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Limits to squeezing in the degenerate optical parametric oscillator
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We develop a systematic theory of quantum fluctuations in the driven optical parametric oscillator, including
the region near threshold. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and
noise reduction in this nonequilibrium quantum phase transition. In particular, we compute the squeezing
spectrum near threshold and calculate the optimum value. We find that the optimal noise reduction occurs at
different driving fields, depending on the ratio of damping rates. The largest spectral noise reductions are
predicted to occur with a very high-Q second-harmonic cavity. Our analytic results agree well with stochastic
numerical simulations. We also compare the results obtained in the positive-P representation, as a fully
quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclas-
sical theory.
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I. INTRODUCTION

Optical parametric oscillators~OPOs! are one of the mos
interesting and well-characterized devices in nonlinear qu
tum optics. Novel discoveries made with them include de
onstrations of large amounts of squeezing@1#, and significant
quantum intensity correlations@2# together with a
quadrature-correlation measurement that provided the
experimental demonstration@3# of the original Einstein-
Podolsky-Rosen paradox. Practical applications include t
use as highly efficient and tunable frequency converters
the present paper, we focus on the optimum below-thresh
squeezing results, which determine the limits to squeez
obtained near the critical point, where nonlinear correctio
start to dominate. In a companion paper@4#, the related ques
tion of critical fluctuations at threshold is treated.

The theory of quantum squeezing in the linear parame
oscillator is now well-developed@5–15#. Excellent agree-
ment between theory and experiment is obtained@1,2# in the
region below threshold. However, the usual theory is line
ized, and therefore cannot be used in the near-threshold
gion where the squeezing is largest. The drawback with
earized theories is that they predict that zero quantum n
levels are achievable at threshold. This is clearly unrealis
since~by the Heisenberg uncertainty principle! it necessarily
requires an infinite energy in the conjugate mode. More s
nificantly, this would imply an infinite amount of phas
information—which is also impossible, since the coher
pump that drives the parametric oscillator can only suppl
finite quantity of phase information.

While present experiments are limited by technical no
from approaching the critical point too closely, it is reaso
able to expect that progress in integrated optics will lead
more stable, highly miniaturized devices that could well o
erate at the quantum limit, even near threshold. Accordin
there have been a number of investigations as to the ultim
limits to the squeezing spectrum of a parametric amplifi
oscillator. This has often involved using Keldysh diagrams
Wyld-Keldysh techniques@10–12# to extend the linear
1050-2947/2002/65~3!/033805~15!/$20.00 65 0338
n-
-

st

ir
In
ld
g
s

ic

r-
re-
-

se
c,

-

t
a

e
-
o
-
y,
te

r/
r

theory @13–15# using a many-body-theory analog of Fey
man diagrams.

The two-mode Hilbert space involved in these proble
typically has a minimum dimension greater than 106, even
with only N5103 photons, and therefore would be difficu
to solve using other methods that involve number-st
expansions—either using a direct solution of the mas
equation or stochastic wave-function methods. The Ham
tonian matrix would have 1012 coefficients, unless simplified
with a density matrix of similar size. More typical exper
mental photon numbers have at leastN5106, with a corre-
sponding density matrix dimension of 1024—which appears
completely inaccessible with number-state techniques.
other drawback of number-state techniques is that they u
ally do not permit analytic approximations, which can gi
more physical insight.

We therefore treat these questions using the coherent-
positive-P representation@16#, combined with an expansion
technique valid below the critical point. Results are also ve
fied by the use of direct numerical stochastic-equation sim
lations. We find that anN22/3 scaling law for the optimal
squeezing predicted by Plimak and Walls@14# is obtained
here as well, but with a different spectrum, owing to the u
of more systematic expansion techniques that result fr
using the positive-P representation method. Our analytic r
sults for optimal squeezing, which occurs below the critic
threshold, give excellent agreement with accurate numer
simulations for the same parameter values. However, e
larger noise reductions are predicted to occur simply by
ducing the losses of the second harmonic, in which case
N22/3 scaling law no longer holds. In a companion paper
consider the related problem of the critical region, where
narrow-band squeezing is less than optimal due to the eff
of critical fluctuations.

We also compare the above results with a semiclass
approach, that is, a truncated Wigner phase-space equa
This equation corresponds to a classical theory with ad
vacuum fluctuations. A comparison between the positiveP
representation~fully quantum-mechanical! and semiclassica
theories permits us to see how far one can go and what is
©2002 The American Physical Society05-1
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limitation of this extended classical point of view. We fin
that the nonlinear corrections in the semiclassical theory
in strong disagreement with the full quantum theory far b
low threshold, but agree near threshold. This tells us that
semiclassical theory works surprisingly well in the thresh
region, indicating that the large quantum fluctuations n
threshold have a rather classical character.

II. HAMILTONIAN AND MASTER EQUATION

The model considered here is the degenerate param
oscillator. The system of interest is an idealized interfero
eter, which is resonant at two frequencies,v1 and v2
'2v1. It is externally driven at the larger of the two fre
quencies. Both frequencies are damped due to cavity los
Down-conversion of the pump photons to reson
subharmonic-mode photons occurs due to ax (2) nonlinearity
present inside the cavity. The Heisenberg-picture Ham
tonian that describes this open system@5# is

Ĥ5Ĥsys1 (
j 51,2

\~ â j Ĝ j
†1â j

†Ĝ j !1ĤR , ~1!

where the intracavity or system Hamiltonian is given by

Ĥsys5 (
j 51,2

\v j â j
†â j1 i\

x

2
~ â1

†2â22â1
2â2

†!1 i\~Ee2 iv2tâ2
†

2E* eiv2tâ2!. ~2!

Here E represents the external driving field at frequen
v2. The termĤR describes the free evolution of the extr
cavity modes that are the loss reservoirs of the cavity. T
term x is the coupling parameter due to ax (2) nonlinear

medium internal to the cavity, andĜ j
† ,G j are reservoir op-

erators that create and destroy photons in the loss rese
coupled to the internal mode of frequencyv j .

Next, we wish to consider an interaction picture, obtain
with the definition that

Ĥ05 (
j 51,2

\v j â j
†â j . ~3!

In other words, the operators will evolve according to t
relevant mode frequency, while the states evolve accord
to the rest of the system Hamiltonian. The interaction Ham
tonian used here then reduces to the the standard one@5# for
a nondegenerate, single-mode parametric amplifier or o
lator,

Ĥ int /\5 iE @ â22â2
†#1

ix

2
@ â2â1

†22â2
†â1

2#. ~4!

Hereâ1 ,â2 are now time-independent operators represen
the fundamental and second-harmonic modes, respecti
For simplicity, we have chosen the field mode functions
that E,x are real.
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Using standard techniques@17# to eliminate the heat bath
we obtain the following master equation for the reduced d
sity operator of the system in the interaction picture,

]r̂

]t
5

1

i\
@Ĥ int ,r̂ #1g1~2â1r̂â1

†2â1
†â1r̂2 r̂â1

†â1!

1g2~2â2r̂â2
†2â2

†â2r̂2 r̂â2
†â2!, ~5!

whereg i are the internal-mode amplitude damping rates a
we assume thatn̄i!1, wheren̄i are the mean numbers o
thermal photons in the input reservoir modes. Using res
voir theory, it is possible to identify the coherent driving fie
with a corresponding input photon flux from an external c
herent laser, withI 25uEu2/2g2

in photons/s, whereg2
in is the

input coupler decay rate. For optimum performance, we w
assume thatg25g2

in , and similarly for the fundamenta
mode—which will be assumed to only decay through its o
put coupling mirror. If these conditions are not satisfied, th
the coupling efficiency and maximum squeezing are reduc

At this point, we note that in the classical limit, the sy
tem has the well-known classical equations of intracav
parametric oscillation, where we definea i5^âi&, and hence
obtain, in the interaction picture

da1

dt
5@2g1a11xa1* a2#,

da2

dt
5F2g2a21E2

1

2
xa1

2G . ~6!

These equations are valid in the limit of large photon nu
ber. They are obtained by the use of a classical decorrela
in which all operator products are assumed to factorize,
that ^âi

†â j&.^âi
†&^â j& and^âi â j&.^âi&^â j&. The solution of

these equations is immediate classically, and has the prop
that there is a phase transition at the critical driving field
E5Ec5g1g2 /x. For driving fields below this value, one ha

a150,

a25E/g2 . ~7!

For fields above this value, the signal fielda1 is bistable,
with

a156A2

x
~E2Ec!,

a25
g1

x
. ~8!

The intracavity photon number at the critical point isNc

5g1
2/x25Ec

2/g2
2 . Classically, there are only second

harmonic photons present at this driving field, and the in
photon flux isI c5Ec

2/2g25g1
2g2/4x2. However, a squeeze
5-2
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LIMITS TO SQUEEZING IN THE DEGENERATE . . . PHYSICAL REVIEW A 65 033805
field—with finite intensity—is actually emitted as well. Th
is not taken into account in the classical theory.

III. OPERATOR REPRESENTATIONS

In order to treat the full quantum evolution, we now tu
to the methods of operator-representation theory. These t
niques can be used to transform the density-matrix equat
of motion to c-number Fokker-Planck or stochastic equ
tions.

A. The positive-P representation

In the positive-P representation, the density matrix is e
panded in terms of multimode coherent state vectorsuaW &,

r̂5E P~aW ,aW 1!
uaW &^~aW 1!* u

^~aW 1!* uaW &
d4aW d4aW 1. ~9!

Following standard procedures, the assumption of van
ing boundary terms allows the master equation to be rew
ten as a Fokker-Planck equation inP(aW ,aW 1), and hence as a
stochastic equation@18# with real noise. The assumption o
vanishing boundary terms is critical to this procedure, a
we note here that this is generally valid when the ratio
nonlinearity to damping is small@19# ~i.e., ux/gku!1). The
stochastic procedure is best regarded as being general
asymptotic procedure, valid for smallux/gku—in which case
the boundary terms are exponentially suppressed. We c
this assumption numerically here as well, and point out t
the required ratio of nonlinearity to damping is extreme
well satisfied in current experiments, where the ratio is ty
cally 1026 or less. Further analysis of this problem has be
given elsewhere@19#. Given this assumption, the followin
stochastic equations are obtained from Eqs.~5! and ~9! for
any driving fieldE, that is, either below or above threshol

da15@2g1a11xa1
1a2#dt1Axa2dw1~ t !,

da1
15@2g1a1

11xa1a2
1#dt1Axa2

1dw2~ t !,

da25F2g2a21E2
1

2
xa1

2Gdt,

da2
15F2g2a2

†1E2
1

2
xa1

12Gdt. ~10!

The stochastic correlations are given by

^dwk~ t !&50,

^dwk~ t !dwl~ t !&5dkldt. ~11!

This means thatdwk(t) represents two real Gaussian a
uncorrelated stochastic processes, and the amplitude o
stochastic fluctuations that act on the signal mode are de
dent on the pump-field dynamics. Our derivation is forma
03380
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based on the Itoˆ stochastic calculus. However, in this cas
either Itô or Stratonovic stochastic calculus gives identic
results@18#.

B. The semiclassical theory

We can also write ac-number phase-space equation usi
an approximate form of the Wigner representation@8#, which
is equivalent to stochastic electrodynamics. The characte
tic function of the Wigner representation is written as

xW~z!5Tr~reiz* â†1 izâ!5Tr~reiz* â†
eizâe2uzu2/2!, ~12!

and the Wigner distribution can be written as the Four
transform of the characteristic function

W~a!5
1

p2E2`

`

d2zxW~z!e2 iz* a* e2 iza. ~13!

In the Wigner representation, the phase-space equation
corresponds to the master equation~5! is

]W~a1 ,a2 ,t !

]t
5H ]

]a1
~g1a12xa1* a2!1

]

]a1*
~g1a1*

2xa1a2* !1
]

]a2
S g2a21

x

2
a1

22ED
1

]

]a2*
S g2a2* 1

x

2
a1*

22ED
1g1~112n̄1!

]2

]a1]a1*
1g2~112n̄2!

3
]2

]a2]a2*
1

x

8 S ]3

]a1*
2]a2

1
]3

]a1
2]a2*

D J
3W~a1 ,a2 ,t !. ~14!

If we truncate the third derivative of the phase-spa
equation, we get a genuine Fokker-Planck-type equation w
positive definite diffusion constant. This can be mapped i
the following Itô stochastic differential coupled equation
~for simplicity we let n̄i50, as before!.

da15@2g1a11xa1* a2#dt1Ag1dw1~ t !,

da1* 5@2g1a1* 1xa1a2* #dt1Ag1dw1* ~ t !,

da25F2g2a22
x

2
a1

21EGdt1Ag2dw2~ t !,

da2* 5F2g2a2* 2
x

2
a1*

21EGdt1Ag2dw2* ~ t !. ~15!
5-3
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Heredwk(t) is now acomplexGaussian white noise whos
mean and variance are given by

^dwk~ t !&50,

^dwk~ t !dwl* ~ t !&5dkldt. ~16!

The above equation is identical to the equation derived
the positive-P representation when one discards the no
terms. This corresponds to the nonlinear classical equa
for the OPO system. The main difference between the
sets of equations is the noise terms. In the semiclass
theory the noise is universal for all modes and comes from
the vacuum fluctuations, while in the positive-P equation the
pump has a noiseless amplitude and the signal noise co
from the nonlinear coupling. However, we note that t
Wigner equation after truncation is no longer complet
equivalent to quantum mechanics, since it always leads
positive Wigner function—thus, not all quantum states c
be represented.

C. Observable moments and spectra

The positive-P stochastic method directly reproduces t
normally ordered correlations and moments, while
Wigner representation reproduces the symmetrically orde
moments. We also have to distinguish the internal- a
external-operator moments, since measurements are
mally performed on output fields that are external to
cavity. The technique for treating external-field spectra w
introduced by Yurke@6# and by Collett and Gardiner@7#.

These external-field measurements are obtained from
input-output relations of

F̂ j
out~ t !5A2g j

outâ j~ t !2F̂ j
in~ t !, ~17!

where F̂ j
in(t) and F̂ j

out(t) are the input and output photo
fields, respectively, evaluated at the output-coupling mir
The most efficient transport of squeezing is obtained if
assume that all the signal losses occur through the ou
coupler, so thatg15g1

out . We will assume this to be the
case.

The crucial quadrature variables of the system have
definitions

x̂ j5~ â j1â j
†!,

ŷ j5
1

i
~ â j2â j

†!. ~18!

There are also corresponding external-quadrature fi
variables, defined as

X̂j5~F̂ j
out1F̂ j

out†!,

Ŷj5
1

i
~F̂ j

out2F̂ j
out†!. ~19!
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Similarly, we can definec-number stochastic-quadratur
variables within the relevant representations, thus giving

xj5~a j1a j
1!,

yj5
1

i
~a j2a j

1!. ~20!

Of especial interest isŶ1 since this is the low-noise
squeezed quadrature. Here we note that the instantan
correlation functions of the intracavity-field operators a
called the moments. Typically, they are not easily meas
able, when compared to output moments or spectra, but
are useful in that they provide a check on the accuracy of
calculation of measurable spectra.

The squeezing in terms of the intracavity quadrature v
ances corresponds to an instantaneous measurement o
field moments. If such a measurements were possible
would include contributions from all frequencies. For me
surements averaged over a long timeT, it is the low-
frequency part of the spectrum that is the relevant quan
and we shall focus on this, as it usually determines the m
mum squeezing possible. The output measured spectral
anceVj

u of a general quadrature

X̂j
u5~e2 iuF̂ j

out1eiuF̂ j
out†!

can be written as

Vj
u~v!d~v1v8!5^DX̂j

u~v!DX̂j
u~v8!&, ~21!

where the fluctuationsDX̂j
u are defined asDX̂j

u5X̂j
u2^X̂j

u&
and the frequency argument denotes a Fourier transform

X̂j
u~v!5E dt

A2p
eivtX̂ j

u~ t !.

Since theP representation is normally ordered, it aut
matically provides the normally ordered moments,

^: x̂ j
u~ t !x̂ j

u~ t !:&5^xj
u~ t !xj

u~ t !&P . ~22!

Also, the positive-P spectral correlations correspond to th
normally ordered, time-ordered operator correlations of
measured fields. We therefore define Fourier component
the normalized quadratures as

xj
u~ t !5E dv

A2p
e2 ivtx̃ j

u~v!. ~23!

This leads to the following well-known result for the ge
eral squeezing spectrum, as measured in an external ho
dyne detection scheme:

Vj
u~v!d~v1v8!5112g j

out^D x̃ j
u~v!D x̃ j

u~v8!&P .
~24!
5-4
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Note that vacuum-~input! field terms do not contribute di
rectly to this spectrum, as they have a vanishing norm
ordered spectrum, and are not correlated with the cohe
amplitudes in the positive-P representation.

In the case of the Wigner representation, the correlati
and moments are given with symmetric ordering. Thus,
example, ^a j* (t)a j (t)&W5^@ â j (t),â j

†(t)#1/2&51/2 in the
vacuum state. The normally ordered internal-field mome
are easily calculated by using equal-time commutators
change the ordering from symmetric to normally ordered

^: x̂ j
u~ t !êj

u~ t !:&5^xj
u~ t !xj

u~ t !&W21. ~25!

Similarly, the normally ordered squeezing spectrum,
measured in an external homodyne detection scheme is

Vj
u~v!d~v1v8!5^X̃j

u~v!X̃j
u~v8!&W . ~26!

It is essential here to include the vacuum-field contributio
from reflected input fields, as these are correlated with
internal Wigner amplitudes, and hence have a signific
contribution to the spectrum. In fact, these input fields can
shown to correspond directly to the noise terms in the
evant Wigner equations, leading to the identification

dwj

dt
5A2F j

in~ t !, ~27!

whereF j
in(t) is a c-number amplitude corresponding~in the

Wigner representation! to the quantum vacuum input field.
The fundamental property of the Wigner function is th

the ensemble average of any polynomial of the random v
ablea anda* weighted by the Wigner density exactly co
responds to the Hilbert-space expectation of the corresp
ing symmetrized product of the annihilation and creat
operators. Therefore, the truncated theory with a posi
Wigner function can be viewed as equivalent to a hidd
variable theory, since one can obtain quadrature-fluctua
predictions by following an essentially classical prescriptio
in which even the noise terms have a classical interpreta
as corresponding to a form of zero-point fluctuation. T
cannot be equivalent to quantum mechanics in general,
may provide similar results to quantum mechanics un
some circumstances.

IV. BELOW-THRESHOLD PERTURBATION THEORY

Next we wish to rescale the equations. This has the m
of showing explicitly how a small noise expansion can p
mit us to use a type of perturbation theory whose zero
order solution is the classical solution, rather than the Fe
man approach, where the zeroth-order solution is the f
particle case. In order to show this systematically, a form
perturbation expansion in powers ofg is now introduced,
where the scaling parameterg is given by

g51/A4I cg151/A2Ncg r , ~28!
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where Nc52I c /g2 is the threshold pump-photon numb
and a dimensionless decay ratiog r5g2 /g1 is introduced. An
equivalent definition is

g5
x

A2g1g2

. ~29!

This clearly determines the ratio of nonlinear-to-linear ra
of change. Next, we introduce a scaled timet5g1t and a
dimensionless driving fieldm5E/Ec5xE/(g1g2), so that the
equations can be expressed in terms of the three dimens
less parametersg,m,g r . Finally, we expand the scaled coo
dinates in a power series ing, to give

x15 (
n50

`

gn21x1
(n) ,

y15 (
n50

`

gn21y1
(n) ,

x25
1

A2g r
(
n50

`

gn21x2
(n) ,

y25
1

A2g r
(
n50

`

gn21y2
(n) . ~30!

The expansion given here has the property that the zer
order term corresponds to the large classical fields of or
1/g, while the first-order term corresponds to the quant
fluctuations of order 1, and the higher-order terms cor
spond to nonlinear corrections to the quantum fluctuation
orderg and greater. For a given fundamental decay rateg1,
the expansion coefficientg2 is inversely proportional to the
input photon flux required to obtain the threshold conditio
Thus, the smallerg2 is, the larger the required input field.

A. Matched power equations in positive-P representation

Here we will first be interested in the analysis of th
steady-state moments. Subsequently, we will calculate
spectral correlations of the solutions using Fourier tra
forms of the calculation done in the time domain. The eq
tions for the quadrature variables in the positive-P represen-
tation are

dx15F2g1x11
x

2
~x1x21y1y2!Gdt1Ax

2
@Ax21 iy2dw1~ t !

1Ax22 iy2dw2~ t !#,

dy15F2g1y11
x

2
~x1y22x2y1!Gdt

2 iAx

2
@Ax21 iy2dw1~ t !2Ax22 iy2dw2~ t !#,
5-5
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dx25F2g2x22
x

4
~x1

22y1
2!12EGdt,

dy25F2g2y22
x

2
x1y1Gdt. ~31!

The stochastic equations are now solved by the techn
of matching powers ofg in the corresponding time-evolutio
equations. This technique can be analyzed diagrammatic
and so can be termed the ‘‘stochastic-diagram’’ method@20#.
The zeroth-order solution is

dx1
(0)5F2x1

(0)1
1

2
~x1

(0)x2
(0)1y1

(0)y2
(0)!Gdt,

dy1
(0)5F2y1

(0)1
1

2
~x1

(0)x2
(0)2x2

(0)y1
(0)!Gdt,

dx2
(0)52g rFx2

(0)1
1

2
~x1

(0)x1
(0)2y1

(0)y1
(0)!22mGdt,

dy2
(0)52g r@y2

(0)1x1
(0)y1

(0)#dt. ~32!

These equations are the classical nonlinear equations
the cavity, expressed in terms of the quadrature amplitude
dimensionless scaled fields. The steady-state solution be
threshold is well known and is given by

x1
(0)5y1

(0)5y2
(0)50, x2

(0)52m. ~33!

With no loss of generality, we can set all odd orders
x2

(n) ,y2
(n) and all even orders ofx1

(n) ,y1
(n) to zero, since one

can set these to zero initially, and these orders do not cha
in time. To first order, the equations are given by

dx1
(1)52~12m!x1

(1)dt1A2mdwx~t!,

dy1
(1)52~11m!y1

(1)dt2 iA2mdwy~t!, ~34!

where,dwx(y)(t)5@dw1(t)6dw2(t)#/A2. These equations
are the ones that are normally used to predict squeez
They are nonclassical, but correspond to a very simple fo
of linear, nonclassical fluctuation, which has a Gaussian q
siprobability distribution. In other words, if no higher-ord
terms existed, the result would be an ideal squeezed sta
the subharmonic mode, together with an ideal coherent s
in the pump.

Of more interest to the present paper is the behavior in
next order. This is the first order where nonlinear correctio
to ideal squeezed-state behavior will occur. We find the
lowing:

dx2
(2)52g rFx2

(2)1
1

2
~x1

(1)x1
(1)2y1

(1)y1
(1)!Gdt,

dy2
(2)52g r@y2

(2)1x1
(1)y1

(1)#dt. ~35!
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While we do not wish to include any effects beyond the fi
nonlinear corrections, it is not possible to consistently n
glect the third order in perturbation theory. This is becau
the first nontrivial correlations arise in terms like^@x(2)#2&,
which have the same formal order as terms of the ty
^x(3)x(1)&. Therefore, to obtain a consistent expansion for
correlations that are of interest, we must compute the th
order terms as well. These satisfy the following equation

dx1
(3)5F2~12m!x1

(3)1
1

2
~x1

(1)x2
(2)1y1

(1)y2
(2)!Gdt

1
1

2A2m
@x2

(2)dwx~t!1 iy2
(2)dwy~t!#, ~36!

dy1
(3)5F2~11m!y1

(3)1
1

2
~x1

(1)y2
(2)2x2

(2)y1
(1)!Gdt

1
1

2A2m
@y2

(2)dwx~t!2 ix2
(2)dwy~t!#.

The equations of this order have a nontrivial noise ter
which depends on the second-order pump quadrature s
tion.

Operator moments

We now wish to calculate the operator moments. To p
ceed further, we use Itoˆ calculus to derive stochastic equ
tions for quantities of interest, which in the present calcu
tion are y1

(1)y1
(1) and y1

(1)y1
(3) . These equations contai

quantities involving variables lower down in the hierarch
as well as terms generated from the noise correlations.
nally, we compute the steady-state averages of the quan
of interest, so that the noise terms vanish. In the present c
this yields

^x2
(2)&52

m

12m2
,

^y1
(1)y1

(1)&52
m

11m
,

^x1
(1)x1

(1)&5
m

12m
,

^y1
(1)y1

(3)&5
m

4~11m!~12m2!

3 F mg r

g r12
1

g r~12m1m2!12~11m!

~11m!$g r12~11m!% G ,
^x1

(1)y1
(1)y2

(2)&5
g r

~g r12! S m2

12m2D . ~37!
5-6
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The first quantity above is related to the depletion of
pump that supplies the energy for the subharmonic mo
The following two quantities are the squeezed and enhan
quadratures normally obtained in the linearized theory, wh
the fourth one is the first correction to the linearized cal
lation. The last one is the steady-state triple-quadrature
relation. This quantity has been suggested previously a
way to test quantum mechanics against a local hidd
variable theory@21#.

The steady-state intracavity squeezed-quadrature fluc
tions are obtained as

^ ŷ1
2&ss511^: ŷ1

2 :&5
1

~11m!
1

g2m

2~11m!2~12m!

3 F mg r

g r12
1

g r~12m1m2!12~11m!

~11m!$g r12~11m!% G . ~38!

The intracavity squeezing quadrature near threshold is
perfectly squeezed, as the nonlinear correction is diverg
near this point. This is shown in Fig. 1. It is clear that t
nonlinear corrections to the overall moment scale asg2/(1
2m), and hence only give large corrections extremely clo
to threshold, withm'12g2.

Considerations related to optimal squeezing will
treated later, in the frequency domain.

B. Matched power equations in semiclassical theory

We can scale the quadratures variables in semiclas
theory in the same way as before. First, the equations for
quadratures are

dx15F2g1x11
x

2
~x1x21y1y2!Gdt

1Ag1@dw1~ t !1dw1* ~ t !#,

dy15F2g1y11
x

2
~x1y22x2y1!Gdt

2 iAg1@dw1~ t !1dw1* ~ t !#,

FIG. 1. Squeezing moment^ ŷ1
2& versus driving fieldm with g2

50.001,g r50.5.
03380
e
e.
ed
e
-
r-
a

n-

a-

ot
nt

e

al
e

dx25F2g2x22
x

4
~x1

22y1
2!12EGdt

1Ag2@dw2~ t !1dw2* ~ t !#,

dy25F2g2y22
x

2
x1y1Gdt2 iAg2@dw2~ t !2dw2* ~ t !#.

~39!

In the new scaled time, the correlation function of t
noise terms is

^jk~ t !j l* ~ t8!&5^jk~t/g1!j l* ~t8/g1!&5g1dkld~t2t8!

5g1^jk~t!j l* ~t8!&, ~40!

where we have written the Wiener increment asdw(t)
5j(t)dt. Next, we redefine the white noise that drives t
stochastic semiclassical equations as

dwx1(2)~t!5
@dw1(2)~t!1dw1~2!

* ~t!#

A2
,

dwy1(2)~t!5
@dw1(2)~t!2dw1~2!

* ~t!#

iA2
. ~41!

The dimensionless driving fieldm is introduced as before
and the Wiener incrementsdwi(t) have the same propertie
as defined in Eq.~16!, except for changingt to the dimen-
sionless scaled timet. Next, we use the same technique
matching the powers ofg in the corresponding time
evolution equations. The zeroth-order equations are

dx1
(0)5F2x1

(0)1
1

2
~x1

(0)x2
(0)1y1

(0)y2
(0)!Gdt,

dy1
(0)5F2y1

(0)1
1

2
~x1

(0)y2
(0)2x2

(0)y1
(0)!Gdt,

dx2
(0)52g rFx2

(0)1
1

2
~x1

(0)x1
(0)2y1

(0)y1
(0)!22mGdt,

dy2
(0)52g r@y2

(0)1x1
(0)y1

(0)#dt. ~42!

As in the positive-P case, the steady-state solution belo
threshold is given by

x1
(0)5y1

(0)5y2
(0)50, x2

(0)52m. ~43!

To first order, the equations are given by

dx1
(1)52~12m!x1

(1)dt1A2dwx1~t!,

dy1
(1)52~11m!y1

(1)dt1A2dwy1~t!,

dx2
(1)52g rx2

(1)dt12g rdwx2~t!,
5-7
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dy2
(1)52g ry2

(1)dt12g rdwy2~t!. ~44!

While the zeroth-order equations are essentially class
in this first-order set the noise appears as a quantum ef
This is still a linear approximation, as all nonlinear corre
tions come from the next orders.

The second-order equations are

dx1
(2)5F2~12m!x1

(2)1
1

2
~x1

(1)x2
(1)1y1

(1)y2
(1)!Gdt,

dy1
(2)5F2~11m!y1

(2)1
1

2
~x1

(1)y2
(1)2x2

(1)y1
(1)!Gdt,

dx2
(2)52g rFx2

(2)1
1

2
~x1

(1)x1
(1)2y1

(1)y1
(1)!Gdt,

dy2
(2)52g r@y2

(2)1x1
(1)y1

(1)#dt. ~45!

We need to go beyond this order in perturbation theory
compute the first nonlinear corrections. The third-order eq
tions are

dx1
(3)5F2~12m!x1

(3)1
1

2
~x1

(1)x2
(2)1x1

(2)x2
(1)

1y1
(1)y2

(2)1y1
(2)y2

(1)!Gdt,

dy1
(3)5F2~11m!y1

(3)1
1

2
~x1

(1)y2
(2)1x1

(2)y2
(1)

2x2
(1)y1

(2)2x2
(2)y1

(1)!Gdt,

dx2
(3)52g r@x2

(3)1~x1
(1)x1

(2)2y1
(1)y1

(2)!#dt,

dy2
(3)

dt
52g r@y2

(3)1x1
(1)y1

(2)1x1
(2)y1

(1)#dt. ~46!

Operator moments

The steady-state averages of the quantities of interest
now be calculated using the truncated Wigner distributi
therefore obtaining the symmetrically ordered correlat
functions,

^x2
(2)&52

m

12m2
,

^y1
(1)y1

(1)&5
1

11m
,

^x1
(1)x1

(1)&5
1

12m
,
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^y1
(2)y1

(2)&5
1

2 S g r

g r12D 1

~12m2!

1
g r

2~11m!2@g r12~11m!#
,

^y1
(1)y1

(3)&5
m

4~11m!~12m2!

3 H 2g r

g r12
1

g r~22m!12~11m!

~11m!@g r12~11m!#J ,

^x1
(1)y1

(1)y2
(2)&52S g r

g r12D S 1

12m2D ,

^x1
(1)y1

(1)y2
(2)&1^x1

(2)y1
(1)y2

(1)&5S 2g r

g r12D S 1

12m2D .

~47!

The main difference in these calculation compared w
the positive-P result, appears in the nonlinear correction f
the subharmonic squeezed quadrature. Up to second ord
g we have

^ ŷ1
2&5

1

g2
@g2^y1

(1)y1
(1)&1g4^y1

(2)y1
(2)&12g4^y1

(1)y1
(3)&#

5
1

11m
1

g2

2~11m!~12m2!

3 H g r

g r12
1

g r~112m22m2!12m~11m!

~11m!@g r12~11m!# J .

~48!

The similarities and disagreement between this result
the positive-P expression for the same quantity deserve f
ther comments given in the conclusion section. In particu
we notice that while the linear term agrees, the nonlin
term is not in agreement well below threshold.

This comparison is shown in Fig. 2, which compares
nonlinear parts of the moment in the two representations

Just below threshold both theories give nonlinear corr
tions that are essentially identical@22#. There is also good
agreement in the limit ofg r→0, whereg2!g1; but for g r
.0 and driving fields below threshold, there is substan
disagreement in the nonlinear corrections to the squee
between the two representations. This can be attributed to
neglect of third-order quantum correlations in the trunca
Wigner representation, which results in the appearance
nonlinear squeezing effects even in the limit of zero drivi
field. Such effects are due to the semiclassical vacuum
puts, which do not appear in the positive-P representation.
5-8
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V. SPECTRAL CORRELATIONS

Next, we proceed to analyze the problem in the freque
space by taking the Fourier decomposition of the fields
order to understand the role of the first nonlinear correct
in the squeezing spectrum. It is important to stress that m
of the measurements are performed in Fourier space.

The nonlinear corrections to the spectrum have a st
ingly different behavior than the case of the squeezing m
ments. The reason for this is that the nonlinear correcti
are due to low-frequency, narrow-band critical fluctuatio
These have a very small effect on the moments, which
respond to an integral of the spectrum over all frequenc
unless extremely close to threshold. However, they can h
a very large and disruptive effect on the very important ze
frequency component of the squeezing spectrum, where
quantum noise is at its lowest level.

A. Positive-P representation

The spectrum can be calculated directly from the Fou
transform of the stochastic equations. We also represen
white noise that drives the stochastic equations by its Fou
transformjx,y(V, where the spectral moments of the st
chastic processes are

^ja~V!&50,

^ja~V!jb~V8!&5dabd~V1V8!. ~49!

It is also useful to introduce a standard convolution notati
where

@A* B#~V!5E dV8

A2p
A~V8!B~V2V8!. ~50!

The stochastic equations may now be rewritten in the
quency domain as follows.

FIG. 2. Nonlinear correction to the squeezing moment^D ŷ1
2&

versus driving fieldm with g250.001,g r50.1,1,10. The solid line
corresponds to the positive-P representation, the dashed line to t
Wigner representation. Best squeezing occurs with the sma
value ofg r .
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~1! First order:

x̃1
(1)~V!5

A2mjx~V!

~ iV112m!
,

ỹ1
(1)~V!52

iA2mjy~V!

~ iV111m!
. ~51!

~2! Second order:

x̃2
(2)~V!52

g r@ x̃1
(1)

* x̃1
(1)2 ỹ1

(1)
* ỹ1

(1)#~V!

2~ iV1g r !
,

ỹ2
(2)~V!52

g r@ x̃1
(1)

* ỹ1
(1)#~V!

~ iV1g r !
. ~52!

~3! Third order:

x̃1
(3)~V!

5
@ x̃2

(2)
* ~ x̃1

(1)1jx /A2m!1 ỹ2
(2)

* ~ ỹ1
(1)1 i jy /A2m!#~V!

2~ iV112m!
,

~53!

ỹ1
(3)~V!

5
@ ỹ2

(2)
* ~ x̃1

(1)1jx /A2m!2 x̃2
(2)

* ~ ỹ1
(1)1 i jy /A2m!#~V!

2~ iV111m!
.

1. Squeezing correlation spectrum

We now calculate the spectrum of the squeezed fieldy1,
which is given by^ ỹ1(V1) ỹ1(V2)&. Thus, we obtain

^ ỹ1~V1!ỹ1~V2!&5^ ỹ1
(1)~V1!ỹ1

(1)~V2!&

1g2^ ỹ1
(1)~V2!ỹ1

(3)~V1!1@V1↔V2#&

1••• . ~54!

The contribution from the first-order perturbation theory
the usual linearized squeezing result, given in this case

^ ỹ1
(1)~V1!ỹ1

(1)~V2!&52
2md~V11V2!

@V1
21~11m!2#

. ~55!

Similarly, the complementary~unsqueezed! spectrum is

^x̃1
(1)~V1!x̃1

(1)~V2!&5
2md~V11V2!

@V1
21~12m!2#

. ~56!

Also, we can obtain the next-order contribution to t
squeezing, by calculatinĝỹ1

(3)(V1) ỹ1
(1)(V2)&. To check the

results, we can compare with the moment calculations, s

st
5-9
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^y1
(1)~ t !y1

(3)~ t !&ss5E dV1

A2p
E dV2

A2p
^ ỹ1

(1)~V1!ỹ1
(3)~V2!&.

~57!

Using these results, we find that the internal spectrum of
squeezed quadrature, to this order, is given by

^ ỹ1~V1!ỹ1~V2!&5d~V11V2!S~V1!, ~58!

and the squeezing spectrum is calculated to be

S~V!5
22m

V21~11m!2
1

2g2m2g r

@V21~11m!2#2 H ~V2112m2!

2mg r~12m2!

1
~12m1g r !~11m!2V2

~12m!@V21~12m1g r !
2#

2
~11m1g r !~11m!2V2

~11m!@V21~11m1g r !
2#
J . ~59!

The corresponding external squeezing spectrum is the

V~V!512
4m

V21~11m!2

1
4g2m2g r

@V21~11m!2#2 H ~V2112m2!

2mg r~12m2!

1
~12m1g r !~11m!2V2

~12m!@V21~12m1g r !
2#

2
~11m1g r !~11m!2V2

~11m!@V21~11m1g r !
2#
J . ~60!

This equation gives the complete linear and nonlin
squeezing spectrum, including all the nonlinear correct
terms that contribute to orderg2 or 1/N. An illustration of the
behavior of the total spectrum is given in Fig. 3.

Figure 4 shows how the nonlinear contribution chang
with driving field, giving just the portion of the spectrum
proportional tog2.

2. Triple spectral correlations

Next, we can calculate the triple spectral correlations, g
ing as in the moment calculations,

^x̃1~V1!ỹ1~V2!ỹ2~V3!&5g^x̃1
(1)~V1!ỹ1

(1)~V2!ỹ2
(2)~V3!&.

~61!

Solving for ỹ2
(2) , we have

^x̃1
(1)~V1!ỹ1

(1)~V2!ỹ2
(2)~V3!&

52
g r^x̃1

(1)~V1!ỹ1
(1)~V2!@ x̃1

(1)
* ỹ1

(1)#~V3!&

~ iV31g r !
. ~62!
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Substituting from the first-order spectrum, the final res
to this order is obtained to be

^ x̃1
(1)~V1!ỹ1

(1)~V2!ỹ2
(2)~V3!&

5
4m2g r /A2pd~V11V21V3!

~ iV31g r !@V1
21~12m!2#@V2

21~11m!2#
. ~63!

To check this result, we can evaluate moments,

^x1
(1)~ t !y1

(1)~ t !y2
(2)~ t !&ss5E dV1

A2p
E dV2

A2p
E dV3

A2p

3exp@ iV11V21V3#

3^x̃1
(1)~V1!ỹ1

(1)~V2!ỹ2
(2)~V3!&.

~64!

On integrating, we obtain the same result as in our mom
calculation given above.

FIG. 3. Total OPO squeezing spectrum withg250.001,g r

50.5. Them values plotted are 0.1,0.3,0.5,0.7,0.9; larger values
m give the most squeezing~lowest spectral variance!.

FIG. 4. Nonlinear OPO squeezing spectrum withg2

50.001,g r50.5. The maximumm value plotted ism50.95.
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B. Semiclassical theory

We will now compare these results with the correspo
ing results calculated in the semiclassical theory. Some
ferences between them could be an interesting test com
ing quantum-mechanical predictions with a hidden-varia
theory.

Again, the spectral correlations are calculated from
Fourier transform of the stochastic equations. In the f
quency domain, the equations are written as follows.

~1! First order:

x̃1
(1)~V!5

A2jx1~V!

~ iV112m!
,

ỹ1
(1)~V!5

A2jy1~V!

~ iV111m!
,

x̃2
(1)~V!5

2g rjx2~V!

~ iV1g r !
,

ỹ2
(1)~V!5

2g rjy2~V!

~ iV1g r !
. ~65!

~2! Second order:

x̃1
(2)~V!5

@ x̃1
(1)

* x̃2
(1)1 ỹ1

(1)
* ỹ2

(1)#~V!

2~ iV112m!
,

ỹ1
(2)~V!5

@ x̃1
(1)

* ỹ2
(1)2 ỹ1

(1)
* x̃2

(1)#~V!

2~ iV111m!
,

x̃2
(2)~V!52

g r@ x̃1
(1)

* x̃1
(1)2 ỹ1

(1)
* ỹ1

(1)#~V!

2~ iV1g r !
,

ỹ2
(2)~V!52

g r@ x̃1
(1)

* ỹ1
(1)#~V!

~ iV1g r !
. ~66!

~3! Third order~subharmonic field!:

x̃1
(3)~V!

5
@ x̃1

(1)
* x̃2

(2)1 x̃1
(2)

* x̃2
(1)1 ỹ1

(1)
* ỹ2

(2)1 ỹ1
(2)

* ỹ2
(1)#~V!

2~ iV112m!
,

ỹ1
(3)~V!

5
@ x̃1

(1)
* ỹ2

(2)1 x̃1
(2)

* ỹ2
(1)2 ỹ1

(2)
* x̃2

(1)2 ỹ1
(1)

* x̃2
(2)#~V!

2~ iV111m!
.

~67!

Squeezing correlation spectrum

The spectrum of the fields are given, for instance, for
squeezed quadraturey1 by
03380
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^ ỹ1~V1!ỹ1~V2!&5^ ỹ1
(1)~V1!ỹ1

(1)~V2!&

1g2$^ ỹ1
(2)~V1!ỹ1

(2)~V2!&

1^ ỹ1
(1)~V1!ỹ1

(3)~V2!&

1^ ỹ1
(1)~V2!ỹ1

(3)~V1!&%1•••. ~68!

The first-order perturbation theory generates the usual
earized squeezed result as in quantum theory,

^ ỹ1
(1)~V1!ỹ1

(1)~V2!&5
2d~V11V2!

V1
21~11m!2

, ~69!

and, similarly, for the amplified fluctuation quadrature

^x̃1
(1)~V1!x̃1

(1)~V2!&5
2d~V11V2!

V1
21~12m!2

, ~70!

and for the pump quadratures, there is no first-order squ
ing,

^ x̃2
(1)~V1!x̃2

(1)~V2!&5^ ỹ2
(1)~V1!ỹ2

(1)~V2!&

5
4g r

2

V1
21g r

2
d~V11V2!. ~71!

The next contribution to the squeezing field quadrature

^ ỹ1
(2)~V1!ỹ1

(2)~V2!&5
g rd~V11V2!

V1
21~11m!2

3H 12m1g r

~12m!@V1
21~12m1g r !

2#

1
11m1g r

~11m!@V1
21~11m1g r !

2#
J
~72!

and

^ ỹ1
(1)~V1!ỹ1

(3)~V2!&1^ ỹ1
(1)~V2!ỹ1

(3)~V1!&

5
2mg rd~V11V2!

@V1
21~11m!2#2 H 2

~11m!~12m1g r !2V1
2

~12m!@V1
21~12m1g r !

2#

1
~11m!~11m1g r !2V1

2

~11m!@V1
21~11m1g r !

2#
1

~11m!

g r~12m2!
J . ~73!

The internal~symmetrically ordered! squeezing spectrum is
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S~V!5
2

V21~11m!2
1

g2g r

@V21~11m!2#2 H 2m~11m!

g r~12m2!
1

~12m1g r !V
21@~11m!212m~11m!#~11m1g r !

~11m!@V21~11m1g r !
2#

1
~11m1g r !V

21~12m2!~12m1g r !

~12m!@V21~12m1g r !
2#

J . ~74!

Of greater interest is the external squeezing spectrum, which is obtained by including both internal fields and the c
reflected vacuum-noise terms,

V~V!512
4m

V21~11m!2
1

2g2g r

@V21~11m!2#2 H m~11V22m2!

g r~12m2!

1
@~12m!~12m1g r !22m2#V21@12m1g r #@11m1m21m3#

~12m!@V21~12m1g r !
2#

1
@~11m!~11m1g r !12m2#V21@11m1g r #@113m1m22m3#

~11m!@V21~11m1g r !
2#

J . ~75!
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This semiclassical spectrum is quite different fro
positive-P calculation whenm→0 but gives a compatible
result near threshold, that is in the limitm→1. A detailed
comparison of the zero-frequency behavior is shown
Fig. 5.

This means that even when the pump is off, semiclass
theory gives a distorted vacuum spectrum due to the p
ence of the nonlinear crystal. This happens because in
theory the vacuum fluctuations are taken as real, and
two vacuum modes can interact inside the crystal as
fields. In the limit ofg r→0, the two spectra become com
patible again, as the semiclassical theory decouples
second-harmonic mode from its vacuum input in this lim
In the case of threshold fluctuations, we can interpret
agreement as due to the large photon numbers involve

FIG. 5. Comparison of zero-frequency nonlinear squeez
spectrum between the positive-P ~solid lines! and Wigner~dashed
line! methods, withg250.001. Values ofg r50.01,0.1,1,10,100 are
used for the different lines plotted, with the lowest values ofg r

giving the smallest nonlinear correction.
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which means that the truncation approximation used for
semiclassical calculation is more reliable.

C. Optimal squeezing

It is interesting to evaluate the squeezing or low-no
quantum correlations in the limit of zero frequency, that is,
the resonance regime, which is generally the frequency
maximum squeezing. We obtain from the positive-P result,

V~0!512
4m

~11m!2
1

2mg2

~11m!4

3 H 11
4g rm

2~g r12!

~12m!@~11g r !
22m2#

J . ~76!

Near threshold, wherem'1, we can setm511d, and
expand in powers ofd,0. Minimizing this result with re-
spect tod, we find that, to leading order ing, the optimal
driving field is the solution to the following equation:

d3~2d1g r@g r12# !25g2g r~g r12!~4d2g r@g r12# !.

This is a quintic equation, but it has simple closed-fo
solutions in two limits, depending on whetherg r@g2/3 or
g r!g2/3. In the first case, the variance can be rewritten a

V~0!5
1

4 Fd21
g2

2
2

2g2

d G . ~77!

Minimizing this result with respect tod, we find that the
minimum level of internal fluctuations occurs in a narro
frequency range nearV50, at a driving field just below
threshold, withd52g2/3 so that

mopt512g2/3. ~78!

g
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To leading order ing, the corresponding spectral variance

Vopt~0!5
3

4
g4/3. ~79!

This result of anN22/3 scaling confirms an approximate ca
culation of Plimak and Walls@14#, although the self-
consistent method used by these authors makes it difficu
obtain the relevant driving field.

The physics of this is clearly that the onset of critic
fluctuations starts to spoil the noise reduction even before
critical point is reached atm51. For example, withg r'1
andm50.9, we find thatV(0).0.731022, or about 21 dB
below shot noise, as predicted from the analytic theory. T
can also be seen from the way that the third-order term
cludes contributions from the critical fluctuations inx1. A
direct calculation from the full spectrum shows that this is
true minimum for all frequencies, even includingV.0.

However, the situation clearly changes asg r→0, in
which case much greater levels of spectral noise reduc
are possible. This is plotted in Fig. 6.

Analytically, this limit gives the following result, pro
vided thatg2!g r!g2/3:

V~0!5
1

4 Fd21
g2

2
1

2g2g r

d2 G . ~80!

Minimizing this result with respect tod, we find that the
minimum level of internal fluctuations occurs at a drivin
field very close to threshold, with

mopt512g1/2~2g r !
1/4. ~81!

The corresponding variance is therefore:

Vopt~0!5gAg r /2!g4/3. ~82!

FIG. 6. Optimization of zero-frequency squeezing spectrum v
sus driving field using the positive-P method, withg250.001. Val-
ues ofg r50.001,0.01,0.1,1,10 are used for the different lines p
ted, with the lowest values ofg r giving the best results for
squeezing.
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This result can be much smaller than predicted by the ca
lation of Plimak and Walls@14#, since the damping ratio ca
be reduced~at least, in principle! to an arbitrarily low level—
although still bounded below byg2, in order for perturbation
theory to be applicable, so that we do not expect to obt
Vopt(0),g2. Of course, there are experimental limitatio
on this due to absorption losses in the nonlinear medium
short wavelengths. Thus, for example, with the same valu
g250.001 as previously, but withg r50.01, we find that the
minimum spectral noise is predicted to occur at a drivi
field of m50.93 with a squeezing variance of 2.231023, or
about 27 dB below shot noise—about 6 dB lower than
fore.

This operating regime also has the property that the o
mum frequency of noise reduction moves away from z
frequency as the driving field is increased above the o
mum value, towards threshold. At slightly higher drivin
fields than the optimum point, a bifurcation to a spectru
with two minima occurs, although with similar levels o
noise reduction, as shown in Fig. 7. In this regime the res
of the perturbation theory need to be checked by a full sim
lation of the stochastic equations. We have carried this
~see next section! and find that the full simulations do agre
very well with the analytic predictions, even with this sma
damping ratio.

D. Numerical simulations

The value of the nonlinear correction to the spectrum
the squeezed quadratureV(V) can be worked out from a ful
numerical simulation@23# of the relevant nonlinear stochas
tic equations. The optimal squeezing in the zero-freque
part of the squeezing spectrum is predicted to scale asN22/3

with roughly equal values of decay rates. For the simu
tions, we chose values ofN5g225103, g r50.5. The simu-
lations used a total dimensionless time interval oftmax
51000. To ensure equilibrium, only the last 500 time un
were utilized in the Fourier transforms. Time steps

r-

-

FIG. 7. Optimal zero-frequency squeezing spectrum versus
quency using the positive-P method with g250.001,g r50.01.
Driving fields of m50.9,0.93,0.96 are used for the different line
plotted, with the higher driving fields giving the best results f
squeezing, except at zero frequency.
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Dt50.1 and Dt50.2 were compared to ensure conve
gence. The algorithmic technique is described elsewh
@24#, it uses a semi-implicit central-partial-difference tec
nique. To obtain the small nonlinear corrections near the
timum squeezing, we simulated the difference between
linear and nonlinear forms of the stochastic equation, in
der to minimize sampling errors. It was also useful to initi
ize thex quadratures with a Gaussian ensemble close to
known steady-state variance, in order to reduce the t
taken to achieve equilibrium. Typically, the relative error
the correlations due to finite step size was around 1024 with
these step sizes.

For these parameters the optimal driving field is predic
to occur atm50.9, or approximately 80% of the critica
intensity. We used 105 trajectories to improve the relativ
error due to sampling with a finite-trajectory population, g
ing relative sampling errors of less than 1022.

The calculated squeezing moment from the stochastic
ferential equation simulations was:̂ ŷ1

2&10.550.0271
61024. This is in excellent agreement with the below
threshold expansion, which gives^Y1

2&10.550.0272, as this
is just outside the critical region.

We find that the spectral predictions are also well verifi
by the simulations. These resulted in a value, for the non
ear correction to the zero-frequency spectrum, ofDV(0)
5V(0)2V(1)(0)53.753102360.0231023. By compari-
son, the analytic theory, worked to fourth order ing, gives
the prediction thatDV(0)54.0231023. The residual differ-
ence of about 5%—which is significant compared to sa
pling error—can be attributed to the fact that there
higher-order corrections that are not included in the anal
theory, and these are more significant in the zero-freque
spectrum than they are in the moment calculation. Figur
shows the detailed results of the simulation.

In the analytic theory, we found that a smaller decay r
for the second harmonic is predicted to yield a better sque
ing optimum as a function of the driving field. In Fig. 9 w
verify this to be the case by carrying out a full numeric

FIG. 8. Numerically simulated optimum nonlinear squeez
with g250.001,g r50.5, m50.9. Solid line is the positive-P simu-
lation result, dashed line is the analytic prediction from perturbat
theory, dashed-dotted line is the Wigner prediction.
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simulation for g r50.01,m50.93 with tmax52000, time
steps ofDt50.05 andDt50.1 for error checking, and 104

trajectories. The results show that the analytic predictio
and numerical simulations are almost indistinguishable
this regime. The sampling error was relatively larger, pos
bly due to the fact that the absolute noise levels are lo
here. The agreement indicates that the perturbation theo
an excellent approximation to the full nonlinear equatio
with these parameters.

VI. CONCLUSION

We have calculated the nonlinear quantum fluctuations
a parametric oscillator below the classical threshold, usin
nonlinear stochastic positive-P theory, with both asymptotic
approximations and a numerical technique. There is excel
agreement between numerical and analytic calculations. C
responding results for the Keldysh-diagram method requi
summation over infinite sets of diagrams, in order to fu
include the reservoirs. The advantage of the present me
is due to the fact that the coherent-state basis is a more n
ral basis set for an open system, since it allows the damp
reservoirs to be treated nonperturbatively.

Optimal squeezing in the output spectra corresponding
these moments were estimated. We found that the
squeezing in the zero-frequency part of the squeezing s
trum scales likeN22/3 just below threshold,provided the two
fields have similar damping rates.In other words, at the true
critical threshold—where the linear squeezing
optimized—the nonlinear corrections are too large to g
the lowest overall zero-frequency squeezing. Instead,
should operate below the critical point to optimize the sp
tral squeezing. Using an entirely different method, a calcu
tion by Plimak and Walls@14# also predicted that the opti
mum zero-frequency squeezing spectrum scales likeN22/3,
or equivalently, asI 22/3 for a given input fluxI. Our general
scaling results agree with theirs, except with a different sp
trum. We attribute the difference to the systematic positiveP

FIG. 9. Numerically simulated optimum nonlinear squeezi
with g250.001,g r50.01,m50.93. Solid line is the positive-P
simulation result, dashed line is the analytic prediction fro
positive-P perturbation theory~results are identical with the Wigne
prediction!. Analytic predictions in this case are very close
numerical-simulation results.

n
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stochastic-diagram procedure used here to calculate the s
trum, rather than the Feynman-diagram method—which
volves additional approximations.

We also found a new regime in which the lower limit
the spectral noise reduction depends on the decay rate o
second-harmonic field, which can be reduced to an arbitra
low level. This has a reasonable physical interpretation, s
the second-harmonic losses are essentially parasitic lo
which do not contribute to the desired squeezing output.
ultimate limit to squeezing in this regime is set by ev
higher-order terms in perturbation theory. We conjecture t
optimization of both the driving field and the relative dec
rate may result in a final squeezing variance scaling
g1 /I c .

A calculation with the truncated Wigner method, or sem
t.

C

ng

.

et

.

03380
ec-
-

the
ly
e
es,
e

at

s

-

classical technique, was also carried out. Well below thre
old, we found that while the linear terms agreed with fu
quantum calculation, nonlinear corrections and higher-or
correlations tended to disagree, especially for high seco
harmonic losses. However, near the critical point, the sit
tion changed. Here, even though the dominant terms are
linear, we found excellent agreement between the t
methods.
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