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Wigner distributions for finite state systems without redundant phase point operators
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We set up Wigner distributions for N state quantum systems following a Dirac inspired approach.
In contrast to much of the work on this case, requiring a 2N × 2N phase space, particularly when
N is even, our approach is uniformly based on an N × N phase space grid and thereby avoids
the necessity of having to invoke a ‘quadrupled’ phase space and hence the attendant redundance.
Both N odd and even cases are analysed in detail and it is found that there are striking differences
between the two. While the N odd case permits full implementation of the marginals property, the
even case does so only in a restricted sense. This has the consequence that in the even case one is
led to several equally good definitions of the Wigner distributions as opposed to the odd case where
the choice turns out to be unique.

PACS numbers: 03.65.-w; 03.65.Ca; 03.65.Wj
Keywords: Wigner distributions, Phase Space, Isotropic lines, Phase Point Operators, Marginals Property,
Symplectic Group SL(2, ZN ), Tomographic Reconstruction.

I. INTRODUCTION

The Wigner distribution, as originally defined by Wigner [1] for the case of a Cartesian configuration space has,
over the years, been extended and generalised in many directions [2]-[23]. These extensions and generalisations (most
of which have been elegantly unified in a recent work of Ferrie and Emerson [22] using the language of frame theory)
include situations where the coordinates take values in

• a finite field Fpn

• a ring ZN

• a finite group (abelian or non abelian)

• the manifold of a semi simple compact Lie group

The first two are of particular interest owing to potential applications to quantum information processing and quantum
state estimation. In the present work we focus our attention on the second case and set up the phase space and Wigner
distributions thereon using what we call a Dirac inspired approach to Wigner distributions [20]. This approach
essentially requires computing the square root of a certain kernel which brings with it undetermined signs, one at
each phase point. We examine the question to what extent these signs can be fixed or related to each other by the
marginals property i.e by demanding that the phase space averages of the Wigner distribution along an ‘isotropic
line’ and the lines ‘parallel’ to it yield a probability distribution. For the case when N is odd one finds that one
can consistently impose marginals property on all ‘isotropic lines’ which in turn uniquely fixes all the signs. The
Wigner distribution thus obtained turns out to be the same as that already known in the literature. For the even
case, on the other hand, this is not so. We find that the marginals property can not be consistently imposed on all
the ‘isotropic lines’ but only on specific subsets thereof (i.e. on individual orbits under SL(2, ZN)). Therefore the
best one can do is to demand the marginals property on the largest such subset. This is actually good enough as the
‘isotropic lines’ in this subset ( and only in this subset) cover all phase points. We explicitly carry this out and find

∗Electronic address: scsp@uohyd.ernet.in
†Electronic address: nmukunda@cts.iisc.ernet.in
‡Electronic address: simon@imsc.res.in

http://arxiv.org/abs/0909.1387v1
mailto:scsp@uohyd.ernet.in
mailto:nmukunda@cts.iisc.ernet.in
mailto:simon@imsc.res.in


2

that, unlike the odd case, not all signs get fixed and therefore one has a family of Wigner distributions characterised
by different choices for the signs , all of which respect the restricted marginals property. We emphasise that here we
work all along with an N × N phase space lattice and the associated N2 phase point operators. This is in contrast
to other formalisms to be found in the literature [2], [3] where a 2N × 2N phase space lattice is invoked to arrive
at a satisfactory definition of Wigner distributions for an N -state quantum system. An interesting recent work by
Bar-on [23] based on symmetric informationally complete projection operator valued measures (SIC-POVMs) [24] and
a block design theory [25] inspired picture of phase space, reduces the number phase points from 4N2 to N2 +N , but
still has N phase points more than those required in the present work.

A brief outline of this work is as follows: In Section II we set up our notation and summarise the properties of the
operators used later. In Section III we briefly recapitulate the Dirac inspired approach to Wigner distributions and
give the expressions for the phase points operators in a convenient form along with the conditions on the undetermined
signs that appear therein in order that the phase point operators satisfy the standard marginals property. In Section
IV we briefly summarise the properties of the isotropic lines in our phase space as made available in a recent work by
Albouy[26]. In Section V we discuss the odd case and in Section VI summarise our result for the case when N is a
prime power. The case of general N is discussed inSection VII. In Section VIII we discuss the question of tomographic
reconstruction for the case when N = 2n. We conclude with Section IX where we note that although for a given even
N there is a great variety of Wigner distributions characterised by different choices for the unfixed signs, the actual
number of choices available, in so far as the eigenvalues of the relevant phase point operators is concerned, is rather
small.

II. PRELIMINARIES

Consider a quantum system described by a complex Hilbert space H of dimension N . Denote by {|q〉}, {|p)}, q, p ∈
ZN two orthonormal bases - coordinate and momentum bases - related to each other by a finite Fourier transform :

〈q′|q〉 = δq′,q; (p′|p) = δp′,p; 〈q|p) = ωqp/
√

N ; ω = e2πi/N (1)

Here ZN stands for the ring of integers {0, 1, 2, · · · , N − 1} with addition and multiplication modulo N . We use the
notation [n] to denote n modulo N . On the Hilbert space H we introduce the familiar Weyl operators:

U = ωq̂ =
∑

q∈ZN

ωq|q〉〈q|, U |p) = |[p + 1]); U †U = UN = 1.

Up = ωpq̂ =
∑

q∈ZN

ωpq|q〉〈q|; |q〉〈q| = 1

N

∑

p∈ZN

ω−qpUp. (2)

V = ω−p̂ =
∑

p∈ZN

ω−p|p)(p|, V |q〉 = |[q + 1]〉; V †V = V N = 1

V q = ω−qp̂ =
∑

p∈ZN

ω−pq|p)(p|; |p)(p| = 1

N

∑

q∈ZN

ωqpV q.

UpV q = ωpqV qUp = τ2pqV qUp, (3)

where τ = eπi/N . We denote by Γ0 the discrete ‘classical’ phase space of N2 points σ = (q, p) equipped with the
symplectic product 〈σ, σ′〉 = pq′ − qp′ between any two phase points σ and σ′. We denote by K the Hilbert space of
square summable functions on Γ0:

K = L2(Γ0) = N2−dimensional Hilbert space

= {f(σ) ∈ C | σ ∈ Γ0, ‖ f ‖2=
∑

σ∈Γ0

|f(σ)|2}. (4)

Γ0 can be viewed as an abelian group of order N2:

σ ∈ Γ0 → group element g(σ) = aqbp,

generators a, b : ab = ba, aN = bN = e

g((0, 0)) = identity e; (5)

composition : g(σ′)g(σ) = g(([q′ + q], [p′ + p])) = g([σ + σ′]);

inversion : g(σ)−1 = g(([N − q], [N − p])) ≡ g([N − σ]). (6)
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Thus Γ0 is the direct product G0 ×G0 where G0 is the (abelian) cyclic group of order N .
Γ0 has N2 distinct inequivalent one–dimensional unitary irreducible representations (UIR’s), with characters la-

belled by points σ′ ∈ Γ0 :

σ′ ∈ Γ0 : UIR a→ ω−p′

, b→ ωq′

;

g(σ)→ χσ′ (σ) = ωpq′−qp′

= ω〈σ,σ′〉;

Orthogonality : χ†
σ′′χσ′ =

∑

σ∈Γ0

χ∗
σ′′ (σ)χσ′ (σ)

=
∑

q,p∈ZN

ωp′′q−q′′p+q′p−p′q = N2δσ′′,σ′ (7)

The set of functions { 1
N χσ′(σ)} on Γ0 forms an orthonormal basis (ONB) for K. The trivial UIR is σ′ = 0, χ0(σ) = 1,

and hence
∑

σ∈Γ0

χσ′′(σ) =
∑

σ∈Γ0

ω〈σ,σ′′〉 = N2δσ′′,0 (8)

Finally we introduce the displacement operators D(σ) onH, one for each phase point, and summarise their properties:

σ ∈ Γ0 : D(σ) ≡ D(q, p) = τqpV qUp = τ−qpUpV q; (9)

Unitarity : D(σ)†D(σ) = 1 on H. (10)

Inverses : D(σ)−1 = ησD([N − σ]), (11)

ησ =

{
1 for q = 0 or p = 0

(−1)q+p+N for 1 ≤ q, p ≤ N − 1

= τ−[N−q][N−p]+qp (12)

Composition : D(σ′)D(σ) = τ 〈σ′,σ〉ǫ(σ′, σ)D([σ′ + σ]), (13)

ǫ(σ′, σ) = ǫ(σ, σ′) =






1 for σ′ + σ ∈ Γ0

(−1)q′+q for q′ + q ≤ N − 1, p′ + p ≥ N

(−1)p′+p for q′ + q ≥ N, p′ + p ≤ N − 1

(−1)q′+q+p′+p+N for q′ + q ≥ N, p′ + p ≥ N

= τ (q′+q)(p′+p)−[q′+q][p′+p] (14)

Trace orthogonality : Tr(D(σ′)†D(σ)) = Nδσ′,σ (15)

The set of operators { 1√
N

D(σ)} constitutes a complete irreducible trace orthonormal set of operators onH satisfying

the relations:

D(σ′)D(σ) = ω〈σ′,σ〉D(σ)D(σ′) (16)

D(σ′)D(σ)D(σ′)−1 = ω〈σ′,σ〉D(σ) (17)

Thus {D(σ)} form an irreducible unitary N dimensional ray representation of Γ0 on H. Some useful relations are
given below:

σ ∈ Γ0 : τ−qpD(σ) = V qUp =
∑

σ′∈Γ0

ω〈σ,σ′〉|p′)(p′|q′〉〈q′|, (18)

|p)(p|q〉〈q| = 1

N2

∑

σ′∈Γ0

ω〈σ,σ′〉τ−q′p′

D(σ′). (19)

III. DIRAC INSPIRED APPROACH TO WIGNER DISTRIBUTIONS

The central idea in this approach, discussed in detail in [20], is to initially associate with any operator Â a phase

space function A(σ) constructed out of its mixed matrix elements such as 〈q|Â|p) in such a way that the trace of the
product of two operators is expressed as a phase space average of a kernel times the product of their phase space
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functions, and then try to transform away this kernel. As shown in [20], this exercise entails finding a symmetric
square root of the kernel K(σ, σ′) defined below:

K(σ; σ′) = K(σ′; σ) = ω(q−q′)(p−p′). (20)

A. The Kernel K and its symmetric square roots ξ

The kernel K defines an operator onK. The characters {χσ′(σ)} of Γ0 form a complete orthogonal set of eigenvectors
of K in K:

∑

σ′∈Γ0

K(σ; σ′)χσ′′ (σ′) = Nωq′′p′′

χσ′′(σ) (21)

Using the results above for the eigenvalues and eigenvectors of K, a general square root ξ of K is defined by

ξχσ′′ =
√

Nτq′′p′′

S(σ′′)χσ′′ , S(σ′′) = ±1, σ′′ ∈ Γ0. (22)

At this point, there are N2 sign choices. This freedom will be reduced as we proceed. The kernel ξ(σ; σ′) is

ξ(σ; σ′) =
1

N2

√
N

∑

σ′′∈Γ0

τq′′p′′

S(σ′′)χσ′′(σ)χσ′′ (σ′)∗

=
1

N3/2

∑

σ′′∈Γ0

τq′′p′′

S(σ′′)ω〈σ,σ′′〉−〈σ′,σ′′〉 (23)

K(σ; σ′) is symmetric under σ ↔ σ′. Demanding the same for ξ(σ; σ′) places conditions on the signs S(σ′′). Since in
general

∑

q∈ZN

f(q) =
∑

q∈ZN

f([N − q]) etc, (24)

ξ(σ; σ′) = ξ(σ′; σ)⇐⇒
∑

σ′′∈Γ0

τq′′p′′

S(σ′′)ω〈σ,σ′′〉−〈σ′,σ′′〉

=
∑

σ′′∈Γ0

τq′′p′′

S(σ′′)ω〈σ′,σ′′〉−〈σ,σ′′〉

=
∑

σ′′∈Γ0

τ [N−q′′][N−p′′]S([N − σ′′])ω〈σ,σ′′〉−〈σ′,σ′′〉

⇐⇒ S(σ) = τ [N−q][N−p]−qpS([N − σ]) = ησS([N − σ]). (25)

So the number of independent S(σ)’s is about halved. We hereafter assume ξ(σ; σ′) is symmetric.

B. Phase point operators cW (σ)

For any choice of the square root kernel ξ(σ; σ′), we define

σ ∈ Γ0 : Ŵ (σ) =
√

N
∑

σ′∈Γ0

ξ(σ; σ′)|p′)(p′|q′〉〈q′|

=
1

N

∑

σ′∈Γ0

ω〈σ,σ′〉S(σ′)D(σ′) (26)

The condition (25) on S(σ) arising from the symmetry of ξ ensures hermiticity of Ŵ (σ):

Ŵ (σ)† =
1

N

∑

σ′∈Γ0

ω〈σ′,σ〉S(σ′)D(σ′)−1

=
1

N

∑

σ′∈Γ0

ω〈σ′,σ〉S([N − σ′])D([N − σ′])

= Ŵ (σ) (27)
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Trace orthogonality of D(σ) leads to

Tr(Ŵ (σ′)Ŵ (σ)) = Nδσ′,σ (28)

Further Tr(D(σ)) = Nδσ,0 gives

Tr(Ŵ (σ)) = 1, (29)

So both { 1√
N

Ŵ (σ)} and { 1√
N

D(σ)} are trace orthonormal complete sets of operators on H.

From the conjugation relations (17) for D’s we get:

D(σ′)Ŵ (σ)D(σ′)−1 =
1

N

∑

σ′′∈Γ0

ω〈σ,σ′′〉S(σ′′)ω〈σ′,σ′′〉D(σ′′)

= Ŵ ([σ + σ′]) (30)

Recovery of standard marginals fixes some S(σ):

1

N

∑

p∈ZN

Ŵ (q, p) =
1

N2

∑

q′,p′,p∈ZN

ωpq′−qp′

S(q′, p′)D(q′, p′)

=
1

N

∑

p′∈ZN

ω−qp′

S(0, p′)Up′

= |q〉〈q| ⇐⇒ S(0, p′) = 1; (31)

1

N

∑

q∈ZN

Ŵ (q, p) = |p)(p| ⇐⇒ S(q′, 0) = 1 (32)

These are consistent with (25). So at this stage

S(q, 0) = S(0, p) = 1; S(σ) = ησS([N − σ]) (33)

Some useful formulae are given below:

Tr(Ŵ (σ)D(σ′)†) = ω〈σ,σ′〉S(σ′),

Tr(Ŵ (σ)D(σ′)) = ω〈σ′,σ〉S(σ′),

S(σ)D(σ) =
1

N

∑

σ′∈Γ0

ω〈σ,σ′〉W (σ′) (34)

IV. ISOTROPIC LINES AND FURTHER MARGINALS

The conditions so far on S(σ) are given above in (33). To generate more conditions, we consider more marginals
conditions, based on isotropic lines.

An isotropic line λ is a maximal set of N distinct points in Γ0 including σ = (0, 0) and obeying:

σ′, σ ∈ λ⇒ 〈σ′, σ〉 = 0 mod N. (35)

( The qualification ‘mod N ’ will frequently be left implicit). It is a fact that each point σ ∈ Γ0 belongs to at least
one isotropic line. We mention here some useful properties of such lines, and give further details in Section VI. The
maximality condition allows us to say :

σ ∈ Γ0, 〈σ, σ′〉 = 0 for all σ′ ∈ λ⇒ σ ∈ λ. (36)

This in turn leads to

σ ∈ λ⇒ [N − σ] ∈ λ, (37)

where [N − σ] is defined in (6). We also have closure under the group composition law (5), (6) in Γ0 :
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σ′, σ ∈ λ⇒ [±2σ], [±3σ], · · · , [σ + σ′] ∈ λ. (38)

In fact the points {σ} of λ form an (abelian) subgroup of Γ0, of order N , with group composition being (component–
wise) addition mod N as in eqs. (5), (6); the content is the same as in eq. (38):

σ′, σ ∈ λ→ g(σ′)g(σ) = g([σ′ + σ]), [σ′ + σ] ∈ λ (39)

From this group structure we see that if any σ, [σ′ + σ] ∈ λ are given, then σ′ ∈ λ is uniquely determined. In case
g(σ) for σ ∈ λ is an element of order N , λ itself is a cycle generated by σ and consisting of the N distinct points
{(0, 0), σ, [2σ], [3σ], · · · , [(N−1)σ]}. (However a general λ need not be of this form). Examples of such σ are σ = (1, p)
and σ = (q, 1).

For any σ′ ∈ Γ0, we get a (one–dimensional) unitary irreducible representation (UIR) of λ by

σ ∈ λ→ ω〈σ,σ′〉 (40)

If σ′ ∈ λ, this is the trivial UIR . If σ′ /∈ λ,〈σ, σ′〉 6= 0 mod N for some σ ∈ λ, so this is a nontrivial UIR. Hence from
orthogonality of inequivalent UIR’s we obtain:

∑

σ∈λ

ω〈σ,σ′〉 = N if σ′ ∈ λ, 0 if σ′ /∈ λ (41)

From the relation (16) for D(σ)’s given earlier it follows that the operators D(σ), σ ∈ λ form a mutually commuting
set, but they may not form a representation of λ.

Isotropic line marginals condition

Given λ, define

Pλ =
1

N

∑

σ∈λ

Ŵ (σ) =
1

N2

∑

σ∈λ

∑

σ′∈Γ0

ω〈σ,σ′〉S(σ′)D(σ′)

=
1

N

∑

σ∈λ

S(σ)D(σ) (42)

Clearly P †
λ = Pλ, Tr(Pλ) = 1. Now develop P 2

λ :

P 2
λ =

1

N2

∑

σ,σ′∈λ

S(σ)S(σ′)D(σ)D(σ′)

=
1

N2

∑

σ,σ′∈λ

S(σ)S(σ′)τ 〈σ′,σ〉ǫ(σ′, σ)D([σ′ + σ])

=
1

N2

∑

σ′′∈λ

{
∑

σ,σ′∈λ

[σ′+σ]=σ′′

S(σ)S(σ′)τ 〈σ′,σ〉ǫ(σ′, σ)}D(σ′′) (43)

From the subgroup property of λ: [σ′ + σ] goes over all of λ; for given σ, σ′′ ∈ λ, σ′ ∈ λ is unique. The factor

τ 〈σ′,σ〉 = ±1. So in the last expression, for each σ′′, {· · · } has exactly N terms, each ±1. So, since Tr(Pλ) = 1,

P 2
λ = Pλ ⇐⇒ Pλ is a rank one projection operator

⇐⇒ ∀σ′′ ∈ λ,
1

N

∑

σ,σ′∈λ

[σ′+σ]=σ′′

S(σ)S(σ′)τ 〈σ′,σ〉ǫ(σ′, σ) = S(σ′′)

⇐⇒ S(σ)S(σ′) = τ 〈σ′,σ〉ǫ(σ′, σ)S([σ + σ′]), ∀σ′, σ ∈ λ (44)

If this is obeyed, it implies that {S(σ)D(σ), σ ∈ λ} give a true N–dimensional UR of λ. We have to examine : Can
these conditions be imposed consistently for all isotropic lines λ? If yes, to what extent are the S(σ) then determined?
These are the questions we examine next.
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V. THE N ODD CASE

If N is odd so is N2 and hence from the group structure we have

σ ∈ Γ0 or λ =⇒ ∃ unique σ′ ∈ Γ0 or λ such that σ = [2σ′]

i.e., any σ = (q, p) = ([2q′], [2p′]), unique q′, p′ ∈ ZN .

q or p even,≤ N − 1 : q′ = q/2 ≤ (N − 1)/2, p′ = p/2 ≤ (N − 1)/2

q or p odd,≤ N − 2 : q′ = (q + N)/2 ≥ (N + 1)/2, p′ = (p + N)/2 ≥ (N + 1)/2 (45)

In the relation (44), setting σ = σ′ to get

S([2σ′]) = ǫ(σ′, σ′) (46)

and looking at q/p even/odd we find that S(q, p) are unambiguously given by :

S(q, p) = (−1)qp (47)

Does this obey the condition (44) for all λ? We find that this is indeed so. The expression (−1)qp was found by taking
σ = σ′ in (44). Now we put this into that equation with σ and σ′ independent and ask if it is obeyed, i.e. whether or
not

ǫ(σ′, σ) = S(σ′)S(σ)S([σ′ + σ])τ 〈σ′ ,σ〉 (48)

holds for all σ′, σ ∈ λ. A key observation here is that since N is odd

〈σ′, σ〉 = 0 mod N =⇒ 〈σ′, σ〉 = mN =⇒
τ 〈σ′,σ〉 = (−1)m =⇒ τ 〈σ′,σ〉 = (−1)mN = (−1)〈σ

′,σ〉 (49)

So the question now is whether

ǫ(σ′, σ) = (−1)q′p′+qp+[q+q′ ][p+p′]+q′p−p′q (50)

We now check the exponent on the RHS in various cases

q + q′ p + p′ exponent rhs
≤ N − 1 ≤ N − 1 2q′p +1

≤ N − 1 ≥ N N(q′ + q) (−1)q′+q

≥ N ≤ N − 1 N(p′ + p) (−1)p′+p

≥ N ≥ N N2 + N(q′ + q + p′ + p) (−1)q′+q+p′+p+N

(51)

So, comparing with ǫ(σ′, σ), we find that (50) holds.
Thus in the N odd case the marginals conditions for all isotropic lines can be satisfied, all the S(σ) are determined

as above.
This unique solution is related to the Fourier matrix (actually parity matrix) results. The Fourier operator F on
H has these actions and properties

F |q〉 = |q), F |p) = |[−p]〉, F †F = FF † = F 4 = 1 (52)

F 2|q〉 = |[−q]〉, F 2|p) = |[−p]). (53)

So F 2 = P = parity operator, which is what we need. From the relation (19)

F |p〉〈q| = 1

N3/2

∑

σ′∈Γ0

ω〈σ,σ′〉+qp τ−q′p′

D(σ′) (54)

Set p = q and sum to get

F =
1

N3/2

∑

σ′∈Γ0

{
∑

q∈ZN

ωq2+q(q′−p′)}τ−q′p′

D(σ′) (55)
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Next for P = F 2, by calculating in the |q′〉 basis

Tr(PD(σ)†) = τ−qp
∑

q′∈ZN

ω−pq′

δ[q+2q′],0 (56)

and in the |p′) basis

Tr(PD(σ)†) = τqp
∑

p′∈ZN

ωqp′

δ[p+2p′],0 (57)

which are necessarily equal. Using the first form , for N odd, the Kronecker delta gives

q = even = 0, 2, 4, · · · , N − 3, N − 1 : q′ = [N − q/2] (58)

q = odd = 1, 3, 5, · · · , N − 2 : q′ = (N − q)/2 (59)

Tr(PD(σ)†) =

{
q even : τ−qpω−p[N−q/2] = 1

q odd : τ−qpω−p(N−q)/2 = (−1)p

= (−1)qp (60)

Hence

P =
1

N

∑

σ∈Γ0

(−1)qpD(σ) (61)

Now

Ŵ (0, 0) =
1

N

∑

σ∈Γ0

S(σ)D(σ) (62)

and hence

W (0, 0) = P ⇐⇒ S(σ) = (−1)qp (63)

Thus for the case of N odd, we see that there is a unique consistent solution for all signs S(σ), such that the marginals
conditions can be satisfied for all λ’s. The resulting Wigner phase point operators are the same as those known in
the literature and are characterised by the fact that the phase point operator at the origin is the parity operator as
in the continuum case. The existence of a unique square root group element

√
g(σ) for each g(σ), guaranteed by N

being odd, is adequate for this purpose. In particular it has not been necessary to survey in any sense the set of all
isotropic lines λ, their orbit structure under SL(2, ZN ) action (see below) etc.

VI. THE CASE OF N A PRIME POWER

Towards handling the case of general N (essentially even N) we may note the following : Any N can be uniquely
written as the product of powers of (increasing) primes as :

N = N1N2 · · ·Nk =

k∏

j=1

Nj

Nj = p
nj

j , pj = jth prime : p1 = 2, p2 = 3, p3 = 5, · · · ,
pj = odd j ≥ 2; and nj = 0 or 1 or 2 · · · . (64)

If n1 = 0, N is odd and then previous results of Section V are in hand. We expect something new to arise only when
n1 ≥ 1.

We consider the case when N is a power of a single prime in the rest of this Section, and turn to the general case
(64) later in Section VII. Simplifying the notation as much as possible for the moment let us write:

N = pn, p prime, n = 0, 1, 2 · · · . (65)

(Care will be taken to avoid this prime p being confused with the second entry in the pair (q, p) corresponding to a
general point σ ∈ Γ0 = ZN × ZN ).
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A. Isotropic Lines and SL(2, ZN) orbits for N = pn

For the isotropic lines we have the following results [26] :

1. The total number of isotropic lines λ is

N = (pn+1 − 1)/(p− 1) (66)

2. The number N (σ) of isotropic lines passing through a point σ ∈ Γ0 = ZN × ZN is computed as follows. Any
a ∈ ZN can be uniquely written as

a = a0 + a1p + a2p
2 + · · ·+ an−1p

n−1,

aj ∈ {0, 1, · · · , p− 1}, j = 0, 1, · · · , n− 1. (67)

The ‘p–valuation of a’ is then the smallest j for which aj is nonzero:

v(a) = p− valuation of a

= j such that a0 = a1 = · · · = aj−1 = 0, aj ≥ 1. (68)

This definition is unambiguous for a ≥ 1, in particular, we have:

v(1) = v(2) = · · · = v(p− 1) = 0;

v(p) = 1, · · · ; v(p2) = 2 · · · ; · · · ; v(pn−1) = n− 1;

v(N − 1) = v(pn − 1) = 0 as pn − 1 = (p− 1)(1 + p + p2 + · · ·+ pn−1). (69)

We supplement these with the convention

v(0) = n (70)

based on pn = 0 mod N . For σ = (q′, p′) ∈ Zn × ZN we define the p-valuation by

v(σ) = (v(q′), v(p′))< , q′, p′ ∈ ZN . (71)

Thus for instance;

v((0, 0)) = n; v((1, p′)) = v((q′, 1)) = v((N − 1, p′)) = v((q′, N − 1)) = 0. (72)

Then the number of isotropic lines passing through σ ∈ ZN × ZN is

N (σ) =
(pv(σ)+1 − 1)

(p− 1)
(73)

Comparing with (66) we see that N = N ((0, 0)): this is consistent with the condition that any isotropic line λ
must contain (0, 0). For σ = (1 or N − 1, p′), (q′, 1 or N − 1) we have v(σ) = 0,N (σ) = 1, so only one isotropic
line passes through each of these points.

We now turn to the group SL(2, ZN)

SL(2, ZN) = {A =

(
a b
c d

)
| a, b, c, d ∈ ZN ; ad− bc = 1 mod N}; (74)

and its action on Γ0 and on the family of isotropic lines thereof. For the case at hand viz. N = pn the order
|SL(2, ZN)| is given by

|SL(2, ZN)| = p3n−2(p2 − 1) (75)

It acts on the points and isotropic lines in Γ0 as follows:

A ∈ SL(2, ZN) : σ = (q′, p′) ∈ Γ0 → σ′ = (aq′ + bp′, cq′ + dp′) ∈ Γ0,

: λ = {(q′, p′)} → λ′ = {(aq′ + bp′, cq′ + dp′)}. (76)

From the latter action one finds that [26]
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1. The N isotropic lines, divide themselves into 1 + [n/2] orbits under SL(2, ZN) action, where [n/2] is the integer
part of n/2 . They are denoted by Ok(pn), k = 0, 1, · · · , [n/2]. For k < n/2 the orbit contains

N (Ok) = (p + 1)pn−2k−1 (77)

isotropic lines, while for k = n/2 in case n is even we have

N (On/2) = 1. (78)

One can easily check in both cases that

[n/2]∑

k,0,1,···
N (Ok) = N (79)

The largest orbit corresponds to k = 0 and contains (p + 1)pn−1 isotropic lines.

2. Only the largest orbit O0(p
n) has the property that it covers all points in Γ0 = ZN × ZN . The (p + 1)pn−1

isotropic lines in this orbit are all generated by single generators of order N which may be taken to be (1, p′)
for p′ ∈ {0, 1, · · · , N − 1} and (q′, 1) for q′ ∈ {0, p, 2p, 3p, · · · , (pn−1 − 1)p}.

B. Isotropic lines in the 2n case

Now we specialise to the case N = 2n, as otherwise N is odd and then the comprehensive results of Section V are
available. Thus in a sense this is the most important remaining case. Specialising the above statements ( and further
quoting from [26]) we now have:

1. The total number of isotropic lines λ is

N = 2n+1 − 1 = 2N − 1 (80)

2. If σ is of the form (2j, 2k), then from (73), as v(σ) ≥ 1, the number of λ’s passing through it is

N (σ = (2j, 2k)) ≥ 3. (81)

If σ is of any of the other three forms (2j, 2k + 1), (2j + 1, 2k or 2k + 1), then as v(σ) = 0 the number of λ’s
passing through it is

N (σ 6= (2j, 2k)) = 1. (82)

3. The λ’s separate into two types
Type (a): 3N/2 in number, generated by single generators, and comprising a single (the largest) orbit O0(2

n),
Type (b) N/2− 1 in number, involving two generators of orders 2r and 2s with both r, s nonzero and r + s = n;
and comprising all the remaining orbits Ok(2n), k = 1, 2, · · · , [n/2].

4. Every phase point σ lies on (one or more) λ’s of Type (a). The λ’s of type (b) cover all the even phase points
(2j, 2k) only.

5. The λ’s of Type (a) separate further into two subtypes:
Type (a1) containing N λ’s generated by (1, p0) for p0 = 0, 1, 2, · · · , N − 1.
Type (a2) containing N/2 λ’s generated by (q0, 1) for q0 = 0, 2, 4, · · · , N − 2

Therefore each σ of any of the three types other than (2j, 2k) lies on a unique λ of Type (a) according to the
pattern :

σ = (2j + 1, 2k or 2k + 1)− −−−−−−−−−Type (a1)

σ = (2j, 2k + 1)−−−−−−−−−−−−−− Type (a2) (83)
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C. Marginals property for Isotropic lines in Z2n × Z2n

The condition that the average of the phase point operators along an isotropic line λ be a one dimensional projector
is given in (44). The other essential conditions on the signs S(σ) are the reflection symmetry (25) and the standard
marginals conditions (31), (32). We know from (37) that σ ∈ λ implies [N − σ] ∈ λ as well. Applying (44) to such
pairs of points on λ’s of Type (a), and remembering that any σ lies on such a λ, we find that the property (25) follows.
( For λ’s of Type (b) this is only partially true as they cover only the even phase points (2j, 2k)). Thus we begin by
imposing only the requirements (31), (32), (44) on S(σ), for all λ’s of Type (a).

We see from (14), N being even, that

ǫ(σ, σ) = 1 (84)

Therefore setting σ′ = σ in (44) leads to

S((2j, 2k)) = 1 (85)

This leaves S((2j + 1, 2k or 2k + 1)) and S((2j, 2k + 1)) to be analysed. Each σ of the former type is on a unique
Type (a1) λ, while each σ of the latter type is on a unique Type (a2) λ. We apply (44) in these cases, choosing
σ = σ0 = (1, p0) or (q0, 1) and σ′ = [2jσ0] or [2kσ0] respectively, thus reaching all points σ other than (2j, 2k), and
relating S at such points to S(σ0):

S((2j + 1, [(2j + 1)p0])) = (−1)(2jp0−[2jp0 ])/N · S((1, p0))×{
1 if p0 + [2jp0] ≤ N − 1,

−1 if p0 + [2jp0] ≥ N
; (86)

S(([(2k + 1)q0], 2k + 1)) = (−1)(2kq0−[2kq0 ])/N · S((q0, 1))×{
1 if q0 + [2kq0] ≤ N − 1,

−1 if q0 + [2kq0] ≥ N.
(87)

In the former relation, the choice of 2k or 2k + 1 determines p0 uniquely ; in the latter, that of 2j determines q0

uniquely. For q0 = 0, eq. (31) determines S((0, 1)) = 1; for p0 = 0, eq. (31) determines S((1, 0)) = 1. The remaining
3N/2− 2 undetermined signs are S((q0, 1)), q0 = 2, 4, · · · , N − 2 and S((1, p0)), p0 = 1, 2, · · · , N − 1.

These conditions may equivalently be written as

S((2j + 1, [(2j + 1)p0])) = S((1, p0))×
{

1 if ((2j + 1)p0 − [(2j + 1)p0])/N is even

− 1 if ((2j + 1)p0 − [(2j + 1)p0])/N is odd
(88)

S(([(2k + 1)q0, (2k + 1)) = S((q0, 1))×
{

1 if ((2k + 1)q0 − [(2k + 1)p0])/N is even

− 1 if ((2k + 1)q0 − [(2k + 1)q0])/N is odd
. (89)

Thus, for n = 1, 2, when N = 2 and 4 respectively, the free signs are indicated thus:

S(q, p)
1 1
1 S(1, 1)

(90)

S(q, p)
1 1 1 1
1 S(1, 1) S(1, 2) S(1, 3)
1 S(2, 1) 1 −S(2, 1)
1 S(1, 3) −S(1, 2) S(1, 1)

(91)

In summary: the marginals conditions can be consistently imposed on all isotropic lines of Type (a) comprising the
largest orbit but leaving 3× 2n−1 − 2 of the S(σ) unfixed.

We next see by low dimensional examples that these conditions cannot be consistently extended to include isotropic
lines of type (b). For n = 1, N = 2, there are no isotropic lines of type (b). For n = 2, N = 4, there is one isotropic
line of type (b), generated by (2, 0) and (0, 2). Condition (44) when applied to this isotropic line gives S(2, 2) = −1
conflicting with S(2, 2) = 1 obtained from isotropic lines of type (a). For n = 3, N = 8, there are three isotropic lines
of type (b) generated respectively by {(2, 0), (0, 4)},{(0, 2), (0, 4)},{(2, 2), (0, 4)} . Again, as for n = 2, N = 4 one finds
that the results of (44) for isotropic lines of type (b) conflict with those for isotropic lines of type (a)– one can not
impose marginals property on all isotropic lines consistently.
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VII. ISOTROPIC LINES AND ORBITS IN THE GENERAL CASE

Turning now to the case of a general N we note that ring ZN can be factored as

ZN = ZN1
× ZN2

× · · · × ZNk
(92)

The explicit correspondence between elements of ZN and those of the rings ZNj
is provided by the chinese remainder

theorem which tells us that an element q ∈ ZN can be uniquely decomposed as

q =

k∑

j=1

qj · νj · µj (93)

where qj = [q mod Nj] ∈ ZNj
, νj = N/Nj and µj denotes the (multiplicative) inverse of νj in ZNj

. Thus each element
q ∈ ZN can be uniquely represented as an array

q ←→ {q1, q2, · · · , qk}, qi ∈ ZNi
(94)

In particular the elements 0 and 1 are represented by

0←→ {0, 0, · · · , 0}; 1←→ {1, 1, · · · , 1} (95)

Further, this correspondence has the nice property that

q + q′ ←→ {q1 + q′1, q2 + q′2, · · · , qk + q′k}, qi and q′i ∈ ZNi

(96)

qq′ ←→ {q1q
′
1, q2q

′
2, · · · , qkq′k}, qi and q′i ∈ ZNi

In view of this and the properties (95) and (97) we have the following results:

• A point σ ∈ ZN × ZN can be represented as

σ ←→ {σ1, σ2, · · · , σk}, σi ∈ ZNi
× ZNi

(97)

• The symplectic product 〈σ, σ′〉 vanishes if and only if each of the components 〈σi, σ
′
i〉 vanish.

• The group SL(2, ZN) also factorises as

SL(2, ZN) = SL(2, ZN1
)× SL(2, ZN2

)× SL(2, ZNk
) (98)

This can easily be seen by considering the case N = N1N2 and verifying that any matrix A ∈ SL(2, ZN) :

A =

(
a b
c d

)
; ab− cd = 1; a, b, c, d ∈ Zn; (99)

can be decomposed as A = A1A2 where

A1 =

(
(a1, 1) (b1, 0)
(c1, 0) (d1, 1)

)
∈ SL(2, ZN1

); A2 =

(
(1, a2) (0, b2)
(0, c2) (1, d2)

)
∈ SL(2, ZN2

); (100)

From these considerations it is evident that the isotropic lines in σ ∈ ZN × ZN and SL(2, ZN ) action are completely
determined by those in each of the factors ZNj

× ZNj
.

VIII. TOMOGRAPHIC RECONSTRUCTION FOR N = 2n

From the discussion towards the end of Section VI it is evident that for the case when N = 2n we can only insist
on marginals property restricted to the isotropic lines of Type (a) constituting the largest orbit under SL(2, ZN)
action. For each choice for the free signs, we can associate with each such isotropic line a rank one projector Pλ.
Each isotropic line generates N − 1 other lines ‘parallel’ to it obtained, for instance, by shifting the points on it by an
amount (0, i) in the case of isotropic lines of Type a1 and by an amount (i, 0) in the case of isotropic lines of Type a2
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with i taking values 1, 2, · · · , N − 1. Denoting by (λ, i) the lines parallel to the line λ, the projectors Pλ,i associated
with them are obtained by the conjugate action of the appropriate displacement operators on Pλ:

P(λ,i) =

{
D(0, i)PλD†(0, i) if λ is of Type a1

D(i, 0)PλD†(i, 0) if λ is of Type a2
(101)

From these N projectors associated with each isotropic line we can construct N − 1 traceless operators T(λ,i) =
P(λ,i) − IN/N . Each line of Type (a) gives us N − 1 T ’s and since there are 3N/2 lines of Type (a), we have a
collection of 3N(N−1)/2 traceless hermitian operators. Given a density operator for an N -state system, the operator
ρN −IN/N belongs to the N2−1 dimensional real Hilbert space of N×N traceless Hermitian matrices. The question
concerning the tomographic reconstruction of ρ then reduces to the question whether or not the collection of the
T ’s above spans the N2 − 1 dimensional real vector space of traceless hermitian operators. This can be checked by
examining the rank of the Gram matrix associated with the T ′s. For N = 2, 4 we have explicitly checked that the
corresponding Gram matrices indeed have ranks 3 and 15 respectively. Thus, it would seem that even with restricted
marginals property the construction developed here permits a tomographic reconstruction of the state of an N -level
system though in a non optimal fashion – we have (N − 1)(N − 2)/2 more T ’s then the N2 − 1 required.

IX. CONCLUDING REMARKS

We have shown how to set up Wigner distributions for finite even dimensional quantum systems working entirely
with a N × N lattice instead of a 2N × 2N grid as was found necessary in the existing formalisms. The Wigner
distributions thus obtained are consistent with a restricted marginals property and are characterised by 3.2n−1 − 2.
undetermined signs where n is the exponent of 2 in the decomposition of N into prime factors. As a result, for
instance, for N = 2, 4, 8, 16 there are 2, 24, 210, 222 different possible definitions of Wigner distributions.

As a curiosity, in the spirit of the work in [27], we have also examined the dependence of the eigenvalues of the
phase point operators for N = 2, 4, 8, as a function of the signs that remain free. (For this purpose it is sufficient to

look at the eigenvalues of Ŵ (0, 0)). We find that:

For N = 2 there is only one free sign, S(1, 1), and the spectrum of Ŵ (0, 0) is the same for S(1, 1) = ±1

For N = 4 there are three distinct spectra for Ŵ (0, 0) depending on the values of the four free signs, S(1, 1) ≡
a, S(1, 2) ≡ b, S(1, 3) ≡ c, S(2, 1) ≡ d. They are

• ((1 +
√

6)/2, (1−
√

6)/2,−1/2, 1/2) corresponding to a = c, b = −d and a = −c, b = d.

• ((1 + 2
√

2)/2,−1/2, (1−
√

2)/2, (1−
√

2)/2 corresponding to a = c = 1, b = d = 1,a = c = −1, b = d = −1 and
a = −c = 1, b = −d

• ((1 +
√

2)/2, (1 +
√

2)/2, (1− 2
√

2)/2,−1/2) corresponding to a = c = 1, b = d = −1,a = c = −1, b = d = 1 and
a = −c = −1, b = −d

For N = 8, one has 4 and N = 16, one has 15 distinct spectra. Thus, although the number of different Wigner
distributions based on choices for the signs for N = 2, 22, 23, 24 is 2, 24, 210, 222, those which have distinct spectra are
only 1, 3, 4, 15 in number. ( It seems that the number of distinct spectra for N = 2n equals 2n−1 if n even and 2n − 1
if n odd) The question as to what bring about this enormous reduction is under investigation. Further, it would be
interesting to see if the square root idea developed here works in the case when the coordinates take values in a finite
field [5] and to see how it relates to Wigner distributions in the more general setting based on the theory of frames
employed in the work of Ferris and Emerson [22].
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