TRIGONOMETRICAL SERIES IN THE KARANA-PADDDHATI
AND THE PROBABLE DATE OF THE TEXT

AMULYA KUMAR BAG
History of Science, Ancient Period (Unit II), 1 Park Street, Calcutta 16

(Received September 5, 1966; after revision October 17, 1966)

The paper discusses the trigonometrical series for \(\pi \), sine, cosine and tan functions contained in the Karana-padddhati. The original texts and their translations are given. As to its date C. M. Whish attempted to fix it in the beginning of the eighteenth century. Whish’s derivation is untenable and it is shown that the text is likely to be contemporaneous with, or even to antedate, the Tantrasamgraha, of Nilakantha Somasuttvan (A.D 1465–1545).

1. INTRODUCTION

The Karana-padddhati is an important astronomical work in ten chapters by an unknown Kerala astronomer of uncertain date. Only this much is known about the author that he was a Brähmin who took his abode in the village of Sivapura.¹ The text in Devanāgarī script is published by K. Sambaśiva Śāstrī,² but this edition misses the opening verse.³ Apart from the usual elements and formulae characteristic of Hindu astronomy, the work gives, in the sixth chapter, trigonometrical \(\pi \), sine, cosine and tan series. The mathematical importance of the text was first pointed out by C. M. Whish⁴ who discussed \(\pi \) and tan functions given in the text and attempted to fix its date to the beginning of the eighteenth century A.D. In this connection Whish also drew attention to three texts, e.g. Tantrasamgraha, Yuktibhāṣā and Sadratanamālā, containing similar trigonometrical series. Some of these series have been studied by C. T. Rājagopal et al.⁵ and T. A. Saraswati.⁶ It is proposed to consider here all the four trigonometrical series given in the Karana-padddhati, including the sine and cosine not discussed by Whish, as also the question of date of the text.

2.1. \(\pi \) Series

This series has been discussed in chapter 6 of the text and a number of series have been given. The opening verse runs as follows:

\[
\begin{align*}
vyāsāccaturghnād \ bahuṣah \ pṛthakṣṭhāt \ tripañcaśaupādiyayugāhyatāni \mid \\
vyeṣe \ caturghne \ kramaśastuṛṇaṁ \ svam \ kuruṁ \ tadā \ syāt \ paridhiḥ \ susākṣmaḥ \mid \\
\end{align*}
\]

(ch. 6, 1)
‘Four times of the diameter is to be divided separately by each of the odd integers 3, 5, 7...; every quotient whose order is even is taken away from the one preceding it. Combined result of all such small operations, when subtracted from four times the diameter, gives the value of the circumference with progressively greater accuracy.’

If \(C \) be the circumference and \(D \) the diameter, the rule may be expressed as:

\[
C = 4D - 4D \left(\frac{1}{3} - \frac{1}{5} \right) - 4D \left(\frac{1}{7} - \frac{1}{9} \right) - \ldots
\]

or,

\[
\pi/4 = \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \ldots \right)
\]

The next verse gives the series in a different form as follows:

vyāsād vanasaṅguṇiśāt prthagāptāṁ tryādyayug-vimūlaghanaiḥ |
triguṇāyāse svamṛṇāṁ kramasāḥ kṛtvāpi paridhirāneyah || (ch. 6, 2)

‘Four times the diameter is divided separately by the cubes of the odd integers from 3 onwards, diminished by these integers themselves. The quotients thus obtained are alternately added to and subtracted from thrice the diameter. The result is the circumference.’

Thus,

\[
C = 3D + 4D \left\{ \frac{1}{3^3 - 3} - \frac{1}{5^3 - 5} + \frac{1}{7^3 - 7} - \ldots \right\}
\]

or,

\[
\pi = 3 + 4 \left\{ \frac{1}{3^3 - 3} - \frac{1}{5^3 - 5} + \frac{1}{7^3 - 7} - \ldots \right\}
\]

Another series for \(\pi \) is given as follows:

vargairiyātam vā dviguṇairnirekairvargikṣtair-varjītayugmavargaiḥ |
vyaśasāṁ ca śadghnam vibhajet phalam svam vyāse trinighne paridhistadā syāt ||

(ch. 6, 4)

‘Six times the diameter is divided separately by the square of twice the squares of even integers (2, 4, 6...) minus 1, diminished by the squares of the even integers themselves. The sum of the resulting quotients increased by thrice the diameter is the circumference.’

Thus,

\[
C = 3D + 6D \left\{ \frac{1}{(2^2 - 1)^2 - 2^2} + \frac{1}{(2^2 - 1)^2 - 4^2} + \frac{1}{(2^2 - 1)^2 - 6^2} + \ldots \right\}
\]

or,

\[
\pi = 3 + 6 \left\{ \frac{1}{(2^2 - 1)^2 - 2^2} + \frac{1}{(2^2 - 1)^2 - 4^2} + \frac{1}{(2^2 - 1)^2 - 6^2} + \ldots \right\}
\]

or,

\[
\pi = 3 + 6 \left\{ \frac{1}{1.3.3.5} + \frac{1}{3.5.7.9} + \frac{1}{5.7.11.13} + \frac{1}{7.9.15.17} + \ldots \right\}
\]
2.2. Sine and Cosine Series

The rules for the expression of sine and cosine functions in the form of series are given in the same chapter:

cāpa ca tattat phalo’pi tadvat cāpāhatāddvyāddihatat trimaurvā |
labāhāni yugmāni phalanyadhodhah cāpādayugmāni ca viśtarārdhat ||
vinyasya coparyupari tyajet tat śeṣau bhūjakotiṇau bhavetām |

(ch. 6, 12–13½)

'The arc repeatedly multiplied by itself (any number of times) is multiplied by the arc. The result is divided by the product of 2, 3..., etc. (up to the same number), and the radius is repeatedly multiplied by itself (the same number of times). The quotients (thus obtained) corresponding to the even numbers (up to which the aforesaid multiplication is repeatedly done) are set one below the other (in one column) and likewise those corresponding to the odd numbers (in another column). From the first term is subtracted the term immediately below and so on, and the remainders for the even column are subtracted from the arc and those for the odd column from the radius. The results are the bhūja-jyā and koṭī-jyā respectively.'

To explain the rule in the circle (Fig. 1),

\[SP = cāpa, \ s \]
\[AP = trimaurvā \] or radius, \(r \)
\[PM = bhūja-jyā, \ r \sin \theta \]
\[AM = koṭī-jyā, \ r \cos \theta \]

If \(n \) be the number of times up to which the arc \(s \) be multiplied by itself, the first part of the rule gives the quotient as:

\[
q_n = \frac{s^n \cdot s}{(2 \cdot 3 \ldots n \text{ terms}) \times r^n} = \frac{s^{n+1}}{(n+1)! \ r^n}.
\]

In the next step, the even quotients, \(q_2, q_4, q_6 \ldots \) are set down in a column and differences \((q_2 - q_4), (q_6 - q_8) \ldots \), etc., are determined. Similarly by arranging the odd quotients in another column, the differences \((q_1 - q_3), (q_5 - q_7) \ldots \), etc., are obtained. Then bhūja-jyā is given by

\[
r \sin \theta = s - (q_2 - q_4) - (q_6 - q_8) - \ldots
\]

\[
= s - \left(\frac{s^3}{3! \ r^2} - \frac{s^5}{5! \ r^4} \right) - \left(\frac{s^7}{7! \ r^6} - \frac{s^9}{9! \ r^8} \right) - \ldots
\]

or, \(\sin \theta = \frac{s}{r} - \frac{1}{3!} \left(\frac{s^3}{r} \right) + \frac{1}{5!} \left(\frac{s^5}{r} \right) - \frac{1}{7!} \left(\frac{s^7}{r} \right) + \frac{1}{9!} \left(\frac{s^9}{r} \right) - \ldots
\]
Kotijā is given by

\[r \cos \theta = r - (q_1 - q_3) - (q_5 - q_7) - \ldots \]
\[= r - s^2 \frac{2}{2!} r - s^4 \frac{4}{4!} r^3 - s^6 \frac{6}{6!} r^5 - \ldots \]

or, \(\cos \theta = 1 - \frac{1}{2!} \left(\frac{s}{r} \right)^2 + \frac{1}{4!} \left(\frac{s}{r} \right)^4 - \frac{1}{6!} \left(\frac{s}{r} \right)^6 + \frac{1}{8!} \left(\frac{s}{r} \right)^8 - \ldots \)

From these, the modern forms can be readily obtained by putting \(s = r \theta \) for small values of \(s \) or \(\theta \) as follows:

\[\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \ldots \]

and \(\cos \theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \ldots \)

In these forms, the series appeared for the first time in Europe in a letter which Newton sent to Oldenburg in 1676.\(^7\) The same series, as well known, were derived later as a corollary to De Moivre's Theorem.

2.3. TAN SERIES

For the tan series, the verse runs as follows:

\[vyāśārdhena hatādabhiṣṭaṅgūnataḥ kotyāptamādyayam phalam \]
\[jyāvargena vinighnamādimaphalāṃ tattatphalam cāhare \]
\[khātyā kotiṇguṇasya tatra tu phalesvēkatripāṇcādibhir- \]
\[bhaktēsvajyutaistajet samajutim jivādhanusāsyate \] \(|| \) (ch. 6, 18)

'Ordinate of the arc (dhanus) is to be multiplied by the semi-diameter (vyāśārdha) and is divided by the abscissa (koti). This is the first term. Thus the result obtained is multiplied by the square of the ordinate (jyā) and is divided by the square of the abscissa. This is the second term. This process is repeated. The successive terms are divided by the odd integers 1, 3, 5, \ldots

Now, the terms of odd order are added and the terms of even order are subtracted from the preceding, the circumference will be obtained.'

Abscissa* \(AM \geq \) Ordinate \(PM \), i.e. \(SAP < 45^\circ \) (Fig. 1), then according to the above translation, it can be written as:

\[\text{arc } SP = AP \left[\frac{PM}{AM} - \frac{1}{3} \frac{PM^3}{AM^3} + \frac{1}{5} \frac{PM^5}{AM^5} - \ldots \right] \]

or, \(s = r \left[\frac{r \sin \theta}{r \cos \theta} - \frac{1}{3} \left(\frac{r \sin \theta}{r \cos \theta} \right)^3 + \frac{1}{5} \left(\frac{r \sin \theta}{r \cos \theta} \right)^5 - \ldots \right] \)

Hence, \(\theta = \tan \theta - \frac{1}{3} \tan^3 \theta + \frac{1}{5} \tan^5 \theta - \ldots \) when \(s = r \theta \).

* This restriction is put by the commentator.
Karanañapaddhati gives no proof of these series. These series also appear in the Tantrasaṃgraha to which Whish already drew attention. Yukti-bhāṣā, an exposition of Nilakaṇṭha’s Tantrasaṃgraha, gives proofs to all of these series.

In the general history of mathematics, the π and the tan series are associated with the name of Gregory (A.D. 1638–1675).

3. The Date of Karanañapaddhati

Charles M. Whish, in his effort to fix the date of Karanañapaddhati, quoted the concluding verse as follows:

\[
\begin{align*}
\text{iti śivapurāna-gramajah ko'pi yajvā} \\
\text{kimapi karanañapaddhatyāhvayaṃ tantrarāpam} \\
\text{vyadhita gaṇitametat sanyagalokya santoḥ} \\
\text{kathitamihā vidantaḥ santo santośavantaḥ ||}
\end{align*}
\]

‘A certain sacrificer born in the village named Śivapura composed (vyadhita) a treatise called Karanañapaddhati. Let the good learned people after having studied this mathematical text thoroughly be satisfied from what has been said here.’

In his judgement, the words gaṇitametat sanyak expressed 1765653 days of the Kaliyuga, that is, A.D. 1733 as the date of the text. Presumably Whish used the Kaṭapayadi system of writing in arriving at the Kali chronogram, a system much in use in South India in the medieval times.

The essential features of the Kaṭapayadi alphabetical system of number writing are as follows:

(a) A consonant in association with a vowel takes significant values, whereas that without a vowel has no such numerical significance and should be disregarded. These values are:

\[
\begin{array}{cccccccc}
\text{k} & \text{kh} & \text{g} & \text{gh} & \hat{n} & \text{c} & \text{ch} & \text{j} & \text{jh} & \hat{n} \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{ṭ} & \text{ṭha} & \ddot{ḍ} & \ddot{ḍh} & \nu & \text{t} & \text{th} & \text{d} & \text{dh} & \text{n} \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{p} & \text{ph} & \text{b} & \text{bh} & \text{m} \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{y} & \text{r} & \text{l} & \text{v} & \acute{s} & \grave{s} & \text{s} & \text{h} \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

(b) In a conjoint consonant, only the last one denotes a number.

(c) In the final reading, the numbers are to be reckoned from right to left.
According to the above system, the words \textit{ga\textit{n}itametat sa\textit{my}ak} reduce to:

\begin{align*}
g a & \quad \ddot{n}i \quad t a \quad m e \quad t a \quad t \quad s a \quad m y a \quad k \quad = 1765653 \\
3 \quad 5 \quad 6 \quad 5 \quad 6 \times \quad 7 \quad 1 \quad \times
\end{align*}

Thus 1765653 days elapsed from the beginning of the Kali era till the date in question. Taking 365.25 days as the length of the Indian solar year, and the beginning of the Kali era as 17th February, 3102 B.C., the date of the text in the Gregorian calendar is obtained as under:

\begin{align*}
1765653 \text{ days} &= (4834 \times 365.25 + 34.50) \text{ days} \\
&= 4834 \text{ Kali era (approx.)} \\
&= (3102 + 1733) \text{ Kali era (approx.)} \\
&= \text{A.D.} \ 1733 \text{ (since Kali era began at 3102 B.C.)}
\end{align*}

By this system, any word can be changed into a chronogram. A careful consideration of the use of the \textit{Katapayadi} systems in verses dealing with astronomical and mathematical subjects reveals that such alphabetical combinations are always readily distinguishable from those signifying accepted word meanings. Moreover, separate words are not used in the manner shown above. The following will illustrate the point:

\begin{center}
\begin{tabular}{cccccccc}
d\textit{ipa} & bala\textit{m} & java & b\textit{a}n\textit{a} & net\textit{a} & ks\textit{\=a}nt\textit{i\=h} & k\textit{ha}\textit{n}\textit{\=i} & mitho & d\textit{\=a}s\textit{\=a}h \\
18 & 33 & 48 & 53 & 60 & 66 & 71 & 75 & 78
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{cccccccc}
p\textit{\=a}de & gu\textit{\=a} & bh\textit{u}ja & ma\textit{\=a}m & mu\textit{\=a} & t\textit{\=a}d\textit{\=a} & su\textit{k}r\textit{a}m\textit{\=a}n\textit{\=a}d\textit{\=a}j\textit{\=i\=v\=a}h & sy\textit{\=u}h \\
81 & 83 & 84 & 85 & 85 & 86 & (are the sines of the \textit{manda} \\
& & & & & & (corrections) of the Venus) \\
& & & & & & (\textit{D\text{\=y}g\text{\=a}n\text{\=i}t\text{\=a}})_{12} \ 2, \ 35)
\end{tabular}
\end{center}

Whish's selection of words with clear literary meanings is not only arbitrary, but his selection of separate words with a view to obtain a large number is not warranted by the usage of the system. If \textit{ga\textit{n}itametat} and \textit{sa\textit{my}ak} are converted separately, these give 65653 and 17 which do not lead us anywhere. If the liberty assumed by Whish were possible, one would also be able to convert, say, \textit{ko'pi yaj\=v\=a kim\=api} of the same verse into 1114151 days, that is A.D. 1043, an absurd conclusion as the text would then antedate Bh\=askara II (c. 1150) whom it quotes at several places. Thus, no word of the concluding verse represents number or date and as such the derivation by Whish cannot be accepted.

Some light on the subject is now available from the studies of R\=a\=ja R\=a\=ja Varma and Ullur Parame\=svara Iyer. R\=a\=ja R\=a\=ja Varma13 has remarked that the period of the author of \textit{Kara\=napaddh\=ati} can be placed between the years 550 and 650 of the Malabar era, corresponding roughly to A.D. 1375–1475
and quoted in support of his view a verse from *Gaṇita Śūcikā Grantha* by Govinda Bhaṭṭa. The verse runs thus:

navīna vipīnē mahimakhabhujāṁ somayā-
jyudaragana kotraya samabhavacca tenāmūnaṁ
vyalekhi sudrguttama Karaṇapaddhati samasṛtyā
tripaṇcaśati bhūmita pradhita śaka samvatsare ||

‘A somayājin versed in astronomy was born in the brāhmin family of Nāvīna-vipīna. By him was composed this refined Karaṇapaddhati, the best of the *Dṛg* (system) in 1353 Śaka era (A.D. 1431).’

Ullur Parameśvara Iyer has given the beginning of the seventh century of the Malabar era (fifteenth century A.D.) as the date of the *Karaṇapaddhati*; but no basis for this assertion has been given.

In the circumstances, therefore, a more dependable placement of the time of the work should be attempted from an internal study of the work itself. *Karaṇapaddhati* contains discussions of a number of topics which also reappear in the *Tantrasamgraha* of Nilakanṭha Somasuttvan. There is no uncertainty as to Nilakanṭha’s date, 1465–1545 A.D., inasmuch as this South Indian astronomer declared himself as the direct pupil* of Parameśvara, the indefatigable commentator and author of astronomical works.

The rule for obtaining the π series already discussed, together with a rule for obtaining an approximate value for the last term, is given in the *Tantrasamgraha* as follows:

\[
\begin{align*}
\text{vyāse vārīdhinihate} & \text{ rūpakṛte vyāsaśāgarābhīhate} | \\
\text{trīśarādi-visāma-stūkhyā-bhakta-mṛṇāṃ svam pṛthak kramāt kuryāt} & || \\
\text{yatsamkhyaśtra harane kṛte nirvṛttā hṛtistu jāmitaśyā} | \\
\text{tasāyā ārādhvagatayāsasamkhyaśyā taddalaṁ guṇoṁte syāt} | \\
\text{tadvargaiḥ rūpayuto hāro vyāsaśādhihātaḥ prāgyavat} | \\
\text{tasyāṁāpāte svamṛṇe kṛte dhane śodhanaśca karanīyam} & || \\
\text{sūkṣmaḥ paridhiḥ sā syāt bahukṛtvā haranato'tisūkṣmaśca} & | \text{(ch. 2)}
\end{align*}
\]

‘Quotients obtained by dividing four times of the diameter by the odd integers 3, 5, 7 … are alternately subtracted from and added to 4D. The process stops at a certain stage giving rise to a finite sum. Four times of the diameter is to be multiplied by half the even integer and is divided by the square of the even integer increased by unity. This is the last term. The result is the correction to be added to or subtracted from our finite sum (the choice of addition or subtraction depends on the sign of the last term in the

* Nilakanṭha in his *Āryabhaṭiya Bhāṣya* states ‘tadeva paramācārya mamāha Parameśvara’ (Gola, 48). Paramesvara gives the dates of writing *Dṛggaṇita* and *Goladāpikā* as Śaka 1353 (A.D. 1431) and Śaka 1365 (A.D. 1443) respectively.
sum). The final result is the circumference determined more exactly than by taking a large number of terms.'

The above may be expressed as follows:

\[
C = 4D \left[1 - \frac{1}{3} + \frac{1}{5} - \ldots \pm \frac{1}{n} \mp \frac{n+1}{2(n+1)^2+1} \right]
\]

where \(n\) is odd and large.

As it is a convergent series, the author found it necessary to correct the last quotient.

In another verse of the Tantrasamgraha, a rule has been given to obtain a still more accurate expression for the last term. The rule runs thus:

\[
\text{asmāt sākṣMATarO'nyo vilikhyate kaścanāpi saṁskārah} | \\
\text{ante saMSaṁkhyā-dala-vargassaiko guṇasa eva punāḥ} || \\
\text{yugagunito rūpayulassamasamākhyādalahato bhavedhāraḥ} | \text{(ch. 2)}
\]

'Here another correction is given more precise than the foregoing. The square of half the even integer next (greater than the last odd integer divisor), increased by unity, is a multiplier. This multiplier, multiplied by four, then increased by unity and then multiplied by the even integer already defined, is the divisor.'

Evidently,

\[
C = 4D \left[1 + \frac{1}{3} - \frac{1}{5} - \ldots \pm \frac{1}{n} \mp \frac{\left(\frac{n+1}{2}\right)^2+1}{\left\{\left(\frac{n+1}{2}\right)^2+1\right\}^4+1}\left(\frac{n+1}{2}\right)} \right]
\]

where \(n\) is odd and large.

This shows that the author of the Tantrasamgraha had definitely the knowledge of a slowly-converging series, of which there is no indication in the Kāraṇapaddhāti. From the much fuller and more refined treatment of these topics in the Tantrasamgraha, Kāraṇapaddhāti may be suspected to be a work, contemporaneous with, or even antidating, Tantrasamgraha of Nilakantha (A.D 1465–1545).

Acknowledgements

I am indebted to Sri S. N. Sen for going through this article and making valuable suggestions and to Professor D. M. Bose for preparation of the paper in its present form. Thanks are also due to Sri Nagendra Nath Vedāntatīrtha for checking the English rendering of the Sanskrit passages.
REFERENCES

1. The last verse of the tenth chapter reads:
 'iti śivapura-nāma grāmiṇaḥ ko'pi yajāḥ'.

2. Trivandrum Sanskrit Series (T.S.S.), No. 126.

4. 'On the Hindu quadrature and the infinite series of the proportion of the circumference to the diameter exhibited in the four śāstras: Tantraśamgraha, Yuktibhāṣā, Karanapaddhati and Sadratanamāla.' Transaction of the Royal Asiatic Society (TRAS) of Great Britain and Ireland, 3, Part III, 509–523, 1834.

8. TRAS, of Great Britain and Ireland, 3, Part III, 513, 516, 519.

11. TRAS, of Great Britain and Ireland, 3, Part III, 522, 1834.

16. MSS. of Trippunithura Sanskrit College Library and the Adyar Library, ch. 2 (c/o JBBRAS, 20 (n.s.), 77, 1944).

17. See JBBRAS, 20 (n.s.), 81, 1944.