.57..373C

19340bs. . .

Dec. 1934.] Stellar Configurations with degenerate Cores. 373

Stellar Configurations with degenerate Cores.

IN an article published in the March number of The
Observatory the new orientation towards the general
problem of Stellar Structure resulting from the use of
degenerate statistics was discussed. A result obtained
in that article and which is of importance in our present
discussion can be recalled in the following terms:—
For stellar material at a specified temperature T and
density p we can define abstractly a quantity 8 denoting
the ratio between the gas pressure p and the total pressure
P (which is the sum of the gas kinetic and radiation
pressure). Then if

™ B

the material at density p and temperature T will be a
perfect gas in the classical sense. If B, be such that
relation (1) is an equality then in stellar configurations
in which (1 —B) is always greater than (1 —8) the stellar
material continues to be a perfect gas however high the
density may become. On the standard model this means
that if the mass be greater than a certain critical mass
(say M) then finiteness of - central density restricts
us to consider only the non-singular solutions of Emden’s
equation with index 3. This means that if we plot
(1 —B) against the radius R then the curves of constant
mass (M>M) are lines parallel to the R-axis. For
(1 —B)>(1 —Bw) these lines (which I shall refer to as
“ Eddington lines ’) are not distorted by the intreduction
of degenerate states. The question of using degenerate
states for these configurations does not arise at all.
If, however (1—fB)<<(1 —Bw), the curves of constant
mass are no longer fully represented by the Eddington
lines, and in this region we have a non-trivial solution
to Milne’s fundamental problem, which for our purposes
can be formulated as follows :—*“ For a star to be wholly
gaseous the mass is a function of B only. Call the
appropriate 8, Bu. Has the star equilibrium configu-
rations for B=4PBw?’’ This problem is important, for it is
precisely by formulating the problem of stellar structure
in this way that we can fully analyse the structure of
stars of mass less than ¢ (=6-623 u=2 ©) *.

* Cf. 8. Chandrasekhar, Zs. f. Astrophysik, 5, 321 (1932), equation (15).
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To answer Milne’s problem for (1 —B)<<(I—Bw) it is
essential to take the equation of state for the degenerate
matter in the exact form. We cannot neglect relativistic
degeneracy since we have seen already that precisely
because of the relativistic effects the Eddington lines are
undistorted in the greater part of the (1 —f8, R) diagram.
I shall refer to such a plot as a Milne diagram.

Now the equation of state for the degenerate state

can be written parametrically as follows :—
wm?cb 8mm3c3um,,
= f@); p= ——W’L— x*=Ba? (say), . (2)

where
f(x)=[z(x®4-1)"*(22* —3)4-3 sinht 2], . . (3)

the other symbols having their usual meaning. It may
be noticed here that with the same definition for p as
in (2) the pressure for a classical gas can be written as

_mm*®/960 T—B\'"? |
p= e (w4 g ) 22 L L 0 (4)
As a preliminary to the study of composite configurations
with degenerate cores we firstly consider the structure
of completely collapsed configurations with 8—=1. In this
case the radiation pressure p’ is zero and the total pressure

p is given by (2). If one introduces the function ¢
defined as

N ).

P= —3i

p
I-— jIA):;lz‘(?Sz _%2
Yo

where

y02:x02+1 ; pc=pcentrn.1:BxO3! cos (5’)
then one can prove that the structure of the configurations
is completely specified by the solution of the differential

equation
14 2d¢) (g )" 6
, nzdn<"%— (¢ :'7¢F> e O
with ‘
$¢=Iat n=o0; z;S(nl):yi , n, referring to the boundary,
0

- (7)
where 7 measures the radius vector in a suitable scale.
(6) is an exact equation, and it is surprising that it has
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not been isolated before. The derivation of this exact
equation has led to a considerable simplification in the
analysis of the problem of stellar structure. For a
specified y,, ¢.e. for a specified central density, the
structure is completely determined and in particular
its mass. We see from (6) that as y,—>c , ¢— the Emden-
function with index 3. The mass of these configurations
therefore tends to a unique limit as y,—~co. This mass
is naturally M, (which was first obtained by the writer
(M.N. 91. p. 456, 1931)). Configurations with mass
less than M; have finite radii. On the Milne diagram
we can therefore plot on the radius-axis a series of points
corresponding to the radii of different masses of these
configurations. Mj in particular is at the origin of the
two axes (1 —, R). .
With this necessary preliminary analysis of these
configurations with B=1 we can now see how the
Kddington lines should be distorted in the region of the
Milne diagram (1 —B)<<(x1—B,). If we consider a star
of mass M less than M and contract it from infinite
extension the star continues to be wholly gaseous till the
central density is such that (cf. equations (2) and (4))

60 1 —B,\ 2 x
(= T]fm) :fz(xzz ; po=Bad . . . (8)
The radius R, of this configuration (with p,=Bx,3)
can now be determined. We can therefore draw the
curve (Ry, 1—pBy) in the Milne diagram. This curve
naturally intersects the (1—p) axis, where By=p, corre-
sponding to M=M. Hence the curves of constant
mass are vertical lines parallel to the R-axis until they
intersect the (R, 1—pBu) curve. Below this curve the
Eddington lines are distorted, and to study the curves
of constant mass inside this region we have to consider
composite configurations where the structure of the
degenerate core is governed by the differential equation (6)
and the outer envelope by Emden’s equation with index 3.
In considering these configurations it would be natural
to work the generalized-standard-model in which 7 ”
takes different values in the envelope and in the core.
We will, however, first consider the usual standard model
where ““xn” has the same constant value throughout
the star. :

The composite configurations can now be studied
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by writing down the ‘ equations of fit” and solving
them. It may be stated that for solving the equations
of fit one can with some modifications adopt here the
methods developed by Milne in a rather different connec-
tion.: One can first prove that when B, has the same value
in the envelope as in the core then only collapsed con-
Jigurations are possible, i.e., a composite configuration
has a ““ 1—B ”” which is always less than the value (I—PBx)
which it has in the wholly gaseous state. The nature
of the curves of constant mass can at once be predicted.
If the mass is less than M, then in the completely collapsed
state (8,=1) it has a unique radius already determined
from our analysis of these configurations. For each
mass M’ we can calculate By.. The vertical line through
(I—PBy) cuts the (1—B,, Ry curve at the point
(I—Bw, Ro(M’)). When the star contracts further
it goes along some smooth curve joining the point
(I—PBw> Ro(M')) with a point on the R-axis corresponding
to the radius which this M’ has in the completely collapsed
state. In particular, the curve of constant mass for M,
passes through the origin. One finds that By, is speci-
fied by

60 IT~—
for—bu_,
My

Let Bu,=B,. Clearly (1—pB,)>(1—p,)-

The question arises what happens for stars with
M;<M<®:. Now when (1—B)<<(1—B») then the
configuration has a mass M,8-32 as y,—»co. (This
result was obtained in my paper in M. N. already referred
to.) Hence when M;<M<WM the curves of constant
mass intersect the (1—p) axis at a point B* such that

M=Mg*32 . . . . . . (10)

One can show that B* is related to Bt—the value it has
in the wholly gaseous state—by the relation

A

We notice that B*=B1=p8, is a solution. Also B*=1
when B1=f,. These results are of course necessary for
consistency. We should further have

M=MyB, %2 . . . . . . (12)
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Relation (12) can in fact be shown to be true. Hence
Milne’s problem admits of a solution (consistent with
our present knowledge of the equations of state for
ionized material) for (1—pB)<<(I—Bw), and in this region
only collapsed configurations are possible on the standard
model. We have also seen how the curves of constant
mass run in this region.

The treatment of the generalized standard model
(“ By’ of the core different from “8,” of the envelope)
can be carried out in a similar way, though the analysis
is very much more complicated. If we consider S,=I
as an extreme case, then one can prove for instance that
composite configurations with M>M; are necessarily
centrally condensed. When M<M;, but greater than
another critical mass, *“ quasi-diffuse > and centrally-
condensed configurations make their appearance in
addition to the usual collapsed configurations. It is
clearly impossible to describe these results in this short
communication, which is intended primarily as a prelimi-
nary statement of some of the results of the author’s recent
studies. The detailed investigations with full tables
of solutions will be published elsewhere, but the purpose
of writing this article was to show how the setting up of
an exact differential equation to describe the degenerate
state has led to an almost complete solution of the general
problem of stellar structure along the lines indicated above.

Finally, it is necessary to emphasize one major result
of the whole investigation, namely, that it must be taken
as well established that the life-history of a star of small
mass must be essentially different from the life-history
of a star of large mass. For a star of small mass the
natural white-dwarf stage is an initial step towards
complete extinction. A star of large mass (>M) cannot
pass into the white-dwarf stage, and one is left speculating
on other possibilities. :
S. CHANDRASEKHAR.

Trinity College, Cambridge.
1934 October 24.
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