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Abstract

We compute the initial ideals, with respect to certain conveniently
chosen term orders, of ideals of tangent cones at torus fixed points
to Schubert varieties in orthogonal Grassmannians. The initial ideals
turn out to be square-free monomial ideals and therefore Stanley-
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plexes. The maximal faces of these complexes encode certain sets of
non-intersecting lattice paths.
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Introduction

This paper is a sequel to [9] and the fulfillment of the hope expressed there
that the main result of that paper can be used to compute initial ideals,
with respect to certain ‘natural’ term orders, of ideals of tangent cones (at
torus fixed points) to Schubert varieties in orthogonal Grassmannians. Any
such initial ideal turns out to be generated by square-free monomials and
therefore the Stanley-Reisner face ring of a simplicial complex. We identify
this complex (Theorem [L8T]). The maximal faces of this complex encode a
certain set of non-intersecting lattice paths (Remark [[L82).

The analogous problem for Grassmannians has been addressed in [7, [3]
6, [§] and for symplectic Grassmannians in [2]. Just as the ideals of tangent
cones in those cases are generated respectively by determinants of generic
matrices and determinants of generic symmetric matrices, so the ideals in the
present case are generated by Pfaffians of generic skew symmetric matrices:
see 1.5l The ideal generated by all Pfaffians of a fixed degree of a generic
skew-symmetric matrix occurs as a special case: see JI.5.1l Initial ideals in
the special case have been computed in [3, [4], but the term orders there are
very different from ours: the Pfaffian generators are a Grobner basis for those
term orders but not for ours.

The present case of orthogonal Grassmannians features a novel difficulty
not encountered with either Grassmannians or symplectic Grassmannians.
Namely, when one tries, following the analogy with those cases, to compute
the initial ideal from the knowledge of the Hilbert function (as obtained
in [9]), it becomes evident that, in contrast to those cases, the natural gener-
ators of the ideal of a tangent cone—the Pfaffians mentioned above—do not
form a Grobner basis in any ‘natural’ term order: see Remark [[.9.1l Here
what it means for a term order to be ‘natural’ is dictated by [9]: to each
Pfaffian there is naturally associated a monomial which is a term in it, and
a term order is natural if the initial term with respect to it of any Pfaffian is
the associated monomial. This difficulty is overcome by the main technical
result Lemma [L.2.1]

There is another naturally related question that asks if something slightly
weaker continues to hold for orthogonal Grassmannians: namely, whether the
initial ideals of a tangent cone with respect to natural term orders are all the
same. This too fails: see Remark In other words, the naturalness of
a term order turns out not be a strong determiner, unlike for ordinary and
symplectic Grassmannians.



This paper is organized as follows: the result is stated in §I] and proved
in ] after preparations in §2/ Bl There is heavy reliance on the combinatorial
definitions and constructions of [9]. Fortunately, however, only the statement
and not the proof of the main theorem there is used.

1 The theorem

The whole of this section (except for §L.5.1] [[.9)) is aimed towards the precise
statement of our result, which appears in 18| after preparations in §LIHI.6
For full details about the set up described, see [9]. In §L0 the difficulty pecu-
liar to orthogonal Grassmannians mentioned in the introduction is illustrated
by means of an example.

1.1 Initial statement of the problem

Fix once for all a base field ¢ that is algebraically closed and of characteristic
not equal to 2. Fix a natural number d, a vector space V of dimension 2d,
and a non-degenerate symmetric bilinear form (, ) on V. For k any integer,
let k* :=2d+ 1 — k. Fix a basis ey, ..., ey of V such that

1 ife=k"
e

otherwise

Denote by SO(V') the group of linear automorphisms of V' that preserve the
form (, ) and also the volume form. Denote by 9t;(V')" the closed sub-variety
of the Grassmannian of d-dimensional subspaces consisting of the points cor-
responding to isotropic subspaces. The action of SO(V) on V induces an
action on My(V'). There are two orbits for this action. These orbits are
isomorphic: acting by a linear automorphism that preserves the form but
not the volume form gives an isomorphism. We denote by 9t,(V') the orbit
of the span of ey, ..., e4 and call it the (even) orthogonal Grassmannian.

The Schubert varieties of My(V') are defined to be the B-orbit closures
in 9M,(V) (with canonical reduced scheme structure), where B is a Borel
subgroup of SO(V'). The problem that is tackled in this paper is this: given
a point on a Schubert variety in 9;(V), compute the initial ideal, with
respect to some convenient term order, of the ideal of functions vanishing on
the tangent cone to the Schubert variety at the given point. The term order
is specified in 1.6l and the answer given in Theorem [I.8.1]
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Orthogonal Grassmannians and Schubert varieties in them can, of course,
also be defined when the dimension of the vector space V is odd. As is well
known and recalled with proof in [9], such Schubert varieties are isomorphic
to those in even orthogonal Grassmannians. The results of this paper would
therefore apply also to them.

1.2 The problem restated

We take B to be the subgroup consisting of elements that are upper triangular
with respect to the basis ey, ..., eaq. The subgroup T consisting of elements
that are diagonal with respect to eq,...,es; is a maximal torus of SO(V).
The B-orbits of My(V) are naturally indexed by its T-fixed points: each
orbit contains one and only one such point. The T-fixed points of 9t,(V) are
easily seen to be of the form (e;,, ..., e;,) for {iy,... 14} in I(d), where I(d)
is the set of subsets of {1,...,2d} of cardinality d satisfying the following
two conditions:

e for each k£, 1 < k < d, there does not exist 7, 1 < j < d, such that
7 = i;—in other words, for each ¢, 1 < ¢ < 2d, exactly one of ¢ and ¢*
appears in {iy,...,iq};

e the parity is even of the number of elements of the subset that are
(strictly) greater than d.

Let I(d,2d) denote the set of all subsets of cardinality d of {1,...,2d}.
We use symbols v, w, ...to denote elements of I(d,2d) (in particular, those
of I(d)). The members of v are denoted vy, ..., vg, with the convention that
1<wv <...<wg <2d. There is a natural partial order on 1(d,2d): v < w,
if v <wq, ..., vy < wy.

The point of the orthogonal Grassmannian 9t,(V) that is the span of e, ,
..., &y, for v € I(d) is denoted ¢¥. The B-orbit closure of ¢” is denoted X (v).
The point ¢¥ (and therefore the Schubert variety X (v)) is contained in the
Schubert variety X (w) if and only if v < w.

Our problem can now be stated thus: given elements v < w of I(d),
find the initial ideal of functions vanishing on the tangent cone at ¢’ to the
Schubert variety X (w). The tangent cone being a subvariety of the tangent
space at ¢’ to My(V'), we first choose a convenient set of co-ordinates for the
tangent space. But for that we need to fix some notation.



1.3 Basic notation

Let an element v of I(d) remain fixed. We will be dealing extensively with
ordered pairs (r,¢), 1 < r,¢ < 2d, such that r is not and ¢ is an entry of v.
Let R denote the set of all such ordered pairs, and set

N:={(r,c) eR|r>c} gO}l?dery
OR = {(r,c) e R|r <"}
ON:={(r,c) eR|r>c,r<c} T
= ORNMN \1, €)le e
0:={(r,c) eR[r=c leg diapanal

)

¥

The picture shows a drawing of S)8. We think of r and ¢ in (7, ¢) as row
index and column index respectively. The columns are indexed from left to
right by the entries of v in ascending order, the rows from top to bottom by
the entries of {1,...,2d} \ v in ascending order. The points of ? are those
on the diagonal, the points of OR are those that are (strictly) above the
diagonal, and the points of 91 are those that are to the South-West of the
poly-line captioned ‘boundary of 9U'—we draw the boundary so that points
on the boundary belong to 9. The reader can readily verify that d = 13 and
v =1(1,2,3,4,6,7,10,11,13,15,18,19,22) for the particular picture drawn.
The points of O indicated by solid circles form a v-chain (see §L.7] below).

We will be considering monomials, also called multisets, in some of these
sets. A monomial, as usual, is a subset with each member being allowed
a multiplicity (taking values in the non-negative integers). The degree of a
monomial has also the usual sense: it is the sum of the multiplicities in the
monomial over all elements of the set. The intersection of a monomial in a
set with a subset of the set has also the natural meaning: it is a monomial
in the subset, the multiplicities being those in the original monomial.

We will refer to 9 as the diagonal. For an element of oo = (7, ¢) of R, we
call (r,7*) and (c, ¢*) its horizontal and vertical projections (on the diagonal);
they are denoted by pn(a) and p,(a) respectively. For (r,c) in ON, its
vertical projection belongs to 91 but not always so its horizontal projection.
The term projection when not further qualified means either a vertical or
horizontal projection.



1.4 The tangent space to 9t;(V) at ¢"

Let MM4(V) C Gg(V) — P(AYV) be the Pliicker embedding (where Gy4(V)
denotes the Grassmannian of all d-dimensional subspaces of V). For 6
in I(d,2d), where I(d,2d) denotes the set of subsets of cardinality d of
{1,...,2d}, let py denote the corresponding Pliicker coordinate. Consider
the affine patch A of P(A?V) given by p, # 0, where v is some fixed element
of I(d) (C I(d,2d)). The affine patch A¥ := 9,;(V) N A of the orthogonal
Grassmannian 9t;(V) is an affine space whose coordinate ring can be taken
to be the polynomial ring in variables of the form X, . with (r,¢c) € ONR.
Taking d = 5 and v = (1, 3,4,6,9) for example, a general element of A” has
a basis consisting of column vectors of a matrix of the following form:

1 0 0 0 0
Xo1 Xog Xog Xog 0
0 1 0 0 0
0 0 1 0 0
X511 X5z Xm 0 —Xo
o 0o 0 1 o0 (1.4.1)

Xn Xy 0 —X51 —Xos
Xa1 0 —X73 —Xsz —Xo3
0 0 0 0 1
0 —Xa1 —Xn —Xs1 —Xy

The origin of the affine space A”, namely the point at which all X, ;) vanish,
corresponds clearly to ¢”. The tangent space to M,(V') at ¢ can therefore
be identified with the affine space A" with co-ordinate functions X, ).

1.5 The ideal I of the tangent cone to X(w) at ¢"

Fix elements v < w of I(d). Set Y (w) := X(w) N A", where X (w) is the
Schubert variety indexed by w and A" is the affine patch around ¢ as in §L.41
From [I0] we can deduce a set of generators for the ideal I of functions on A"
vanishing on Y (w) (see for example [9] §3.2.2]). We recall this result now.
In the matrix (L4IT]), columns are numbered by the entries of v, the
rows by 1, ..., 2d. For 6 € I(d), consider the submatrix given by the rows
numbered 6\ v and columns numbered v \ . Such a submatrix being of even
size and skew-symmetric along the anti-diagonal, we can define its Pfaffian



(see §3]). Let fp denote this Pfaffian. We have
I'=(f|Telld),T£w). (1.5.1)

We are interested in the tangent cone to X (w) at ¢’ or, what is the
same, the tangent cone to Y (w) C AV at the origin. Observe that fp is a
homogeneous polynomial of degree the v-degree of 8, where the v-degree of 0
is defined as one half of the cardinality of v \ §. Because of this, Y (w) itself
is a cone and so equal to its tangent cone. The ideal of the tangent cone is
therefore the ideal I in (LS.

1.5.1 A special case

The ideal generated by all Pfaffians of a given degree r of a generic skew-
symmetric s X § matrix occurs as a special case of the ideal I in (L50]): take
d=s,v=(1,...,d),andw = (2r—1,...,d,2d—2r+3, ..., 2d) (w consists of
two blocks of consecutive integers). The initial ideals in this special case, with
respect to certain term orders, have been computed in [3, 4]. The Pfaffian
generators are a Grobner basis for those orders unlike for ours: see §L.0l

1.6 The term order

We now specify the term order(s) > on monomials in the co-ordinate func-
tions (of the tangent space at a torus fixed point) with respect to which the
initial ideals in our theorem are to be taken.

Fix an element v of I(d). Let >; and >3 be total orders on DR satisfying
the following conditions. For both ¢ = 1 and ¢ = 2:

e a>; fifae ON, € OR\ ON, and the row indices of o and [ are
equal;

e o>, fif a e ON, B € ON, the row indices of o and S are equal, and
the column index of « exceeds that of 3.

In addition:

o o > 3 (respectively a <5 () if @« € ON, § € OR and the row index
of «v is less than that of (.

Let &> be one of the following term orders on monomials in DR (terminology
as in [II, pages 329, 330]):



e the homogeneous lexicographic order with respect to >1;

e the reverse lexicographic order with respect to >,.

1.6.1 A non-standard possibility for the term order

Here is another (somewhat non-standard) possibility for the term order ©>.
We prescribe it in several steps. Let & and ¥ be distinct monomials in O%R.

o [fdegS > degT then & > ¥.

e Suppose that deg & = degT. Then look at the set of all projections
(both vertical and horizontal, including multiplicities) on the diagonal
of elements of & and T—some of these projections may be in R and
not in M. Let r; > ... > ryp and 7} > ... > 1}, be respectively the
row numbers of these projections for & and T. If the two sequences
are different, then & > T if r; > 7’ for the least j such that r; # r’.

e Suppose that the projections on the diagonal of G and ¥ are the same.
Consider the column numbers of elements in both & and ¥ that give
rise to the projection with the least row number (namely rop = r5,).
Suppose ¢; > ... > ¢pand ¢} > ... > ¢, are these numbers respectively
for & and . If these sequences are different, then let j be the least
integer j such that c; # ;. The following three cases can arise:

(a) Both (79, c;) and (rzk,cé) are outside OMN.

(b) Exactly one of (ra, c;) and (ra, c;) belongs to OMN.

(c) Both (ra,c;) and (rzk,cé) are inside OMN.

In case (a), we say that & > T if ¢; < c%, i.e., (rax, c;) is more towards
OMN than (7’2]@,0§). In case (b), we say that & > T if (ro, ;) € ON
and (7o, c;) ¢ ON. In case (c), we say that & > T if ¢; > c;

If the sequences ¢; > ... > ¢, and ¢ > ... > ¢, are the same, then
there is an equality of sub-monomials of & and ¥ consisting of those

elements with row numbers rop = 75,. We remove this sub-monomial
from both & and ¥ and then appeal to an induction on the degree.

This finishes the description of the term order >.



1.7 wv-chains and 9-domination

The description of the initial ideal in our theorem is in terms of O-domination
of monomials. We now recall this notion from [9]. An element v of I(d)
remains fixed.

For elements o = (R, C), 8 = (r,¢) of ONM (or more generally of R), we
write « > G if R > r and C < ¢. A sequence oy > ... > «qy of elements of
ON (or of N) is called a v-chain. The points indicated by solid circles in the
picture in 3] form a v-chain. (For the statement of the theorem we need
only consider v-chains in OOt but for the proof we will also need v-chains
in M. The term ‘v-chain’ without further qualification means one in OI1.)

To each v-chain C' there is associated an element we (or w(C)) of I(d):
see [9, §2.2]. An element w of I(d) O-dominates a v-chain C if w > w(C);
it O-dominates a monomial & in ONR if it O-dominates every v-chain in

S NoON.

1.8 The theorem

We are now ready to state our theorem. Let £ be a field, algebraically closed
and of characteristic not 2. Let d be a positive integer and 9,4(V') the (even)
orthogonal Grassmannian over ¢ (§L.1). Let v < w elements of 1(d), X (w)
the Schubert variety in 91,4(V') corresponding to w, and ¢’ the torus fixed
point in My(V') corresponding to v (§L.2). Let P denote the polynomial
ring €[ X3 | 5 € ONR], the co-ordinate ring of the tangent space AY to My (V)
at ¢’ (JL3] [L4)). Let I denote the ideal (L5 in P of functions vanishing
on the tangent cone to X (w) at e¢¥ (§L.0]). Let ins/ denote the initial ideal
of I with respect to the term order > (§L.0I).

Theorem 1.8.1 The initial ideal in.I has a vector space basis over £ con-
sisting of monomials in OR not O-dominated by w (§1.7). In other words,
the quotient ring P/ingI is the Stanley-Reisner face ring of the simplicial
complex with vertices DR and faces the square-free monomials O-dominated
by w.

PROOF: The main theorem of [9] asserts that the dimension as a vector
space of the graded piece of P/I of degree d equals the cardinality of the
monomials in ONR of degree d that are O-dominated by w. Since P/I and
P/ing I have the same Hilbert function, the same is true with P/I replaced
by P/ingI. It is therefore enough to show that every monomial in DR that
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is not D-dominated by w belongs to iny [, and this is proved in ¢4l O

Remark 1.8.2 The maximal faces of the simplicial complex, i.e., the square-
free monomials in DR maximal with respect to being D-dominated by w, encode
a certain set of non-intersecting lattice paths: see [9] Part IV].

1.9 An example

Let v in I(d) be fixed. To every element 7 > v of I(d) there is naturally asso-
ciated a monomial in O (C OMR). Namely, with terminology and notation
as in [9], it is the result of the application of the map D¢ to the standard
monomial 7. This monomial occurs as a term in the Pfaffian f, defined

in 101

Remark 1.9.1 Suppose we have a term order > on monomials in DR such
that, for every 7 > v in I(d), the initial term of the Pfaffian f, equals the
monomial associated to 7 as above: the term orders > of §I.6] are examples.
It is natural to expect that, for w > v fixed, the generators f,, 7 in I(d) such
that 7 £ w, of the ideal I (LEI]) form a Grobner basis with respect to >.
The analogous statements for Grassmannians and symplectic Grassmannians are
true [Bl [2]. But this expectation fails rather spectacularly (i.e., even in the
simplest examples), as we now observe.

Take d = 5 and v = (1,2,3,4,5). Then the top half of the matrix ([L4AT]) is
the identity matrix and the bottom half looks like this:

a b ¢ d 0
e f g 0 —d
h i+« 0 —g —c
j 0 —i —f —=b
0 —j —h —e —a

Consider the ideal generated by all Pfaffians of degree 2 of the above
matrix. As observed in L5l this is the ideal I of (L5J]) with w =
(3,4,5,9,10). There are 5 Pfaffians of degree 2 corresponding to the 5 values
of 7 in I(d) such that 7 £ w:

(1,6,7,8,9), (2,6,7,8,10), (3,6,7,9,10), (4,6,8,9,10), (5,7.8,9,10).
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They are respectively (see Eq. ([B.1.1))
di —cf +bg, dh—ce+ag, dj —be+af, cj—0bh+ai, gj— fh+ei.
The monomials of O91 attached to the 5 elements 7 above are respectively
di, dh, dj, cj, gj.

The ideal generated by these monomials does not contain any of the terms
in the following element of I:

— h(di — cf + bg) + i(dh — ce + ag) = cfh — bgh — cei + agi.  (1.9.1)

So the Pfaffians f. above are not a Grobner basis with respect to >.
On the other hand, the initial terms of the Pfaffians f, above with respect
to the term order in [3] are respectively

bg, ag, af, ai, ei

The Pfaffians f, above are a Grébner basis with respect to that term order [3].

Remark 1.9.2 The expectation in Remark [L.9.1] having failed, we could ask
whether a weakening of it—also very natural—holds: are the initial ideals of a
tangent cone to X (w) with respect to various natural term orders all the same
(namely, generated by monomials not O-dominated by w)? But this too fails as
we now observe.

Consider the example discussed above. Identify OR = O91 with the variables
a, b, ..., 7. Consider the degree lexicographic order on monomials in these
variables with respect to a total order on the variables in which d is bigger
than a, b, ¢, e, f, g; and 7 is bigger than a, b, e, f, h, 7. It is readily verified
that this term order is natural in the sense that it satisfies the condition in
Remark [[LO.Jk there are 16 elements of I(d): v, the 5 listed above, and 10
others the associated Pfaffians for which are respectively the 10 variables.

Now take a total order that looks like d > j > a > ... (the rest can come
in any order). The corresponding term order picks out agi as the initial term
of the element of /" in Eq. (L91]), but the monomial agi is O-dominated
by w as follows readily from the definitions.
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2 New Forms of a v-chain

In this section, we construct new v-chains, called new forms, from a given
one. New forms play a crucial role in the proof of the main Lemma [Z2.1] In
fact, one may say that their construction, given in §2.2] below, is the main
idea in the proof. A key property of new forms is recorded in §2.31 In §2.4
is described an association—mnot that of [9—of an element yc of I(d) to a
v-chain C. The elements y¢c also play a crucial in the proof.

An element v of I(d) remains fixed throughout.

2.1 Some conventions

We will often have to compare diagonal elements of R (§1.3]) with each other.
With regard to such elements, the phrases smaller than and greater than (and
correspondingly the symbols < and >) mean respectively ‘to the North-East
of” and ‘to the South-West of’. We use these phrases in their strict sense
only: ‘smaller than” means in particular ‘not equal to’. This is consistent
with the definition of the relation > on R in .7

With regard to a v-chain (whether in O91 or in M), such terms as ‘the
first element’, ‘the last element’, ‘predecessor of a given element’ have the
obvious meaning: in a; > ... > q, the first element is «q, the last ay, the
immediate predecessor of o is aj_1, etc.

Two elements o > [ of O are intertwined if their legs (see the picture
in §I.3]) intertwine, or, more precisely, the vertical projection of 5 dominates
the horizontal projection of a.. An intertwined component of a v-chain oy >
... > Quy has the obvious meaning: it is a block a;; > ... > «; of consecutive
elements such that, oy > gy is intertwined for ¢+ < k£ < 7, and «o;_; >
a;, @j > ;i1 are not intertwined (in case ¢ > 1, j < m respectively).
Clearly a v-chain C' can be decomposed as C; > ... > () into its intertwined
components. Observe that, in all intertwined components except perhaps
the last, projections of all elements belong to 91. A wv-chain is intertwined if
it consists of a single intertwined component.

Let F' be an intertwined v-chain. We define Proj F' to be the set (not
multiset) of the projections of all its elements on the diagonal. Let A be the
smallest of all the projections. Set

Proj F if Proj F' has even cardinality

Proj 7= { Proj F'\ {\}  otherwise
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For a v-chain C' with intertwined components C; > ... > (), set

ProjC := Proj*Cy U ---U Proj° C,_; UProj C,
Proj®C := Proj*Cy U - - - U Proj° Cy_; U Proj° C,

For elements (R,C), (r,c) in M, we say that (R,C) dominates (r,c) if
R > r and C < c¢. If the elements belong to the diagonal, to say (R,C')
dominates (7, ¢) is equivalent to saying (R, C') > (r, ¢) (see the first paragraph
above). Given v-chains C': p; > ... > pp, and D : vy > ... > 1, in N, we
say that D dominates C' if n > m and v; dominates p; for 7, 1 <i < m.

2.2 The construction

Let E be a (non-empty) v-chain. The construction of a new form depends
on two choices. The first of these is a cut-off, the choice of an element of F.
Let us write E as C' > D, where C' is the part of F up-to and including the
cut-off and D the rest of E. Of course, D can be empty—this happens if and
only if the cut-off is the last element of E—but C' is never empty.
Suppose such a cut-off is chosen. Let us write the v-chain £ as C; >
> Cyp1>Cp> Dy > Dy > ..., where C; > ... > () is the decomposition
of C' into intertwined components, C, > D; is the intertwined component
containing Cy of C' > D (with D; possibly empty), and Dy > ... is the
decomposition of D \ D; into intertwined components. We will assume in
the sequel that ) has at least two elements—one may also just say that
there are no new forms of C' obtained from the choice of this cut-off in case
this condition isn’t met.

ThenewformEofElsdeﬁnedltobeCl >@\1>ZZ>D1 e
where Cl, .. Cg 1, and Cg are as described below Note that the part D

of F beyond the cut-off does not undergo any change. It will be obvious that
(1) the vertical pI‘OJeCtIOH of the first element does not change in passing

from Cj to C’ or CJ, (2) the horizontal projection of the last element gets

no smaller in passing from C; to Cj; and (3) the horizontal (respectively
vertical) projection of the last element gets bigger (respectively no smaller)

I The new  form E may not always be defined. As just remarked, if Cy has only one
element then C} is not defined and so neither is E. As we will see shortly, Cy is not defined
more generally when ProjCy has evenly many elements and contains no elements strictly
in between the vertical and horizontal projections of the last element of Cp.
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in passing from Cy to /C\'; We are therefore justified in writing E as 6'\1 >
...>Cg_1>Cg>D1N>....

We first construct Cy. In fact, we construct F for an arbitrary intertwined
v-chain F' with at least 2 elements (subject to a certain further condition as
will be specified shortly). There are two cases according as the cardinality
#Proj F' of Proj F' is odd or even. Suppose first that it is odd. In this case
no further choice is involved in the construction. Let (ri,77), ... (rs,71),

., (ry,rf) be the elements of Proj® F' arranged in decreasing order, where
(rs,7¥) is the vertical projection of the last element of F. Then ¢ is even;
and, since there exists at least one horizontal projection that is also a vertical
projection (because #Proj F' is assumed to be odd), we have

t — s+ 1 < number of horizontal projections that are
not vertical projections
< number of horizontal projections
= number of vertical projections
<s

so that 2s — ¢ is even and strictly positive. We define F to be the v-chain
(r2,77) > oo > (P2s—t, 734 1) > (Feg1, o5 yp0) > - > (1, 75)

In case s = t, the ‘second half’ of F, namely, (Po1s Tog_yq1) > - > (1, 77)
is understood to be empty. Figure 2.2. 1] above illustrates the construction.

In the case when #Proj I is even, the construction of F' is similar. The
only difference is that (ry,r}), ..., (ry,r}) are now the elements in decreasing
order of the set Proj /' minus two elements, the last element and another
that is smaller than (r,,r})—if such an element does not exist, then F' is
not defined. The choice of such an element is the second of the two choices
involved in the construction of the new form (the first being the cut-off).
Observe that now t — s + 2 < s, so that 2s — ¢ is again even and strictly
positive. . - R

To define 1, ..., Cy_1, we define more generally F' for an arbitrary
intertwined v-chain I’ both projections of all of whose elements belong to 1.
Let (r1,7]), ..., (rt,77) be the elements in decreasing order of Proj® F. We
define F to be the v-chain (ry,77) > ... > (r, 17 ).

Proposition 2.2.1 With notation as abowve,
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4

Figure 2.2.1: Ilustration of the construction of F in the case when Proj F
has odd cardinality: The solid circles indicate the points of the original v-
chain F', the open circles those of F'.

1. No two elements ofé share a projection.

2. Proj C has evenly many elements. It equals Proj® C' if ProjC has oddly
many elements.

3. C has strictly fewer elements than C'.
In particular, E has strictly fewer elements than E.

PROOF: (1) and (2) being clear from the definition of C, we indicate a proof
of (3). Using # to denote cardinality, we have

L #Proj*C"  if #ProjC' is odd
#Proj ¢ = { #Proj°C — 2 if #ProjC' is even

Because of (1), #5 = P%jé. Thus #5 equals the greatest integer smaller
than w. But clearly w < #C. O

16



2.2.1 An auxiliary construction

We now identify a certain sub-v-chain of the v-chain F constructed above.
This auxiliary construction will be used in the proof of Lemma 2335 the
main ingredient in the proof of the key property of new forms stated in
Proposition 2.3.2. B

Let F' > D be an intertwined v-chain with F’ being defined. Let (r1,77),
o (rey), ... (re,77) be as in the construction of F in §22above. Write F >
D as Fy > F,, where F} consists of all elements of F' whose vertical projec-
tions belong to {(r1,77),..., (res—¢,75,_,)} and Fj is the complement in F' >
D of F,. Denote by Fy the part (ro,r7) > ... > (ros—¢,75,_;_1) of F. Consider
the sub-v-chain S of F consisting of those elements (15, 7o iyg)s s+H1 < j <t
such that (rs_;y;, 77 4. ;) is the vertical projection of some element of F}
(equivalently of F; \ D). We set [ to be S > D.

Lemma 2.2.2 1. F} > F} is a sub-v-chain ofl:; > D the inclusion being
possibly strict.

2. The projections of Fy are even in number and all in N.

3. The legs of the elements of Fy do not intertwine with one another. Nor
does the horizontal leg of the last element of Fy intertwine with the
vertical leg of the first element of F5.

4. The vertical projection of every element of Fy is a projection (vertical
or horizontal) of an element of F}.

5. Fy and Fy are in bijective order preserving correspondence, where the
corresponding elements have the same vertical projections (the corre-
spondence is identity on D). Every element of Fy has row index no
smaller than that of the corresponding element of Fy: it is bigger for
elements of Fy not corresponding to elements of D (and of course equal
for those corresponding to D).

Proor: () That Fy > F} is a sub-v-chain is immediate from the construc-
tion. For an example when it is contained properly in ﬁ, see Figure 2.2.1k
the last but one open circle does not belong to Fl > Fg.

(@) The number of projections of £} is 2s —t which is even since ¢ is even.
The horizontal projection of the last element of Fy is (ros—ys, r%,_,) and this
belongs to I because 2s — t < s (since s < t).
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@) The first assertion is clear from the definition of Fy. The second
too is clear: pp(last element of Fl) = (Tos—t:T55_y) > (Tos—t41,Tog_y11) =
po(first element of F3).

(@) Clear from construction.

(@) Let Fy be a3 > ... > oy and Fy, be {B1,-.., 0}, where a;, 3; have
the same column index for 1 <4 < k. Then 3, > ... > [, for, E, being part
of FF > D the ’s form a v-chain in some order, and, their column indices
being shared with the a’s, the order §; > ... > (3, is forced.

For the second part of the assertion, let a; > ... > a4y be Fy \ D, and let
Ry, ..., Ry be the respective row indices of aq, ..., ap. Then r, > Ry, ...,
ri_; > Ry_; for 1 <i < £ (for the horizontal projection of the last element of F’
and possibly one more horizontal projection have been discarded from Proj F’
to obtain (ri,77), ..., (r,77)). Also, if j be such that (r;,ri ;) = G for
some 7, 1 <i </, then j <t — (¢ —1) (strict inequality occurs when F>D
properly contains FI > F2) We thus have r; > 14—y > Ry = Ry,
which is what we set out to prove. O

2.3 A key property of new forms

The main result of this subsection is Proposition below. Invoked in its
proof is Lemma which is really where all the action takes place.

To a v-chain C of elements in ON, there is, as explained in [9, §2.2.2], an
associated element we of I(d). There is also a corresponding monomial S¢
in N associated to C' ([9) §5.3.3]).

Remark 2.3.1 In the statements and proofs of this section we need to refer to
v-chains in monomials in 91 (typically in & where C'is a v-chain in O9). Such
v-chains are understood to be in 91 (not necessarily restricted to be in OMN).

Proposition 2.3.2 Let E be a v-chain in ON and E a new form of E.
Then wg > wg.

PROOF: By Lemmas 4.5 and 5.5 of [5], it is enough to show that every v-
chain in &g is dominated by one in &z. Further, by [2, Lemma 5.15] (or,
more precisely, its proof), it follows, from the symmetry about the diagonal of
monomials attached to v-chains in D91, that it is enough to show that every
v-chain in & lying (weakly) above the diagonal (in other words, in O9UD)
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is dominated by one in &z. We now make some observations after which it
will only remain to invoke Lemmas and below.

Decompose E into intertwined components C1, ..., Cp,— 1, Cp > Dy, ...
as in the description of the construction of the new form E. Let us call these
the parts of E (just for now). There is the correspondlng decomposmon
of E into its ‘parts’ (this is the definition of the parts of E) C’l, . Cg 1
@ > Dy, Do, ... . It is clear from the definitions of C'j and Cg that each part
of E is a union of intertwined components. In particular, as is immediate
from the definition of connectedness in §5.3.2 of [9], each part (of E or E) is
a union of connected components. Thus we have

Gp=6¢U UG  UB¢p UGp, U

and
GEZGQU---UGC?;UG@>D1UGD2U

Further, since there are no intertwinings between parts, the following follow
easily from the definition of the monomial attached to a v-chain:

e any v-chain GG in G can be decomposed as: G; > ... > Gy_1 > Gy >
Hy > ... where (G; is a v-chain in &¢,, ... , Gy is a v-chain in &, |,
Gy is a v-chain in G¢,~p,, Hy is a v-chain in &p,, ... ;

e given v-chains G1 in &5, ... , Gy in G5~ Ggm60>D , Hyin Gp,,
, all lying weakly above the dlagonal these can be put together as
Gy>...> Gy >G> Hy> ... to give a v-chain G in G3.

The proposition now follows from Lemmas 2.3.3] and 2.3.5] below. O

Lemma 2.3.3 For an intertwined v-chain I both projections of all of whose
elements belong to N, every v-chain i Sp is dominated by one in Gp.
(Observe that both Gp and Sz consist of diagonal elements.)

PROOF: G consists of the vertical projections elements of F' in case #F is
even, and of the vertical projections and the horizontal projection of the last
element in case #F' is odd. In any case G consists of evenly many elements.

S5 consists of all projections of all elements of F' (in particular, &z 2O
Sr) in case the total number of such projections (considered as a set, not
multiset) is even; and, in case that number is odd, it consists of all projections
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except the horizontal projection of the last element. In any case Gz consists
of evenly many elements.

Suppose that Gz 2 &p. Then #F is odd, the total number of projections
is odd, and &5 \ &5 = {horizontal projection of the last element of F'}; in
particular, #&r = #F + 1. Since #65 > #I" and #G is even, it follows
that #&z > #F + 1, which means that Gz contains some projection not
in Gp. Since any such projection is bigger than the horizontal projection of
the last element of F', the lemma follows. O

Lemma 2.3.4 Let F' > D be an intertwined v-chain with F being defined.
Let Fl, Fg, Fl, F2 be as in gm Then

1. The elements in Fy are all of type H in ) > Fy.
2. Vertical projections of elements of Fy belong to G < j, -

PRrOOF: Statement () follows from ([2]) and (B]) of Lemma 222l Statement
@) from () and Lemma @). O

Lemma 2.3.5 Let F > D be an intertwined v-chain with F being defined.
Given a v-chain iy > po > ... in Sp~p, there exists a v-chain vy > vy > ...
in &g, that dominates it. If p1y > po > ... lies weakly above the diagonal,
then vy > vy > ... can be chosen also to be so.

PROOF: Let Fy, Fy, Fy, F be as defined in §2.2.11 We will show that there
exists a v-chain v; > vy > ... in & with the desired property. Since

Fy > Fy is a sub-v-chain of F' > D (Lemma (@), this will suffice (by
either the proof of [9, Proposition 6.1.1 (1)] or [9, Corollary 6.1.2] and [5],
Lemmas 4.5, 5.5]). For the same reasons as noted in the proof of Proposi-
tion 2.3.2] it is enough to assume that py > s > ... lies weakly above the
diagonal and find v; > 5 > ... that dominates it and lies weakly above the
diagonal. Obviously, we may take without loss of generality py > py > ...
to be a maximal such v-chain.
The rest of the proof is divided into three parts:

e Enumerate the maximal v-chains p; > pe > ... in Gp~p lying weakly
above the diagonal. There are two of these: see (*) and (**) below.
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e Identify a certain v-chain (see (f) below) in & .5 and lying weakly
above the diagonal and list its relevant properties.

e Show that the v-chain () dominates (*) in all cases and (**) in many
cases. Find a v-chain (1) in & . and lying weakly above the diag-
onal that dominates (**) when (f) does not.

We start with the first part. Write F' > D as a1 > as > ... and let k
be the integer such that a4 is the last element of F' > D whose horizontal
projection belongs to 91: in other words, «ay, is the immediate predecessor of
what is called the critical element in [9 §5.3.4]. Of course such an element
may not exist, and the proof below, interpreted properly, covers that case.

The v-chain F' > D being intertwined, its connected components (in
the sense of [9, §5.3.2]) are determined by whether or not oy is connected
to its immediate successor: in either case, each element «; for j > k + 2
forms a component by itself, and the elements aq, ..., ap are all in a single
component. Consider the types of elements of F' > D as in [9, §5.3.4]. The
possibilities for the sequence of these are listed in the following display. In
these, the underlined type is that of the element a4, the overlined type is
that of either ay or its immediate predecessor a4_; according as whether k
is odd or even, and the vertical bar indicates where the first disconnection
occurs (either just after oy or just after ag,q):

Case I: V ...V H S S S
Case II: vV ..V VYV V| S S
Case I1I: V... V.V V| S S
Case IV: V ... V.V V S| S

That these possibilities are all follows readily from the definition of type.

For an element A of a v-chain C' (in ON), let gc ., denote p,(A) if A is
of type V or H and A itself if it is of type S. It is easy to see (and in any
case explicitly stated in [9, Proposition 5.3.4 (1)]) that gc, > gon for (not
necessarily consecutive) elements A > X in C'. It follows that, in Cases II, 111,
and IV,

(*) dr>D,a; = F>Dyas = - -

is the unique maximal v-chain in Gp.p lying weakly above the diagonal; in
Case I too it is a maximal v-chain but there is also another one, namely,

(xx)  pola1) > polaz) > ... > py(ar) > palan)
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(if pn(ayx) dominated «a; for some j, k < j, it would contradict the discon-
nection between oy and ayyq: recall that ay and oy are intertwined). This
finishes our first task of determining the maximal v-chains in &g~ p that lie
weakly above the diagonal.

Next we identify a certain v-chain (see (f) below) in &p .z that will
have the desired property in almost all cases. Let e be the integer such
that F} is oy > ... > a. (and Fy is aeyq > ...). Let feyq > ... be the
counterparts in F, respectively of a.,q > ..., the correspondence a « (3
being as in Lemma ([@):

(a) The vertical projections of «; and ; are equal for j =e+1,e+2,....
And the row index of 3; is no less than that of «; (Lemma 2.2.2] (B)).

Let f be the largest integer, f > e, such that 3y is of type V or H in
Fy > Fy: if either Q1 does not exist or (., is of type S, then f := e and f,
is taken to be the last element of [} (this is not to say that the cardinality
of Fy is €). Consider the subset Z of & i~ p, consisting of contributions
of elements up to and including 3y and only those contributions that are
not smaller than p,(Br41) (equivalently 5yiq): if Br41 does not exist, then
this condition is vacuous. In other words, Z consists of (1) the vertical
projections of all elements of F} > Fy up to and including Br; and (2) the
horizontal projections of all elements of Fy > F} of type H except perhaps of
By itself: the horizontal projection of 3; does not belong to Z if it is smaller
than p,(Br41) (even if G should be of type H). Letting the elements of Z
arranged in order be v; > ... > 7,, we have the following v-chain in & .

(1) Y>> > B > Bra >
We claim:
(i) pu(ai), ..., po(ay) belong to Z. (So g > f.)

(ii) The horizontal projection of a sy does not belong to M. That is, f > k
with k as defined earlier.

(iii) The types of afig, apy3, ... in F'> D are all S.

(iv) The type of afyq in F' > D is either V or S. If it is V, then f =k and
we are in Case II (in the enumeration of types listed above).

(v) The critical element of F} > F, (if it exists) is either B or B74;.
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(vi) If g 2 f + 1 (observe that g > f always by (i)), then e is even.

(vii) If g # f+ 1 and f is odd, then 3, is of type H (in Fy > Fy) and a4,
is of type S (in F' > D, if apy exists).

Proor: (i) If j < e (i.e., if a; belongs to F}), then p,(«;) belongs to Z by
Lemma 2.3.4 (2); if e < j < f, then p,(a;) = py(5;) (see (a) above) and so
belongs to Z.

(ii) On the one hand, py(Br+1) € N, for Briy is of type S. On the other
hand, the row index of ;4 is at least that of ay; (see (a) above).

(iii) and (iv) follow from combining (ii) with the enumeration of cases of
types of elements of F' > D above (Cases I-1V).

(v) This follows from the definition of type and the choice of f: an element
of type S cannot precede the critical element; an element of type V cannot
succeed the critical element.

(vi) Suppose that e is odd. The contributions to & . z;, of elements of I3
include p,(aq), ..., py(ae) and are evenly many in number (Lemma[Z37](1));
Z contains all of these (Lemma 2.2.2 [3])) in addition to p,(Be41), - - -, pu(5y),
sog>(e+1)+(f —e)= f+1. Thus e is even.

(vii) By (vi), e is even. Since f is odd, it follows that f > e+ 1. We first
show that h is odd, where (3, is the first element of the connected component
of Fy > Fj that contains B¢. Consider a connected component of Fy, > D
contained entirely within {41, ..., 8y_1} (if any should exist) (if f =e+1,
then {Be11,...,0f-1} is understood to be empty). If its cardinality is odd,
then its last element, say [;, has type H (this follows from the definition of
type: by choice of f, the type can only be V or H), and p,(3;) is bigger
than p,(Bi11) (for otherwise 3;1; will be forced to have type S ([9, Proposi-
tion 5.3.4 (1) and (3)]), a contradiction to the definition of f); and Z would
contain py(/3;) in addition to the elements in (i), a contradiction. Thus all
such components have even cardinality. This implies that h — e is odd, and,
since e is even (by (vi)), that A is odd.

Since [yiq is of type S (by choice of f), it is the last element in its
connected component and the component has odd cardinality. Since h and f
are odd, this component can only be {3+1}. This means that 3y is the last
element in its connected component, and so of type H: its type is either V
or H by choice of f, and further because f — h + 1 is odd its type is H.

If pr(Bf) > po(Brs1), then g > f+1, for Z would contain py,(G) in addi-
tion to the elements in (i). So pn(Bf) < pu(Bp41). Since Fr4q is not connected

23



to Oy (as was just shown), it follows that R' < R* where R, R’ are the row
indices of §y, Bf+1. Letting r, 7’ be the row indices of oy, apyq, we have, by
(a) above, r' < R’ < R* < r*. This means that a4, is not connected to oy
and so is of type S (see (ii) above). O

The second part of the proof (of the lemma) being over, we start on the
third. We first show that (f) dominates (*). From (a) above and (iii) of the
claim, it follows that Uiy > iy Byys = Brya > Ujs> iy By yq = Bf+s > ... dominates
Uiy siyagy = Of+2 > Qiysinay,, = Qf+3 > ... From (i) of the claim it
follows that v; > ... > v, > Qo> dominates ¢rsp o, > ... > qF>D.asyi
if either Uiy > 19,874 dominates qrspa,,, (Which fails by (a) only when ay,
has type V) or g > f+1 (by the definition of Z and (a)). Suppose that a iy
has type V. It follows from (iv) of the claim that f is odd, and so, from (vii)
of the claim, that ¢ > f + 1. Thus () dominates (*).

Now assume that the types of the elements of F' > D are as in Case I
and that g > po > ... is (**). If f > k+1, then ({) dominates (**), for (t)
contains p,(aq), ..., py(ar), po(axs1) (see (i) of the claim), and p,(ags1) >
pr(ag) (for F' > D is intertwined); so assume that f = k (by (ii), we have
f > kalways). If g > f+1 = k+1, then again (f) dominates (**) for similar
reasons: Z contains p,(aq), ..., py(ay), and it also contains g elements that
dominate pp(ag): po(Bri1) = po(ars1) > pr(ag) for F > D is intertwined.
So assume that g = f = k (g > f always by (i)). Since we are in Case I, k is
odd (and hence so is f). By (vii), f; is of type H and the following v-chain
is in 6F1>F‘2:

(]L]L) pv(a1> > > pv(ae> > pv(ae-l—l)(: pv(ﬂe+1)) >
- > po(ay) (= pu(By)) > pi(By)

This v-chain dominates (**) by (a) above. O

2.4 The element yr attached to a v-chain F

Let E be a v-chain in O91. From Proj® F we can get an element yg of I(d, 2d)
by the following natural process (see the proof of [, Proposition 4.3]): the
column indices of elements of Proj® £ occur as members of v; these are re-
placed by the row indices to obtain yg.
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Proposition 2.4.1 yg > v and yg belongs to 1(d).

PRroOOF: Think of yz as being the result of a series of operations done starting
with v. Let € I(d) be such that x > v. Suppose (r,¢) € ON is such that
¢ occurs and r does not in x. Let 2’ be the result of replacing ¢ and r* in x
by r and ¢*. Then, clearly, either » > r* in which case r* < d < d+1 < ¢*
and c<d<d+1<r,orr<r*inwhichcasec<r <d<d+1<r*<c".
In either case ' > x > v and 2’ belongs to I(d).

The proposition follows easily, as we now show, from the observation just
made. Consider the elements of Proj® E/ that are not in 91. These can only be
horizontal projections, each of some unique element of . Pair these up, each
with the vertical projection of the corresponding element of E (all vertical
projections belong to Proj® E). Since Proj® E has even cardinality, there are
evenly many elements left (all in M) after the elements not in 9N are paired
up as prescribed. Pair these up in some arbitrary way. If (r,7*) and (c¢*, ¢)
are the horizontal and vertical projections of an element (r, ¢) in O, we can
think of replacing r* by r and ¢ by ¢* as the single operation described in
the previous paragraph in going from x to z’. It should now be clear that yz
is obtained from v by a series of operations, each of which is like the one
described in the above paragraph. O

In fact, we have

Proposition 2.4.2 yg > wg, where wg is the element of 1(d) attached as
in [9, §2.2.2] to E.

PRrROOF: The strategy is similar to that of the proof of Proposition 23321
There corresponds to yg ([5, Proposition 4.3]) a subset &,, of M that is
‘distinguished’ in the sense of [0, §4]. (Furthermore, the subset is symmetric
about the diagonal and contains evenly many diagonal elements [9, Proposi-
tion 5.2.1].)

We first give an explicit description of &,,. Let the elements of Proj® E
arranged in decreasing order be

(ri,r))s ooy (Tuy 7 )y ooy (14, 7))

where u is such that (r,7}) but not (r,41,7,,) belongs to M, or, equiv-
alently, r, > r} but r,.; < ry,,. Throughout this proof, we use i and
7 consistently to denote integers in the range 1, ..., v and v+ 1, ..., ¢t
respectively.
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Clearly (rj,73) are all horizontal projections. Let p(j) be such that
(1, T j)) belongs to E: all the column indices of elements of F must appear as
column indices also in Proj® E, for no vertical projection is left out in Proj® E.
Then (rut1,7p0,11y) > ... > (re, 7)) is @ v-chain and p(u + 1) < ... <p(?).

Let o denote the function {u+1,...,t} — {1,..., u} defined inductively
as follows:

e o(t) is largest possible such that r, > 7} ,;

e o(t—1)is largest possible in {1,... ¢} \{o(t)} such that r;—y > 77,

e o(j) is largest possible in {1,...,t}\ {o(t),0(t—1),...,0(j+1)} such
that r; > r7 .

Such a choice of ¢ is possible. Indeed,

Loo(t) > plt), .., o) = p(j)s - s o(u+1) > plut1);

2. If o(j) > p(j), then o(j — 1) = p(j) (for rj_1 >r; > 17 ).
We have

Sy ={(r5,7500) (o, 73) [u+1 <5 < t}U
{(ri,r)) |1 <i<w, Ajwithi=o(j)}

i

Next we draw some conclusions from the above description of &, :

(a) If By > ... > Ej be the decomposition of E into intertwined compo-
nents, then &,, = Proj® By U ---U Proj® £, U 6yEe-

(b) Vertical projections of all elements preceding the critical element belong
to 6.

(c) If there exists an element « in Fy of type H (there is at most one such
element) and py,(«) belongs to Proj® E, then p,(a) € &

YE,*

(d) For each v in E there exists a unique element 3 in &,,, that shares its
column index with «. This element lies on or above the diagonal and
its row index is no smaller than that of a. If ' is oy > ap > ..., then
the corresponding elements form a v-chain 3; > 3, > ... in §,,.
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(e) Suppose that « is the critical element of E and 3 # p,(«) where 3 is
the corresponding element in &, (see (d)). Then p(j) =o(j) V j and
Proj E = Proj® E.

(f) Let « be the critical element of E. If @ has type V, its horizontal pro-
jection pp(ar) belongs to Proj® £ (in other words pp(a) = (rus+1,7541));
and o(j) = p(j) V¥ j, then the only elements of Proj® E N M smaller
than p,(«) are the vertical projections of elements of E (evidently of
those beyond the critical element).

PROOF: (a) Observe that the critical element (ry41,7,,,,)) belongs to E (for
the critical element is intertwined with all its successors). Since o(j) > p(j)
for all j and p(u+1) < ... < p(t), the conclusion follows.

(b) This is because {o(t),...,0(u+1)} C{p(u+1),plu+1)+1,... ¢}

(c) Let pp(a) = (rs,7%). Since « is not connected to (but is intertwined
with) any of its successors, we have r; # r¥V j,so s & {o(u+1),...,0(t)}.
And clearly s < u, so the conclusion follows.

(d) Since p,(a) € Proj® E, the existence and uniqueness of 3 is clear from
the description of &,, above. Also clear from the description is that the
only elements below the diagonal in &, are those with column indices r7},
but p,(a) = (r;,r;) for some i (p,(a) € N surely), so 5 lies on or above the
diagonal.

To see that the row index of 3 is no smaller than that of «, first note that
this is clear if § = p,(«). If @ precedes the critical element, then 3 = p,(«)
by (b). So suppose that oo = (r;,7;,)) and further that p(j) = o(j’) for
some 5/, u 4+ 1 < 5" <t (if no such j exists, then again 3 = p,(a) by the
description of &,,). Then p(j) > p(j') (for a(j') > p(j’)), so j > 7' (for
plu+1) <...<p(t)). Since 8 = (ry,r} ), it follows that ry > r;, ie.,
[ has no smaller row index than that of «.

Finally, that 3y, (5, ...form a wv-chain follows readily by combining the
assertion just proved with the distinguishedness of G,,,.

(e) The assumption that 5 # p,(«) implies that p,(@)(= (Tp(ut1)s i)
does not belong to &,,,, which means p(u + 1) = o(j) for some j. If j >
u+ 1, we have o(j) > p(j) > p(u + 1) (see (1) above), a contradiction, so
p(u+1) =o(u+1). By (2) above, it follows that p(j) = o(j) for all j.

Suppose that Proj E has oddly many elements. Let ¢ be such that (r;,r})
is the vertical projection of the last element, say A, of E. Since py()\) ¢
Proj® E, it follows that ¢ > p(t) (note that (rp), ;) is the vertical projection
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of the element of E with horizontal projection (r,77)). Since rp, > r > rf,
where 7 denotes the row index of A, we have o(t) > i > p(t) contradicting
the previous assertion.

(f) Note that (ryw-+1),7pqq1y) is the vertical projection of v (by the def-
inition of p). Suppose that there exists (r;,r) with i@ > p(u + 1) that is
not the vertical projection of any element of E| i.e., there does not exist j
with ¢ = p(7). Then (r;,7) is a horizontal projection, evidently of some
predecessor of a.. If r,1; < rf, then « is not connected with that predeces-
sor, therefore neither to its immediate predecessor, and so of type S (rather
than V as assumed). We may therefore assume that r,y1 > . Now, if
i = o(j) for some j > u+ 1, then o(j) # p(j), a contradiction; if not, then
it follows from the definition of o that o(u+ 1) > ¢ > p(u+ 1), again a con-
tradiction. (It is easy to construct counter-examples to the assertion with
the critical element being the last element of £ and its horizontal projection
being not in Proj® £, in which case the hypothesis that o(j) = p(j) for all 5
is vacuously satisfied.) O

We are finally ready for the proof of the proposition. By [5, Lem-
mas 4.5, 5.5], it is enough to show that every v-chain in S is dominated by
one in G,,. Let By > ... > E; be the decomposition of £ into intertwined
components. Take a v-chain C' in &g. As observed in the proof of Propo-
sition 232 C' is just a concatenation of v-chains Ci, ..., C; with C; being
a v-chain in &g;. We have already seen in Lemma that there exist
v-chains Dy, ..., Dy_1 in Proj® Ey, ..., Proj° E,_; respectively dominating
Cy, ..., Co_1. In the light of (a) above, we'd be done if we can find D,
in GyEZ dominating C, for then the concatenation Dy > ... > Dy > D,
would be a v-chain in &, dominating C. As in the proof of Lemma [2.3.5] we
may reduce to the case when C} lies weakly above the diagonal (this follows
from the proof of [2 Lemma 5.15] and the symmetry about the diagonal of
monomials attached to v-chains).

We now show that such a chain D, exists. In fact, let us show: for an
intertwined v-chain F' and p; > po > ... a maximal v-chain in Gp lying
weakly above the diagonal, there exists 11 > 1, > ... in G,, lying weakly
above the diagonal that dominates i1 > o > .... The goal being analogous
to that of Lemma 2.3.5 we adopt the notation and arguments from the first
of the three parts of that proof. There are two possibilities for 3 > ps > .. .,
namely (*) and (**) as in the proof of that lemma.
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First consider (**). If py(ax) belongs to Proj® F', then (**) is contained
in &,, by (b) and (c¢) above. If not, then oy, is the last element of F, so that
all projections of F' belong to M. In this case, &,,, = Proj° ' = &5, and
we're done by invoking Lemma 233

Now consider the v-chain (*). Because of (b) and (d) above, it follows
that the v-chain §; > f > ... as in (d) dominates (*) except in the fol-
lowing situation: the critical element cy1 has type V and Sri1 # po(Qpr1).
So assume that we are in this situation (which means that the types of el-
ements of F' are as in Case II on page 2I] and in particular that k is odd).
Assertions (e) and (f) above apply.

The elements p,(c), ..., py(o) belong to &, (by (b)). If there is one
other element in &, that dominates p,(a11), then these elements together
form a v-chain v, > ... > 4 in 6, that dominates p,(oy) > ... >
po(ar) > po(arsr), and y1 > ... > Yep1 > Brpe > Bres > ... dominates
(*), and we're done. So assume that this is not the case. From (e) and (f)
above it follows that Proj F' consists precisely of p,(aq), ..., py,(ax) and both
projections of agi1, Qgia, ..., and so of an odd number (because k is odd),
contradicting (e). O

3 Pfaffians and their Laplace-like expansions

This section can be read independently of the rest of the paper. We define
here the Pfaffian of a matrix of even size that is skew-symmetric along the
anti-diagonal and show that it satisfies a Laplace-like expansion formula sim-
ilar to the one for the determinant. In fact we define the Pfaffian by such a
formula: see Eq. (B11]). We then show that it is independent of the choice
of the integer involved in the expansion and that it is a square root of the
determinant (Corollary B:2.2]). The expansion formula is used crucially in
the proof of the main Lemma .2.1] in ¢4l

3.1 The Pfaffian defined by a Laplace-like expansion

Let n be a non-negative integer. For k an integer, define k* = 2n + 1 — k.
Let A = (a;j) be a 2n x 2n matrix that is skew-symmetric along the anti-
diagonal, meaning that a;; = —a;«;» for 1 <14, 7 < 2n. We will be considering
submatrices of A. Let A, . denote the submatrix obtained by deleting the row
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numbered r and the column numbered ¢; A,,,, ¢, the submatrix obtained
by deleting rows numbered rq, 9 and column numbers ¢, ¢o; and so forth.
Let D, D, ., Dyjrycicys ---denote respectively the determinants of A, A, .,
Arirgcrens - -

We define the Pfaffian @) of the matrix A by induction on n: for n = 0,
set (Q :=1; forn > 1, set

2n

Q= Z(—l)m-i-j*sgn(mj) A+ Qi jom* (3.1.1)

J=1

where m is a fixed integer, 1 < m < 2n; Qnjj*m is the Pfaffian of the
submatrix A,,; j«m+; and, for natural numbers ¢ and 7,

1 ifi<y
sgn(ij):=<¢ —1 ifi>jy
0 ifi=j

(Qmyjj*m~ is not defined when j = m but this does not matter since sgn(myj) =
0 then). To see that the expression ([B.1.7]) is independent of the choice of m,
proceed by induction on n. If p is another choice, then, by the induction
hypothesis, @ j+m+ equals

2n

Z(—1)p+k*sgn(pm)sgn(pj)sgn(k*j*)sgn(k:*m*)sgn(pk:) p 1 Qpmike o j*m p*
k=1

and, similarly, Qpk k+p+ equals

2n

> (=1)" " sgn(myj)sgn(pm)sgn(mk)sgn(k*5)sgn(5*p*) dm.j+ Qpmjk i j+m-p-
7j=1

so that, irrespective of whether m or p is chosen, we get

Q = 32 (= 1) 4R sgn (m )sgn (pm) sgn(pj )sgn (k* 7 )sgn (k*m”)-
Sgn(pk) A j* Ap Jx mejk,k*j*m*p* .

Since '
(—=1)™ 7 sgn(my ) anm,j+ Qmj,jeme
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is symmetric in m and j (for we have (—1)™ = —(=1)™", (=1))" = —(—1),
Sgn(m]) = _Sgn(jm)7 a'm7j* - _aj,m*a anda ObViOUSly, Qmj,j*m* = Qjm,m*j*)a
the summation in equation (BI1) can be taken over m:

2n

Q=" (—1)™ sgn(mj) amg- Quujjem- (3.1.2)

m=1

Corollary 3.1.1 The number of terms in the Pfaffian of a generic 2n x 2n

matrixz skew-symmetric along the anti-diagonal is (2n—1)-(2n—3)----- 3-1.
By convention we take this number to be 1 when n = 0 (in analogy with the
convention 0! = 1). O

3.2 Pfaffians and determinants

Proposition 3.2.1 Forintegersa, j, k such that 1 < a,j, k < 2n and a # 7,
a#k,
Daj,k*a* = <_1)n_1Qaj,j*a*Qak,k*a*-

PROOF: Proceed by induction. Writing the Laplace expansion for Dg; jxq-
along row k of Agj -+, we get

2n

Dyjjrar = Z(—1)1““*sgn(ak)sgn(jk)sgn(i*k*)sgn(z'*a*) g ix Dok i oo

i=1
Writing the Laplace expansion for Dy j«g+q+ along column j* of Agjk k==,
we get
Dok ko = ?Zl(—1)54”'*sgn(aﬁ)sgn(jﬁ)sgn(kﬁ sgn(i*5*)sgn(k*j*)-
sgn(j*a*) ag - Dajke, ik j=ax -

By the induction hypothesis,

Dojreinjra- = (—1)" *Qujt.errj ar Qajiiivk* ja*
Substituting this into the expression for Dgjj i+k+q+ and the result in turn
into the expression for Dgj;+e+, and rearranging terms—we have replaced
sgn(i*k*) by sgn(ki) and (—1)""2sgn(jl) by (—1)""'sgn(lj)—we get
Dajék*a* = (_1>n—1.
(2521((—1)“? sgn(ak)sgn(jk)sgn(i*j*)sgn(i*a*)) sgn(ki)ari Qajni,i-k+ja*)
(222, (1) sgn(al)sgn(kl)sgn(k*5*)sgn(5*a*))sen(€))ar j- Qujke ek j+a*)
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By equations (B.11]) and ([B.1.2)), the factors in the second and third lines of
the above display are respectively Qgj j+q+ and Qgk k+q+, SO We are done. O

Corollary 3.2.2 D = (—1)"Q?.

PrROOF: Put j = k in the proposition. O

4 The proof

We are now ready to prove our result (Theorem [[81]). Lemma [£2.1]is the
technical result that enables the proof. Its proof uses the results of §2| [3
Notation is fixed as in L.8

4.1 Setting it up

Our goal is to prove:

Every monomial in DR that is not O-dominated by w occurs as
an initial term with respect to the term order > of an element of
the ideal I of the tangent cone.

As explained in §I.§ putting this assertion together with the main result
of [9] yields Theorem [[.8.1]

Let I’ be the ideal generated by f,, 7 € I(d), v < 7 L w. Since I' C I,
and since a monomial in DR that is not D-dominated by w contains, by the
definition of O-domination (§I.7)), a v-chain in O that is not O-dominated
by w, it suffices to prove the following (after which it will follow that I’ = I):

Every v-chain that is not O-dominated by w occurs as the initial
term of an element of I'.

Putting j = 1 in Lemma .27 below yields this, so it suffices to prove that
lemma.
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4.2 The main lemma

Fix a v-chain A : a1 > ... > a,, that is not O-dominated by w. Let j be an
integer, 1 < 7 < m. Define A; to be the sub-v-chain a; > ... > ;. Set

ro Proj® A; if #Proj A; is odd
T Proj® Aj \ {pw(ej), pn(ej)} if #Proj A; is even

See §2.T] for the definition of Proj and Proj®. Observe that

() if #Proj A;_, is even (equivalently Proj A;_; = Proj® A,_4),
then I'; = Proj®A,_;, no matter whether #ProjA; is even or
odd.

I'; being a subset of even cardinality, say 2¢;, of the diagonal elements of OR,
it defines an element of I(d). The corresponding Pfaffian we denote by f;.
The degree of f; is ¢; and the number of terms in f; is, by Corollary B.1.1]
nj=(2¢—1)-(2¢; —3)----- 3 - 1. By convention, n; = 1 when ¢; = 0.

Lemma 4.2.1 Let A: oy > ... > «,, be a v-chain not O-dominated by w.
For every integer j, 1 < j < m, there exists a homogeneous element F}; of
the ideal I' such that

1. For a monomial occurring with non-zero coefficient in I, consider the
set (counted with multiplicities) of the projections on the diagonal of
the elements of DR that occur in the monomial. This set is the same
for every such monomial.

2. The sum of the initial n; terms (with respect to the term order ) of F;
7;5 .ijOcj T XOém'

Consider any fized monomial (occurring with non-zero coefficient) in F; other
than one in f;Xq; -+ Xa,,. From (1) and (2) it follows that, given an inte-
ger b, 7 < b < m, there exists precisely one X5, occurring in the monomaial
with the row index of o, being that of .

3 There exists b for which 6, # «, and, for the largest b of this kind,
either &, & DN or the column index of dy is less than that of ay.

PROOF: Proceed by an induction on m and then another (in reverse) on j.
Let us suppose that we know the result for 5 and prove it for j — 1. The
proof below covers also the base cases for the induction. Consider Proj A;_;.
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Suppose first that its cardinality #Proj A;_; is odd. Write A as C' > D
with C' = A;_; and D being o; > ... > a,. Observe that the last intertwined
component of C' has at least two elements. Let A be the new form of A
constructed as in §2.21 Since A has fewer elements than A (Proposition 2.2.1])
and is not D-dominated by w (Prop081t10n 2:32), the induction hypothesis
applies to A. Apply it with k£ = #C’ + 1 in place of j in the statement of the
lemma. If F'is the element in I” as in its conclusion, set F;_; = D G

We claim that F;_; has the desired properties. That it satisfies (1) is
clear. We now observe that it satisfies (2). Since Proj A,_; = ProjC has
evenly many elements (Proposition Z271]), it follows (observation (1) above)
that 'y (calculated for A:C> D) equals Proj°5' = Proj C. On the other
hand, I';_; = Proj® C' = Proj C (since Proj A;_; is odd, by Proposition 2.2.1]).
So Fj_; satisfies (2). That F} satisfies (3) is readily verified.

Now suppose that #ProjA;_; is even. Apply the induction hypothesis
with j and let F be as in its conclusion. The base case j —1 = m needs to
be treated separately here, as follows. Let y4 be the element of I(d) defined
as in §2.41 We take Fj to be the Pfaffian f,, attached to ya (see §LH). That
F; belongs to I’ follows from Propositions 2.4.1] and 2.4.2] The rest of the
proof is the same for the induction step as well as the base case.

From the observation (i) above, it follows that I'; = Proj A;_;. Here is a
picture of I'; (the solid circles denote elements of I';):
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=0 B B B B

k such that g, € ON but G, € ON

Applying to f; the Laplace-like expansion formula ([B.I1.1]) for Pfaffians, we
see that the sum of its initial n;_; terms, the next n;_; terms, ... are (up
to sign factors) ¢.Xs., ger1Xg.11> - 90-1Xp, 1, 9eXa, 1, ..., Where g;
is the Pfaffian associated to I'; \ {p,(8;),pn(5:)}, so that the correspond-
ing initial terms of F} are g.Xps, Xo, * Xans Jer1 X1 Xa; *  Xags -+
9e-1Xp, Xa; KXo, 90Xa; 1 Xa,; - Xay,s - We will now modify Fj (by
subtracting from it elements of I') so as to kill the terms g, Xp, X, - - - Xa,,,

oy 9e1Xp, X, -+ X, But of course this needs to be done carefully in
order that the resulting element of I’ has the desired properties.

Write A as C' > D where C = A;y and D is a; > ... > . We
may assume that the last intertwined component of C' consists of at least
two elements, for otherwise F} itself without further modification has the
desired properties (we can take F;_; to be Fj). We may further assume that
there is some element of Proj A;_; that is strictly in between the vertical
and horizontal projections of «;_;, for otherwise again we can take Fj_; to
be Fj. Consider the new forms of A as in §2.21 In their construction there is
the choice involved of a diagonal element strictly in between the vertical and
horizontal projections of the last element of C'. We can choose this element
to be the vertical projection of 3; where kK < ¢ < /—1. Corresponding to each
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choice we get a new form which let us denote A(i) (= C(i) > D). Since A(i)
has fewer elements than A (Proposition [Z2.1]) and is not O-dominated by w
(Proposition 2.3.2)), the induction hypothesis applies to E(z) Apply it with
k = #C(i) + 1 in place of j in the statement of the lemma. Let F(i) in I’ be
as in its conclusion. Set Fj_; = F; — Y201 F(4) Xj,.

It remains only to verify that F;_; has the desired properties. Since
Proj Av(i)k_l — ProjC(i) has evenly many elements (Proposition ZZT)), it
follows (observation (f) above) that 'y (calculated for A(i) : C(i) > D)
equals Proj°C(i) = ProjC(i). From the definition of C(i) and observa-
tion (1), it follows that Proj C(i) is L\ {pu(Bi),pn(Bi)}. So the sum of the
initial n;_; terms of F'(7) is g;Xq, - - Xa,,. That Fj_; has the desired prop-
erties can now be readily verified. O
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