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The Physical State of Maitter in the Interior of Stars.

INn 1924 Sir Arthur Eddington established his mass-
luminosity relation on the basis of the perfect gas hypo-
thesis. During the ten years that have elapsed since,
our knowledge of the possible states of an ionized gas
has advanced considerably, and the purpose of this
review is to show how this new knowledge has gone far
towards a clarification of ideas regarding the physical
conditions prevailing in the interior of stars. It is
necessary, however, to state explicitly that lack of com-
plete information regarding the internal distribution of
energy sources is not very serious when we are primarily
concerned with the hydrostatic equilibrium of the star.
The various numerical integrations that have been carried
out with widely different laws for opacity and source
VOL. LVIL. I
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distribution have shown that the qualitative nature
of the information that can in principle be derived from
steady state considerations alone is, within limits,
independent of the particular type of laws we choose to
discuss ; when it is therefore found necessary to particu-
larize the situation, we shall work with the Standard
Model.

Now the possible equations of state of a more or less
completely ionized gas are :—

p=(mkH“pT,..............(I)
213 2 . 12
pzz_lo(g) 7_@_}:;)5_/3 5/32%5)_’)5/3
=K p®? (say), . . (2)
p= (2)1/3 _he pH3— 1228 X10%% )
7)) 8(mup)tB PR
=Kqp*? (say), . . (3)

where p=pressure, p=density, T =temperature, k=
Boltzmann’s constant, m,=mass of the hydrogen atom,
p=mean molecular weight, h=Planck’s constant, c¢=
velocity of light, m=mass of the electron. Equations
(1), (2), and (3) correspond to the perfect *, degenerate
and relativistically degenerate gases respectively 1. Equa-
tion (2) will be valid if the pressure given by this formula
is, firstly, much greater than that given by (1), and,
secondly, much less than that given by (3). These two
conditions give the criteria for ordinary degeneracy.
If the first criterion is satisfied and the second violated,
then the material will be relativistically degenerate.
On the other hand, if the pressure given by (1) is greater
than that given by either (2) or (3) then the gas remains
an ideal gas in the classical sense. Bearing these con-
siderations in mind we shall examine the state of matter
in the interior of stars.

(A) Massive Stars.—We shall first attempt to give
precision as to what is meant by ‘ massive’ in this
connection. To do that we assume that in the perfect
gas regions of the star the equations of the standard

* We shall use the term ‘“perfect gas ”” to denote an ideal gas in the classical
gense (1. e. (1) will be valid).

+ It may be remarked here that equation (1) is true, independent of
relativity. ’
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model hold, i. e., the gas pressure p is a constant fraction *
B of the total pressure (=the sum of the gas pressure and
the radiation pressure which is equal to aT%/3). Then
one easily finds by eliminating the temperature in (1)
that in the perfect gas regions .

p=Cp3, . . . . . . (4

where

[(mw Jus _ 2.63’2L4>/<31015 [155}1/3 )

where, in a Well-known notation, B=I—kyL/4mcGM
(G is the constant of gravitation).

It is now immediately obvious that if C as defined by (5)
be greater than the relativistic-degenerate constant K,
then the perfect gas equation (1) cannot break down in
any part of the internal regions of the star.

One finds by (3) and (4) that if K,<<C then

I—

BB > 56_0 =0-I0I5 or [(<09079. . . (0)

The meaning of (6) is simply this.” There is normally

a certain temperature gradient in the star, and if the
radiation pressure is greater than a tenth of the total
pressure then the temperature increases sufficiently
rapidly to prevent the matter from becoming degenerate 7.
We can in fact say much more than this. If for a moment
we now consider that the configuration is a perfect gas
sphere, then, on the standard model, 8 is a function of the
mass M and p only, and is given by Eddington’s quartic

equation :
1—B=000309 (M/@)u46,, . . . . (7)

where © refers to the mass of the Sun. For perfect gas
configurations, the inequality (6) is formally equivalent
to the inequality

M>6-623u2xO. . . . . . (8)

Hence for all stars for which S is less than or equal to

* That 3 should be an absolute constant is not essential for the argument
{see the following footnote).

1 This result is actually much more general than the derivation would
suggest. Defining B abstractly as the ratio, gas pressure/total pressure, then
it is clear that even if 3 were not a constant, the stellar material would
continue to be a perfect gas provided only B8<o'91 throughout the perfect
gas parts of the star.

12
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that given by Eddington’s quartic equation * and mass M
greater than 6:623u—2x© the perfect gas equation of
state cannot pass over into the degenerate equations
of state. The conclusion is that if equations (1), (2),
and (3) represent the only possible states of stellar material
then aoll stars with M>6-623u=2XxX QO and which are not
white dwarfs are necessarily wholly perfect gas conﬁgumtwns
But the perfect gas law (1) can conceivably deviate in
ways yet unknown to us. We shall come back to this
point towards the end.

(B) Stars of Small Mass.—Some general conclusions
regarding the physical conditions in the interior of stars
of small mass can be deduced by an application of a
theorem due to Eddington which states that the total
pressure cannot anywhere exceed

I 1/3 ,
Pmax. = ’2* (277') GM2I3P04/3:BPO4/3 (S&y), .. (9)

where p, is the greatest density inside the star. Pumax
given by (9) is just equal to the central pressure in a
configuration of mass M with a uniform density p,.

From (9) we can at once set a lower limit to the mass
of stars for which zones of relativistic degeneracy can
possibly occur. For if there are regions in the star
which are relativistically degenerate then clearly by the
above theorem

K,<B or M>\/(—I({}—2«)3§, . . (10)

M>14743u2x0. . . . . . . (11)

Hence for stars of mass less than 1743u~2x (@ there
can be no regions in which matter is relativistically degenerate.
For stars of mass less than this limit matter could be
incipiently relativistically degenerate, but if equation (2)
describes the state of affairs sufficiently well then by (9)
we can now set an upper limit to the density (as was first
shown by Eddington). Thus one finds that

or by (3)

p<< (_]% )3 =6-301X 10° . u3(M/O)? gms. em.=3,  (12)
K,.

We can also formally set an upper limit to the tempera-

* The former case corresponds to ¢ centrally condensed” configurations
in the sense defined by Milne, :
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ture using equation (9), but, since the matter is assumed
to be degenerate, it is clear that physical considerations
alone require T to be such that the pressure given by (1)
is much less than that given by (2). This yields an
inequality for T.

T< <(’f:m_ﬂ\E —8-808 X 108 . u8B(M/@)*3.  (13)
/K,

We see therefore that for stars of small mass (. e.,
1743w 2X @) the physical conditions cannot be more
extreme than the limits set above.

(C) White Dwarfs.—The degenerate equations of state
have essentially clarified our views regarding the constitu-
tion of white dwarfs. Since these stars are of very small
luminosity, radiation pressure must play a minor role, and
the equilibrium can be studied more or less thoroughly *.
The analysis yields in addition a confirmation of the
inequalities obtained in (B). One finds that when
M< Mg, ,=3-822u2832x® (B has the usual meaning,
but by hypothesis ~1) relativistic degeneracy does not
appreciably set in, and the central density is given by

pe=1-310 X 10% . u5(M/®)?82 gms. cm.73. . (14)

We see that M;,,>1743u2x @ and that p,< pu.. given
by (12). But when M becomes greater than M;,,, relativ-
istic degeneracy sets in very rapidly, and in fact when
M—5-736pu=2 x ©B-3/2thestar tends to contract toa point.
Hence, by taking the mass sufficiently near this limit we
can obtain arbitrarily high values for the central density ;
but it is very doubtful if this result has any particular
significance.

(D) 17432 X ©O<M<<6:623u~2X ©.—We now come to
discuss these stars of intermediate mass. The situation
is rather complicated, because the star can have relativ-
istically degenerate zonesf. The problem now is:
Can these stars have cores of high density consistent
with the equations of state (1), (2), and (3) ¢ Now Milne
has shown (M. N. 92. 610, 1932) that if f<4/5, then it is
not possible to have centrally condensed stars. (This
result was obtained on the assumption that the degenerate

* The results quoted in this section are taken from the author’s paper
(M. N. 91. 456, 1931).

1 If the star has no regions where the relativistic degeneracy has appre-
ciably set in then the upper limits (12) and (13) continue to hold.
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parts of the star are characterized by opacity which is
negligible in comparison with that of the outer gaseous
envelope. Actually Milne considered only two phase
configurations, but the result quoted appears to be
true even if we consider three phase configurations.)
The stars in the range above specified necessarily satisfy
this condition, and hence,, when M< 6-623u2 x O,
“ centrally-condensed  stars are not possible. By this
statement one merely means that it is not possible to
reach the centre with finite density provided only with
the equations of state (1), (2), and (3), if the perfect gas
part of the star is described by centrally-condensed
solutions of the Emden’s equation of index 3.

One can therefore summarize the present situation as
follows :—

Given that (1), (2), and (3) are the only possible equations
of state for an donized gas, then for a star (which is not a
white dwarf) it is possible to have finite physical conditions
at the centre if, and only if, the star is wholly a perfect gas
configuration in the sense of equation (I). ‘

In this connection it is necessary to draw attention
to another point. Stromgren’s investigations on the
(minimum) hydrogen content of stars indicate that the
massive B-type stars should be practically wholly
composed of hydrogen if there is to be no opacity-
discrepancy for these stars on Eddington’s model. If
now these stars had dense central regions (governed by
equations of state yet unknown to us) then to predict
the correct luminosity we should have to increase the
hydrogen content over the minimum value, and this
would not be possible as the limit has already been
reached.

The general evidence then is in favour of Eddington’s
perfect gas hypothesis for ordinary stars, and it would
follow that the physical conditions in the interior of stars
derived by him * should be near the truth. But it is
well to emphasise here that one cannot be too cautious
in making this statement. One has to bear in mind that
if, as is likely, transmutations of elements are an important
source of stellar energy, the steady state of a star is
consistent only with the equilibrium of the transmuta-
tions occurring in it. The reason for this is that if the

* Modified to take account of the known abundance of hydrogen (such
calculations have been made by Eddington and Strémgren).
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energy be liberated by non-equilibrium processes of
transmutations then a star would be overstable because
of the very high power of the temperature dependence
of this mode of energy liberation. This conclusion
has been reached by Steensholt and Sterne. If the
transmutations then are to occur at equilibrium rates,
the central temperatures must indeed be very much
higher than is provided by the perfect gas hypothesis.
But our earlier discussion now shows that if such high
temperatures do at all exist in the interior of stars then
it must be due to deviations from the known ideal gas
laws in ways about which we have at present no precise
information. It is conceivable, for instance, that at a
very high critical density the atomic nuclei come so near
one another that the nature of the interaction might
suddenly change and be followed subsequently by a
sharp alteration in the equation of state in the sense of
giving a maximum density of which matter is capable.
However, we are now entering a region of pure speculation,
and it is best to conclude the discussion at this stage.

Trinity College, Cambridge, S. CHANDRASEKHAR.
1934 February 15.
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