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Some Remarks on the State of Matter in the Interior 

of Stars. 
 

By S. Chandrasekhar (Copenhagen).
 

With 3 figures. (Received September 28, 1932.)
 
It is shown that for all stars for which the radiation-pressure is greater than a 
tenth of the total pressure, an appeal to the FEBMI-DIRAC statistics to avoid the 
central singularity which arises in the discussions of the centrally condensed
and the collapsed stars cannot be made. The bearing of this result on the possible

state of matter in the interior of stars is indicated.
 

Since the publication of MILNE'S memoir on the “Analysis of Stellar
Structure” in the Monthly Notices for November 19801) a great deal of 
Work has been done to consider “composite” stellar models. But the 
following simple considerations seem to have escaped notice and it seems 
worth while to state them explicitly.

§ 1. The Surfaces of Demarcation. As we approach the centre of a 
centrally-condensed or a collapsed star, we change over to the equation of 
state P = K1  5/3 if the perfect gas law breaks down. If the perfect gas-law 
breaks down at all, the actual transition from the perfect-gas envelope to 
the degenerate core must occupy a certain zone, but we could for the sake of 
convenience consider a definite surface of demarcation defined as the 
surface at which the two equations of state give the same gas-pressure. 
 

Now in the perfect gas envelope the total pressure is given by
 
 

(1) 
 
where 

(2) 
 
x = the opacity coefficient, L = luminosity in ergs cm–3, Μ = mass in 
grams, k = BOLTZMANN'S Constant, µ. = molecular weight = αmH (say),
mH = mass of the hydrogen atom. Since for the standard model the gas 
pressure p is given by
we have (3) 
 

where  (4) 
 
 

(4’) 
 
 
1) Refered to as 1. c. 
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The equation of state in the degenerate zone is
 

(5) 
where 
 

(6) 
 
 

At the first surface of demarcation which we will call S1, the density  1is
given by   
 
 

 
(7) 

 

 
Now, it is well known that the equation of state (5) changes over again 
into the relativistic-degenerate-equation of state  
 

(8) 
 
 

(8') 
 
 

Hence if circumstances permit we have to consider a second surface of 
demarcation, S2, where the density   2 is given by  
 
 

(9) 
 

 
Hence we have two surfaces of demarcation if and only if 
 

(10) 
or 
 

(10) 
 

 
i. e. only when [cf. equations (4'), (6), (8')] 
 
 
 
or 

(11) 
 
It may be remarked in passing that the above value for β is independent of 
the assumed molecular weight. It depends only on the mass, luminosity 
and opacity in the gaseous envelope. It is also independent of whether we 
consider the same opacity for the degenerate zone and the gaseous envelope, 
or different opacities in the two regions.
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§ 2. The meaning of the fundamental inequality (11) is made clear 
by the following. 

In the following graph I plot log p against log   . 
For numerical calculations I use α = 2. The straight line AΒΚ re-

presents the equation of state p = K 1   
5/3 and BC the equation of state

p = K2  
4/3. These two intersect at Β where the density is that which

corresponds to the second surface of demarcation, namely   2. ABC gives
roughly the equation of state of a degenerate gas.

Let us consider a star for which β = 0.98. By (4) we get 
 

(12) 
 

DE represents this equation. It intersects the degenerate equation of 
state AB, C at E. The point Ε corresponds to the first surface of demar- 
cation S1. Hence for all stars 
 for which β = 0.98, we first tra- 
 verse a perfect gas envelope with 
 an equation of state represented 
 by DE. Then we traverse a de- 
 generate zone corresponding to 
 Ε Β and finally (if we have not- 
 yet reached the centre) a rela- 
 tivistically degenerate zone.  

Now, if β = 0.9079, then 
 GB represents the perfect gas 
 equation of state and the dege- 
 nerate zone reduces to a single 
 layer, and the relativistically degenerate zone is described equally well by 
the perfect gas equation.

Now if β < 0.9079l) the perfect gas equation of state has no intersections 
with ABC and this means that however high the density may become the 
temperature rises sufficiently rapidly to prevent the matter from becoming 
degenerate.  

In this connection it will have to be remembered that considerations 
of relativity do not affect the equation of state of a perfect gas. p = N k T, 
is true independent of relativity.

§3. Centrally-Condensed Stars. Now, for each mass Μ there is a 
unique luminosity L0 — the "EDDINGTON luminosity" which makes the star 
 

 
1) The radiation pressure is greater than a tenth of the total pressure

if  β < 0.9079.  
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a perfect gas sphere, with a polytropic index 3. This L0 characteristizes a 
unique β0 which is in fact related to Μ by means of EDDINGTON'S quartic 
equation:  

 
(13) 

 

 
Now from the definition of a centrally-condensed and a collapsed star, 
it is clear that  

 
(14) 

 

 
Consider first the mass        for which β0 = 0.9079. By (13) we have  

 

(15) 
 

If we assume α = 2,  
 

(15’) 
 
Now consider a centrally-condensed star of mass Μ greater than (or equal 
to)      .  Then we obviously have  

 
 
 

(16) 
 
Hence, we have the result that for all centrally condensed stars of mass 
greater tham    , the perfect gas equation of state does not break down, however 
high the density may become, and the matter does not become degenerate. An 
appeal to the Fermi-Dirac statistics to avoid the central singularity cannot be 
made.  

Since however we cannot allow the infinite density which the centrally 
condensed solution of EMDEN'S differential equation — index 8 — allows at 
the centre and in the absence of our knowledge of any equation of state 
governing the perfect gas other than that of degenerate matter, our only 
way out of the singularity is to assume that there exists a maximum 
density max which matter is capable of. We have therefore to con-
sider the “fit” of a gaseous envelope of the centrally condensed type 
on to a homogeneous core at the maximum density of matter. If we 
insist on the density to be continuous at the interface the equation of “fit” 
is found to be1)  

 
(17) 

 
 
l)  S. CHANDRASEKHAR, M. N. 91, 456, 1931, equation (47).  
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where the polytropic equation describing the gaseous part of the star is 
 

 
(17') 

 
where ξ is the value of ξ at which  max begins. In (17') the meaning of Θ 
and ξ are the following:  

 
(17 '' ) 

 
 

(λ3 is a homology, constant). But (17) has no solutions if Θ is of the EMDEN'S 
or of the centrally-condensed type. Hence the acceptance of a  max does not 
 

 
 

help us out of the difficulty if we insist on the density to be continuous 
at the interface. The procedure then to construct an equilibrium configura- 
tion would be to proceed along the centrally condensed solution until the 
mean density  m (r) of the surviving mass Μ (r) equals  max which will 
occur at a determinate r = r" (say) where
 

 

(18) 
 

we then replace the material inside r = r" by a sphere of incompressible
matter at the density  max. At r" there will be a discontinuity of density 
(see Fig. 2).  

Now the form of Θ as ξ → 0 for a centrally condensed solution is 
(MILNE, 1. c ) :  

 
(19) 

 
where D is a constant. D is fixed by the condition that the analytic conti- 
nuation of (19) passes through ξ = 1 and Θ = 0 and satisfies here the 
requisite boundary condition, namely  

 
(20 1) 

 
 

1) C is given by equation (4'). 

 

ϱ 

 

ϱ 

 

ϱ 

 

ϱ 

 

ϱ 



124 
 
 
 
 

326 S. CHANDRASEKHAR,  
 
Hence we get the result that D is a function of L, Μ and x only and hence 
fixed. Since D is fixed by the boundary condition, it follows that the value 
of ξ" at which Θ (ξ") becomes equal to Θ max (where cf· equation (17")) 
 

 

(21) 
 
is fixed as a function of λ3. In other words the discontinuity in Θ, ΔΘ" 
at the interface ξ" is a single-valued function of L, Μ, x and λ or

 

(21') 
or by (21) 
 

(22) 
 
where Δ   " is the discontinuity of density at the interface.

But it has been suggested by LANDAU1) (among others) that the maxi- 
mum density of matter will arise after some kind of overcompressibility, 
the incompressibility setting in later (see Fig. 8).  

Further it has been suggested that 1) the pressure at which the over- 
compressibility sets in must be a physical property of the atomic nuclei 
and the electrons in the enclosure, and 2) the form of the curve A B C is
again an intrinsic physical property of matter. If we idealise the situation 
of Fig. 8, we see that Δ     ought to be a physical property of matter. Let this Δ    
be ω. Then by (22) we have to so choose the homology constant λ3, that
Δ   " equals ω:  

 

(23) 
 
This fixes λ3 and hence by (17") fixes r0 – the radius of the configuration. 
Hence we are able to obtain equilibrium configurations for arbitrary mass, and 
arbitrary luminosity, the radius however bieng determinate in each case.

§ 4. In the above section we have tried to construct the equilibrium 
configurations for all centrally-condensed stars of mass greater than  2), 
and found that the introduction of a homogeneous core at the maximum 
density of matter ( max) with a discontinuity of density at the interface 
was necessary. We may now ask about the equilibrium configurations 
for centrally condensed stars with β > 0.908. Now the star has clearly 
a degenerate zone (see Fig. 1). A little consideration shows that if we 
come along a centrally-condensed solution in the perfect gas part of 
the star then at the interface S1 (cf. § 1) we are compelled to choose a
centrally-condensed solution for the polytropic equation of index "3/2"
 

 
1) I am indebted to Dr. STRÖMGREN for advice on these matters.  
2) Or more generally, centrally-condensed stars with β < 0.908.  
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to describe the non-relativistic degenerate part of the star1); also at the 
second surface demarcation S2 we are again forced to choose a centrally- 
condensed solution for the potytropic equation of index “3”. Hence in 
this case also we are unable to avoid the central singularity by appe- 
aling to the FERMI-DIRAC statistics alone. The star must have a homo- 
geneous core with a discontinuity of density at the interface. The con- 
siderations of the previous section apply and we see that the centrally- 
condensed stars β > 0.908 differ from the centrally-condensed stars with 
β < 0.908 only in this, that while in the former type of stars we have 
to traverse a degenerate zone before reaching the homogeneous core, in 
the latter type, the stellar material continues to be a perfect gas till we 
reach the homogeneous core. Thus we find that all centrally-condensed 
stars (on the standard model) must have a homogeneous core at the centre 
with a discontinuity of density at the interface.

§ 5. Collapsed-Stars. Just a few remarks about collapsed stars may 
be permitted. A detailed analysis of highly-collapsed stars has been given 
elsewhere (CHANDRASEKHAR, 1. c).  

Consider a collapsed star of mass greater than   and let further 
ß0 < βcol. < 0.9078. In other words the collapse" has not proceeded 
sufficiently far to increase β beyond 0.9078. In such a case the collapse 
can occur only on a homogeneous core. But if the collapse proceeds 
sufficiently far, such that βcol > 0.9078 in spite of β0 being less than 
0,9078, the star will then possess a degenerate zone as well.

Conclusion: We may conclude that great progress in the analysis 
of stellar structure is not possible before we can answer the following 
fundamental question:  

Given an enclosure containing electrons and atomic nuclei, (total charge 
zero) what happens if we go on compressing the material indefinitely?
 

1) This is also true if we ascribe different opacities to the gaseous 
and the degenerate part of the star.  
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