in the next section.

We rewrite Eq.7 as

dψq

dt
= −q2

x

∑

k

τk(< v2
x >k −k2 < B̃2

x >k)ψq − ηq2
xψq

= −
q2
x

2

∑

k

τk(< v2 >k −k2 < B̃2 >k)ψq − ηq2
xψq (8)
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In the above expression B̃x is the x component of the turbulent field. In writing the second

equality we have assumed that the turbulence is isotropic. Thus we can write

β =
∑

k

τk
2

(< v2 >k −k2 < (∇ψ)2 >k) + η

The kinematic diffusivity β0 would be just β0 =
∑

k τkv
2
k/2 + η, dependent on the turbulent

velocity alone. We can then express β in terms of the kinematic diffusivity as β = β0 −

∑

k τkk
2 < (∇ψ)2 >k /2. Following Gruzinov et al we assume an equivalence of correlation

times (i.e. assume τk = τ for each mode ) and write β = β0 − τ < k2 >< (∇ψ)2 > /2. To

estimate < (∇ψ)2 > we use the stationarity of the mean square magnetic potential. This

can be justified on the basis of inverse cascade property of the mean square potential. At

longer scales dissipation due to resistivity is small and the assumption of stationarity of

the mean square potential is reasonably good. We multiply Eq.2 by ψ and take ensemble

average. This yields

< ψ
dψ

dt
>=

1

2
<
dψ2

dt
>= 0

< ψẑ ×∇b · ∇ψ >=
1

2
∇· < ẑ ×∇bψ2 >= 0

we thus obtain

η < (∇ψ)2 >= B0 < ψ
∂b

∂y
>= βB2

0

Substituting for < (∇ψ)2 > and writing τ/2 as β0/ < v2 >= β0/ < (∇b)2 > we obtain

β =
β0

1 +
<k2>β0B2

0

η<(∇b)2>

=
β0

1 +Rm
<k2>B2

0

<v2>

(9)

Here Rm is the magnetic Reynold’s number. It is clear that for Rm >> 1 the suppression

of the magnetic field diffusivity occurs even when the turbulent velocity is larger than the

effective whistler speed in the presence of B0, the magnetic field.

IV. WHISTLERIZATION

We have observed in the earlier section that for a turbulent state which is a collection

of whistlers alone, the effective turbulent diffusivity goes to zero. Thus it is of significance
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to understand the whistlerization of turbulent spectra. This is identical to studying the

question of Alfvenization in the context of MHD model. It is interesting to note, however,

that in the MHD model Alfvenization leads to an equipartition between the magnetic and

the fluid energies. However, there can be no equipartition between the magnetic and kinetic

energies as a result of the whistlerization of the spectrum. Thus, the dominance of magnetic

or kinetic energies is dependent on whether the typical scale of turbulence are longer or

shorter that the electron skin depth respectively. In this paper we have concentrated on the

case where the turbulent scales are much longer compared to the electron skin depth. Thus

the total energy is predominantly magnetic. Whistlerization of the spectrum then leads to

an equipartition between the poloidal and the axial field energies.

We seek to understand the question of whistlerization by carrying out numerical simula-

tion. We evolve the two field ψ and b by Eq.2 and Eq.3 respectively, using a fully de-aliased

pseudospectral scheme. In this scheme the fields b and ψ are fourier decomposed. Each of

the fourier modes are then evolved, linear part exactly, whereas the nonlinear terms are cal-

culated in real space and then fourier transformed in k space. This requires going back and

forth in real and k space at each time step. The Fast Fourier Transform (FFT) routines were

used to go back and forth in the real and k space at each time integration. The time stepping

is done using predictor corrector with the mid point leap frog scheme. The simulation was

carried out with a resolution of 128X128 modes as well as at a higher resolution of 256X256

modes. The initial spectrum of the two fields b and ψ was chosen to be concentrated on a

band of scales and their phases were taken to be random. The two fields were chosen to be

entirely uncorrelated to begin with.

In Fig.1 we show a plot | bk | vs. | kψk | for the initial spectrum. It is clear from the figure

that the initial spectrum is totally different from a spectrum whistler waves, which in turn

would have shown up in the figure as a straight line passing through the origin with unit

slope basically depicting the relationship | bk |=| kψk | for whistlers. In Fig.2 and Fig.3 we

plot for the evolved spectrum | bk | vs. | kψk | for B0 = 0 and 0.5 respectively. It is clear that

most of the points now cluster close to the origin. It is suggestive, when contrasted with the
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initial condition of Fig.1 that the modes are trying to acquire whistler wave relationship. The

scatter in the plot indicates that both eddies and whistlers constitute the final state. Thus

a quantitative assessment of the turbulent state as regards whistlerization of the spectra is

required. For this purpose we introduce a variable

wk =
abs(| bk |2 − | ψk |2)

(| bk |2 + | ψk |2)
(10)

which essentially indicates the fractional deviation of the kth mode from being whistlerized.

In Table I we list the fraction of modes in the spectrum for which wk is within certain

percentage.

TABLE - I

Fraction of modes Whistlerized

Permissible Initial condition Evolved state Evolved state

% deviation B0 = 0 B0 = 0.5

2.5 0 0.028 0.031

5 0 0.053 0.054

7.5 0 0.077 0.080

10 0 0.101 0.102

It is clear from Table I that the initial state had zero fraction of modes having deviations,

wk even upto 10%, in the final state a reasonable fraction of modes acquire whistlerization

within a certain percentage of deviation as measured by the parameter wk. We also introduce

an integral quantity signifying overall whislerization as w =
∫

wkdk/
∫

dk. For a completely

whistlerized spectrum the variable w would take a value of 0, and the maximum value that

w can have is unity. For our initial spectrum w = 0.9957, after evolution (i)for B0 = 0

(corresponding to Fig.1), w = 0.5020, and (ii) for B0 = 0.5 (Fig.2) w = 0.4912. More

detailed studies of this kind, addressing the evolution of whislerization with time (e.g. by

studing how w evolves with time), its dependence on external magnetic field, etc. are being

carried out presently and will be presented in a subsequent publication. The question of
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Alfvenization of the spectrum in the context of MHD is also being pursued along similar

lines and will be presented elsewhere.

It is clear from our studies that the whistlerization of the spectrum is not complete.

Random eddies are also present in the evolved spectrum. This deviation from the whistler

wave relationship contributes towards the residual effective turbulent diffusivity of the mag-

netic field lines. In the next section we will carry out a numerical study to determine the

diffusivity of magnetic field in the presence of turbulence.

V. NUMERICAL RESULTS ON DIFFUSION

We saw in section III that the final expression of the effective diffusivity that we ob-

tained was based on the fact that the effective correlation times of the interacting modes

were ultimately the same for each of them. Whether this this really happens can only be

verified by a fully nonlinear numerical simulation. We have carried out a set of numerical

studies to investigate the question of magnetic diffusivity. We observe that the results of our

investigation agrees with the expression that we have obtained earlier, thereby suggesting

that the ansatz of local equivalence of correlation time is indeed correct.

The numerical scheme is the same as outlined in the last section. However, in addition

to evolving the two fields b and ψ a number of tracer particles (N = 1600) were placed in

the two dimensional spatial x − y region of integration. The particles were initially placed

uniformly in the x− y plane, and were then evolved using the Lagrangian electron velocity

at their location (viz. ẑ × ∇b). Since the magnetic field lines are tied to the electron flow

velocity, the behaviour of magnetic field diffusivity can be discerned from the diffusion of

these particles. Thus the averaged mean square displacement of these particles is used as

a measure of magnetic diffusivity (e.g. β = d < (δx)2 > /dt). This method of evaluating

the tracer particle diffusivity to study the diffusion of magnetic fields in two dimension has

been adopted by Cattaneo in the context of the MHD model [5].

It is clear that for η 6= 0 and an initial distribution of power with random phases in the
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various modes for the two fields b and ψ, Eq.2 and Eq.3 represent the case of ’decaying’

EMHD turbulence. We refrain from using a random stirring force to achieve stationary

state as this might lead to the particle displacement being dependent on the characteristics

of the random stirrer. We will here investigate the case of decaying turbulence and we will

present results in the regime where the variations can be considered as slow, i.e. we treat

the problem in the quasistatic limit.

The derivation of our main Eq.9 for the suppression of magnetic field diffusivity was

premised on the notion of stationarity of the mean square magnetic potential. As discussed

earlier the cascade of the mean square magnetic potential towards longer scales ensures

attaining such a state. This can be clearly seen in Fig.4 which shows the evolution of mean

square magnetic potential with time. It is clear that the percentage variation in
∫

ψ2dxdy

is small after t = 200. For the purpose of our calculations in all our numerical runs we have

restricted to the region where the percentage variations in
∫

ψ2dxdy is below 3%.

In Fig.5 we show the mean square displacement of the tracer particles with time. The

thick line indicated by the label ’kinematic’ essentially corresponds to the displacement when

the uniform magnetic field in the y direction B0 is chosen to be zero. We will designate

the slope of this curve as βkin, the kinematic diffusivity. The other two lines essentially

correspond to the longitudinal and the transverse displacement in the presence of a uniform

magnetic field B0 = 1 along the y diection. It is clear from the figure that the slope of the

kinematic curve is larger than the other two curves which correspond to the displacement

for finite B0. This clearly indicates that the presence of B0 suppresses the diffusivity; the

conclusion we arrived at earlier in the last section. However, longitudinal displacements of

the tracer particles are larger compared to their transverse displacement, suggesting that

the assumption of isotropic turbulence in not valid in the presence of uniform magnetic

field. There has been indications in earlier works both in MHD [6] as well as in EMHD

[7] that the presence of strong magnetic field results in anisotropy of the spectrum. Our

results showing distinct values for the longitudinal and the transverse diffusivity is another

evidence for anisotropic turbulence in the presence of external magnetic field.
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We next investigate the question whether the supression of diffusivity with increasing

magnetic field is indeed given by the kind of expression (Eq.9) that we have obtained in

the earlier section. For this purpose we carry out several numerical runs with varying

strength of the magnetic field. The diffusivity β for each case is then given by the slope

of the displacement of the tracer particles. It is clear from Fig.5 that the curve is jagged,

essentially signifying that β, the diffusivity estimated from the slope of such a curve is a

statistical quantity. We take a time average given by

β(t2 − t1) =
1

t2 − t1

∫ t2

t1

β(t)dt

The choice of t2 − t1 is such that the in this duration the turbulence can essentially be

treated as quasistationary. The averaging procedure eliminates the statistical fluctuation in

the estimate of diffusity and it is observed that with varying t2 the slope asymptotes to a

constant value for each case.

In Fig.6 the y axis represents βkin/β and along the x axis we vary B2
0 . It is clear from

the plot that the data points nicely fit a straight line, as our analytical expression predicts.

VI. DISCUSSION

There are two important results of our present work. First, we have been able to show

that the turbulent EMHD state shows tendencies towards whistlerization. The spectrum is

only partially whistlerized, suggesting that both eddies and randomly interacting whistlers

constitute the turbulent state. Secondly, we have carried out studies to understand the

diffusion of long scale magnetic field in the context of Electron Magnetohydrodynamics. We

have shown that the effective diffusivity due to turbulence in the electron flow velocity gets

suppressed in the presence of small scale turbulence of the magnetic field. For complete

whistlerization the turbulent diffusivity vanishes. However, since the turbulent state is only

partially whistlerized the effective diffusivity does not vanish it only gets suppressed from

pure kinematic estimates. We have confirmed these results numerically.
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The problem of diffusion of magnetic field lines is of great interest, as it provides a

mechanism for the reconnection of magnetic field lines which is thought to underlie an

understanding of the rapid release of energy in several solar and astrophysical contexts. The

resistive diffusion turns out to be too small to explain the large amount of energy released.

This had initiated efforts towards understanding the phenomenon of turbulent diffusivity

of magnetic field lines. Earlier attempts on this were based on the Magnetohydrodynamic

approximation. However, it was shown theoretically by Gruzinov et al [4] and numerically

by Cattaneo [5] that the value of turbulent diffusivity gets suppressed in the presence of

turbulence in small scale magnetic field. Recently, attempts to understand the reconnection

phenomenon in the context of Electron Magnetohydrodynamics are being made [2]. Our

work in this context becomes relevant, as we have shown here that the naive quasilinear

estimates do not provide a complete picture. The effective diffusivity gets suppressed in the

presence of turbulence in the magnetic field, with whistlerization of the spectrum playing

an important role in this regard.

Other issue that we would like to point out in this regard is the role of whistlers in EMHD

turbulence. Some recent studies on EMHD turbulence categorically rule out the presence of

whistler effect in determining the energy tranfer rate on the basis of the numerically observed

scaling of the power spectrum [3]. We have, on the other hand shown here that there is a

tendency towards whistlerization of the turbulent spectra and that directly influences the

effective diffusivity of the magnetic field lines. Invoking the Prandtl mixing length argument,

which relates the transfer rate to the effective diffusivity, the question of whistler effect being

present or not remains debatable. Moreover, we also have evidence of anisotropization of the

turbulent spectrum in the presence of external magnetic field ( this work will be presented

elsewhere) which further points towards a subtle role of whistlers in governing the EMHD

turbulence.
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FIGURE CAPTION

Figure 1 Plot of | bk | vs. | kψk | for the initial spectrum.

Figure 2 Plot of | bk | vs. | kψk | for the evolved spectrum when the external field B0 = 0.

Figure 3 Plot of | bk | vs. | kψk | for the evolved spectrum when the external field B0 = 0.5.

Figure 4 Evolution of mean square magnetic potential.

Figure 5 Mean square displacement of the tracer particles with time is shown, thick lines (kine-

matic) shows the displacement in the absence of any external field. The other two lines

indicated by ’longitudinal’ and the ’transverse’ show the mean square displacement of

the tracer particles along and across the external magnetic field B0 = 1.

Figure 6 A plot of βkin/β vs. B2
0 .
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