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Abstract
The well-known Poisson Summation Formula is analysed from the perspective of the coherent
state systems associated with the Heisenberg–Weyl group. In particular, it is shown that the
Poisson Summation Formula may be viewed abstractly as a relation between two sets of bases
(Zak bases) arising as simultaneous eigenvectors of two commuting unitary operators in which
geometric phase plays a key role. The Zak bases are shown to be interpretable as generalized
coherent state systems of the Heisenberg–Weyl group and this, in turn, prompts analysis of the
sampling theorem (an important and useful consequence of the Poisson Summation Formula)
and its extension from a coherent state point of view leading to interesting results on the
properties of von Neumann and finer lattices based on standard and generalized
coherent state systems.

PACS number: 03.65.−w

1. Introduction

It is well known that the Sampling Theorem (ST) for
band-limited signals [1], of fundamental importance in
communication theory, arises from the properties of the
Fourier transform operation on the real line, and the related
Poisson Summation Formula. It is also well known that
the Heisenberg–Weyl (H-W) group [2], which is basic
for nonrelativistic quantum kinematics, is intimately related
to the same Fourier transformation. This is clear from
the description of particle momentum in wave mechanics
and in the position–momentum uncertainty principle. As
will become evident, it is possible to derive the Poisson
Summation Formula in a particularly elegant manner from the
representation theory of the H-W group.

Many applications of this group use the remarkable
properties of the so-called ‘coherent states’ originally
discovered by Schrödinger [3], and extensively used in
quantum optics in particular [4]. The theory of these and
other systems of coherent states, called ‘generalized coherent
states’, has been put on a comprehensive footing, and the
extension to such systems associated with general Lie groups

has been carried out [5]. In the process, it has been realized
that even for a given Lie group, such as the H-W group, one
can construct many different systems of generalized coherent
states, sharing some features dictated by the structure of the
group, but differing from one another in certain details.

These remarks suggest that the H-W group functions
as a unifying element or as a common connecting thread
linking various ideas and concepts, each of which figuratively
flows out of the group and its representations in a different
direction—Poisson Summation Formula, ST, specific families
of generalized coherent states and, as one finds, even certain
instances of the recently much studied geometric phase.5

There is yet another sense in which the usual ST and the
standard coherent states share some common features. There
are certain discrete subsets of the coherent states, namely
the so-called von Neumann lattice of these states and finer
lattices, which enjoy the property of ‘totality’ or (over)
completeness in the relevant Hilbert space: any vector in this
space is in principle fully determined once one knows its
inner products with all the vectors in the lattice [7]. Evidently,

5 A comprehensive account of the geometric phase and original reprints may
be found in [6].
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this too is in a sense a ST. These lattices of states and some
generalizations have been studied extensively some time ago,
developing in the process simpler proofs of totality, analysis
of conditions leading to orthonormality etc [8]. It would seem
to be of considerable interest to express the usual ST in
such a way that a comparison with the properties of lattices
of coherent states, standard or generalized, could be easily
carried out.

In this work we attempt to forge a certain sense of
unity among these various concepts from the perspective of
coherent state systems of the H-W group and seek extensions
and generalizations of known results to the possible extent.
A brief outline of this work is as follows. In section 2 we
recapitulate features of the H-W group to the extent required
in this work and show how the Poisson Summation Formula
arises as a consequence of the relation between two bases
consisting of two commuting unitary operators and highlight
the role the geometric phase plays in this context. In section 3,
we establish connection between the two bases and the Zak
representation [9] and further show that the two can be
identified with certain generalized coherent states of the H-W
group. We also discuss some of their special features needed
later and in section 4 give the Wigner distribution of the
underlying fiducial vector. Section 5 is devoted to two forms
of the standard ST for band-limited state vectors. In section 6
we translate the contents of the standard ST into the properties
of standard coherent state lattices and extend the results to
a general state vector and compare them with known results
on von Neumann and finer standard coherent state lattices.
Similar questions in the context of generalized coherent
state systems are explored in section 7. Section 8 contains
concluding remarks and further outlook.

2. The H-W group and the Poisson Summation
Formula

The H-W group and its associated operator structures are
based on the fundamental Heisenberg canonical commutation
relation

[q̂, p̂] = i, (2.1)

for hermitian operators q̂, p̂ representing position and
momentum respectively for a one-dimensional Cartesian
quantum mechanical system. (For simplicity we set Planck’s
constant h̄ = 1.) Thus, this group is a three parameter Lie
group whose elements and composition law may be written
as follows:

D(α1, α2, α3)= exp{−iα1 p̂ + iα2q̂ − iα3},

− ∞< α1, α2 <∞, 06 α3 < 2π, (2.2a)

D(α′

1, α
′

2, α
′

3)D(α1, α2, α3)

= D(α′

1 +α1, α
′

2 +α2, α
′

3 +α3 + 1
2 (α

′

1α2 −α′

2α1)).

(2.2b)

(In the element on the right, the final phase is understood
to be taken modulo 2π .) According to the Stone–von

Neumann theorem [10] there is essentially only one nontrivial
unitary irreducible representation of this group, i.e., only
one irreducible hermitian representation of the commutation
relation (2.1), apart from unitary equivalence. We shall write
H for the Hilbert space of this representation.

The displacement operators correspond to setting α3 = 0
and to taking (α1, α2) to be a point (q, p) in the classical phase
space or plane:

D(q, p)= exp{ipq̂ − iq p̂}, −∞< q, p <∞.

(2.3)

Their basic properties are read off from equation (2.2):

D(q, p)−1
= D(q, p)† = D(−q,−p), (2.4a)

D(q ′, p′)D(q, p)= exp

{
i

2
(p′q − q ′ p)

}
D(q ′ + q, p′ + p),

(2.4b)

D(q, p)−1(q̂ or p̂)D(q, p)= q̂ + q or p̂ + p. (2.4c)

When q or p vanishes it is convenient to define

U (p)= D(0, p)= eipq̂ ,

V (q)= D(q, 0)= e−iq p̂.
(2.5)

For these we have the useful relations

D(q, p)= eiqp/2V (q)U (p),

= e−iqp/2U (p)V (q), (2.6)

U (p)V (q)= eiqpV (q)U (p).

This last relation for the unitary operators U (p), V (q) is just
the finite Weyl form of the commutation relation (2.1); the
phase factor present here is the geometric phase associated
with the H-W group.

Let us denote the usual delta function normalized ideal
eigenvectors of q̂ and p̂, which form continuous bases for H,
by angular and rounded ket vectors respectively:

q̂|q〉 = q|q〉, p̂|p)= p|p), q, p ∈R,
〈q ′

|q〉 = δ(q ′
− q), (p′

|p)= δ(p′
− p), (2.7)

〈q|p)=
1

√
2π

eiqp.

On these the actions of the exponentiated unitary operators
are:

V (q)|q ′
〉 = |q ′ + q〉,

D(q, p)|q ′
〉 = eip(q ′+q/2)

|q ′ + q〉,

U (p)|p′)= |p′ + p),

D(q, p)|p′)= e−iq(p′+p/2)
|p′ + p).

(2.8)

The operators U(p) and V(q) do not commute in general.
Now choose some real positive q0 and write

V0 = V (q0)= e−iq0 p̂. (2.9)
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We ask for the smallest nontrivial value of p in U(p), assumed
positive, such that U(p) commutes with V0: this happens for
p = 2π/q0, so we define

U0 = U(2π/q0)= e2π iq̂/q0 , (2.10)

and then have

U0V0 = V0U0. (2.11)

It is important to observe that both unitary operators U0 and
V0 are determined by the single parameter q0.

We look for the simultaneous (ideal) eigenvectors of U0

and V0. Their eigenvalues are phases that can be parametrized
as follows:

U0 → e2π iq/q0 , q ∈ [− 1
2 q0,

1
2 q0],

(2.12)

V0 → e−iq0 p, p ∈ [−π/q0, π/q0] .

Given a pair (q, p) within these limits, i.e., a point in the
rectangle R(q0) in the phase plane with sides q0, 2π/q0

centred at the origin, we can build a simultaneous (ideal)
eigenvector of U0 and V0 either in the |q〉 basis or in the |p)
basis. For this we need to use the actions (2.8) of U and V on
these bases. In this way we find after elementary algebra:

|q, p〉 =
q1/2

0
√

2π

∑
n∈Z

einq0 p
|q + nq0〉,

(U0 or V0)|q, p〉 = (e2π iq/q0 or e−iq0 p)|q, p〉,

〈q ′, p′
|q, p〉 = δ(q ′

− q)δ(p′
− p).

(2.13)

This construction started from the eigenvectors |q〉 of q̂ .
Alternatively, we can build the simultaneous eigenvectors
starting from the basis |p). Then we find:

|q, p)= q−1/2
0

∑
n∈Z

e−2π inq/q0 |p + 2πn/q0),

(U0 or V0)|q, p)= (e2π iq/q0 or e−iq0 p)|q, p),

(q ′, p′
|q, p)= δ(q ′

− q)δ(p′
− p).

(2.14)

We expect that these two solutions must be phase related. We
easily find:

〈q ′, p′
|q, p)= eiqpδ(q ′

− q)δ(p′
− p), (2.15)

which implies

|q, p)= eiqp
|q, p〉. (2.16)

We will recognize in the next section that this phase is the
same H-W geometric phase already present in equation (2.6).

The relation (2.16) in conjugate form is

q1/2
0

√
2π

∑
n∈Z

e−inq0 p
〈q + nq0|

= q−1/2
0 eiqp

∑
n∈Z

e2π inq/q0(p + 2πn/q0|. (2.17)

Let |ψ〉 ∈H be a general normalizable vector with
position and momentum space wavefunctions ψ(q), ϕ(p)
respectively:

ψ(q)= 〈q|ψ〉 =
1

√
2π

∫
∞

−∞

dp ϕ(p)eipq ,

ϕ(p)= (p|ψ〉 =
1

√
2π

∫
∞

−∞

dqψ(q)e−iqp.

(2.18)

Then taking the products of the two sides of equation (2.17)
with |ψ〉 and reinstating the parameter ranges we get:

q0

∑
n∈Z

e−inq0 pψ(q + nq0)

=
√

2π eiqp
∑
n∈Z

e2π inq/q0ϕ(p + 2πn/q0),

q0 > 0, (q, p) ∈ R(q0). (2.19)

This is the Poisson Summation Formula for any Fourier
transform pair ψ(q), ϕ(p).6 It is usually derived quite directly
from the structure of the Fourier Series representation for a
function of an angle variable, by extending it to a periodic
function on the full real line. We see here that it arises very
naturally in a quantum mechanical context by constructing
simultaneous eigenvectors of the commuting unitary operators
U0, V0 in two ways and relating the results. This brings out
the connection to the H-W group. We also see that extending
(q, p) in equation (2.19) outside R(q0) does not give any
additional information.

3. Connection to Zak representation as
a generalized coherent state system

The simultaneous (ideal) eigenvectors of the commuting
unitary operators U0 and V0 developed in two ways in the
previous section lead to new representations of vectors |ψ〉 ∈

H, distinct from the representations based on position and
momentum wavefunctions ψ(q) and ϕ(p). These are the
Zak representations of quantum mechanics [16], known and
studied for a long time and exploited in particular to examine
the von Neumann lattice of standard coherent states and
its generalizations [8]. The states |q, p〉, |q, p) of equations
(2.13) and (2.14) are in fact the Zak basis states for H. We
explore briefly in this section the possibility of interpreting
them as a system of (ideal) generalized coherent states
associated with the H-W group. First we begin with the Zak
representation in quantum mechanics.

Given |ψ〉 ∈H with conventional wavefunctions
ψ(q), ϕ(p) where q, p ∈R, we define the Zak wavefunction
χ(q, p) of |ψ〉 by

χ(q, p)= 〈q, p|ψ〉,

=
q1/2

0
√

2π

∑
n∈Z

e−inq0 p ψ(q + nq0). (3.1)

6 Strictly speaking, this relation does not hold for arbitrary Lebesgue square
integrable wavefunctions ψ(q), ϕ(p) since these are defined only upto sets
of measure zero. One must limit oneself to, say, the subset of continuous
wavefunctions. These qualifications will be understood in the following.
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(Here of course q0 is a positive parameter chosen freely and
then held fixed.) This definition is based on equation (2.13).
Equally well we can use equation (2.14) and define

χ̃(q, p)= (q, p|ψ〉,

= e−iqpχ(q, p),

= q−1/2
0

∑
n∈Z

e2π inq/q0ϕ(p + 2πn/q0). (3.2)

In both equations (3.1) and (3.2), it is understood that (q, p) ∈

R(q0). These equations define the so-called Zak transform,
and exhibit the Hilbert space H as L2(R(q0)), in the sense
that for any |ψ〉 ∈H we have

〈ψ |ψ〉 = ‖|ψ〉‖
2,

=

∫
R

dq |ψ(q)|2,

=

∫
R

dp |ϕ(p)|2,

=

∫∫
R(q0)

dq dp (|χ(q, p)|2 or |χ̃(q, p)|2). (3.3)

To recover all elements |ψ〉 ∈H we must allow for all
(Lebesgue) square integrable Zak wavefunctions χ(q, p)
or χ̃(q, p)) over the phase space rectangle R(q0). The inverse
of the Zak transform expresses ψ(q) and ϕ(p) in terms of
χ(q ′, p′) and χ(q ′, p′):

ψ(q)=
q1/2

0
√

2π

∫ π/q0

−π/q0

dp eiqp χ̃([q], p),

q = [q] mod q0, [q] ∈ (− 1
2 q0,

1
2 q0),

(3.4a)

ϕ(p)= q−1/2
0

∫ 1
2 q0

−
1
2 q0

dq e−iqpχ(q, [p]),

p = [p] mod 2π/q0, [p] ∈ (−π/q0, π/q0).

(3.4b)

The Zak basis vectors have the following formal
‘periodicity’ properties as are evident upon inspection from
equations (2.13) and (2.14):

|q + q0, p〉 = e−iq0 p
|q, p〉,

|q, p + 2π/q0〉 = |q, p〉,
(3.5a)

|q + q0, p)= |q, p),

|q, p + 2π/q0)= e2π iq/q0 |q, p).
(3.5b)

These differing behaviours of |q, p〉 and |q, p) are consistent
with equation (2.16). Indeed the geometric phase factor
appearing in equation (2.16) converts strict periodicity with
respect to p and periodicity upto a phase with respect to q
in the case of |q, p〉, to exactly opposite properties for |q, p).
The point to be now appreciated is that while for a general
|ψ〉 ∈H we have no conditions on χ(q, p) (or χ̃(q, p)) other
than (Lebesgue) square integrability over R(q0), if we restrict
ourselves to a subset of |ψ〉 ∈H possessing continuous Zak
wavefunctions we can say something specific. Namely, based

on equation (3.5) we have for such vectors inH the properties

χ( 1
2 q0, p)= eiq0 pχ(− 1

2 q0, p),

χ(q, π/q0)= χ(q,−π/q0),
(3.6a)

χ̃( 1
2 q0, p)= χ̃(− 1

2 q0, p) ,

χ̃(q, π/q0)= e−2π iq/q0 χ̃(q,−π/q0).
(3.6b)

For such vectors |ψ〉 ∈H these relations among the values
of the Zak wavefunctions along the edges of R(q0) can be
exploited to show that χ(q, p) (or χ̃(q, p))must have at least
one zero in their domain of definition (see, for instance,
Janssen [8], for a proof).

It is worth remarking that on account of the robustness
of geometric phases, namely the impossibility of transforming
them away by using phase redefinitions permitted by quantum
mechanics, we cannot replace equations (3.6) in any natural
way by some related wavefunctions over R(q0) strictly
periodic simultaneously in both q and p. At best the geometric
phase eiqp of equation (2.16) can be shifted from one place to
another; and its presence is the essential reason behind the
interesting result mentioned in the previous paragraph.

It may be of interest to see briefly how the original
operators q̂, p̂ obeying the commutation relation (2.1) act on
the Zak wavefunctions. It turns out that in both cases we
have to restrict the wavefunctions χ, χ̃ to be continuous and
once differentiable in each argument (so that the periodicity
conditions (3.6a) do apply) and then we have:

χ(q, p) : q̂ = q + i
∂

∂p
, p̂ = −i

∂

∂q
, (3.7a)

χ̃(q, p) : q̂ = i
∂

∂p
, p̂ = p − i

∂

∂q
. (3.7b)

After this brief recollection of the Zak representation of
quantum mechanics, we turn to the possibility of viewing the
Zak basis states as an (ideal) system of generalized coherent
states with respect to the H-W group. At q = p = 0 the
connection (2.16) simplifies and we are led to define

90 = |0, 0〉 = |0, 0), (3.8)

it being understood that this is not a normalizable vector inH.
Now equations (2.13) and (2.14) show us how to build |q, p〉

and |q, p) from 90 in natural ways using the displacement
operators in equation (2.3):

|q, p〉 =
q1/2

0
√

2π

∑
n∈Z

einq0 p
|q + nq0〉

= V (q)
q1/2

0
√

2π

∑
n∈Z

einq0 p
|nq0〉

= V (q)U (p) 90

= e−iqp/2 D(q, p)90, (3.9a)
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|q, p)= q−1/2
0

∑
n∈Z

e−2π inq/q0 |p + 2πn/q0)

= q−1/2
0 U (p)

∑
n∈Z

e−2π inq/q0 |2πn/q0)

= U (p) V (q) 90

= eiqp/2 D(q, p)90. (3.9b)

This shows that the simultaneous eigenvectors of U0 and V0

actually form the orbit of the (ideal) fiducial vector 90 under
the H-W group (save for the phase factor in D(α1, α2, α3)).
Incidentally equations (3.9) show explicitly that the phases
eiqp appearing in equations (2.6) and (2.16) have a common
origin.

To identify the Zak basis vectors as a family of
generalized coherent states, at least in a formal sense, we
must identify within the H-W group the stability group of the
fiducial vector90. From equations (2.13), (2.14) and (3.8), we
have the obvious properties

U0 90 = V0 90 =90, (3.10)

which lead to the invariances of the Zak basis states in the
form

D(q ± q0, p)90 = e∓iq0 p/2 D(q, p)90,

D(q, p ± 2π/q0)90 = e±iπq/q0 D(q, p)90.
(3.11)

Thus the stability subgroup of 90 within the H-W group is
an infinite discrete abelian subgroup Hq0 generated by U0

and V0:

Hq0 = {e−iα3+iα2q̂−iα1 p̂
|α3 = 0, α1 = nq0,

α2 = 2πm/q0,m, n ∈ Z} = {U m
0 V n

0 |m, n ∈ Z}.

(3.12)

This means that the orbit of90, namely the collection of states
{|q, p〉} say, is essentially the coset space of the H-W group
with respect to Hq0 . This is identifiable with the rectangle
R(q0) of area 2π in phase space, and so we see again in a
natural way why we may limit (q, p) to this rectangle in the
Zak representation.

To sum up, the simultaneous (ideal) eigenvectors of U0

and V0 form a system of generalized coherent states for the
H-W group, based on the fiducial vector 90 and identifiable
with the coset space (H-W group)/Hq0 . We must however
note the following: unlike the usual cases of generalized
coherent state systems arising from a fiducial vector which is
a normalizable vector inH, in which case the inner product of
two generalized coherent states is generally nonzero (see the
discussion in Klauder and Skagerstam in [5]), here we have

(D(q ′, p′)90 , D(q, p)90)= δ(q ′
− q)δ(p′

− p). (3.13)

We realize that this result of orthonormality in the continuous
Dirac sense is possible only because 90 is nonnormalizable.

4. Wigner distribution for Zak fiducial vector

The important role played by the fiducial vector 90 motivates
us to explore its invariances in the Wigner representation

language, more particularly since the primitive invariances are
with respect to phase space displacements. The position and
momentum space wavefunctions of 90 are:

90(q)= 〈q|90〉 =
q1/2

0
√

2π

∑
n∈Z

δ(q − nq0),

80(p)= (p|90〉 = q−1/2
0

∑
n∈Z

δ(p − 2πn/q0), q, p ∈R.
(4.1)

Notice that in both cases we have a periodic sequence of delta
functions with uniform positive weights. Each of these is quite
easily seen to display the basic invariances (3.10) of90. From
here we obtain the Wigner function corresponding to 90:

W0(q, p)=
1

2π

∫
∞

−∞

dq ′ 90(q −
1
2 q ′)90(q + 1

2 q ′)∗eiq ′ p

=
q0

(2π)2
∑

n,n′∈Z

∫
∞

−∞

dq ′δ(q −
1
2 q ′

− nq0)

× δ(q + 1
2 q ′

− n′q0)eiq ′ p

=
q0

(2π)2
∑

n,n′∈Z

δ(2q − (n + n′)q0)

∫
∞

−∞

dq ′ eiq ′ p

× δ(q −
1
2 q ′

− nq0),

=
q0

(2π)2
∑

n,n′∈Z

δ(q −
1
2 (n + n′)q0) e2ip(q−nq0)

=
q0

(2π)2
e2iqp

∑
m,n∈Z

δ(q −
1
2 mq0)e−2inpq0

=
q0

(2π)2
e2iqp

∑
m∈Z

δ
(

q −
m

2
q0

)
2π

1

2q0
·

∑
n∈Z

× δ(p −πn/q0)

=
1

4π

∑
m,n∈Z

(−1)mn δ
(

q −
m

2
q0

)
δ(p − nπ/q0). (4.2)

We have here a lattice of delta functions in the q − p
phase plane, at the points ((m/2)q0, nπ/q0) for all m, n ∈ Z.
Thus the lattice spacings are (1/2)q0 along the q-axis and
π/q0 along the p-axis. The primitive cell here is one-fourth
of R(q0) encountered earlier in constructing the U0 − V0

eigenstates. When m and n are both odd we have weight −1,
otherwise always weight +1. This makes the invariances

W0(q ± q0, p)= W0(q, p ± 2π/q0)= W0(q, p) (4.3)

immediately obvious. It is interesting to note that this
(idealized) Wigner function and its properties are reminiscent
of the Talbot grating in classical wave optics.

5. The ST for band-limited wavefunctions

The results so far discussed have depended on one positive
parameter q0 with dimension of length. We now turn to results
which depend in addition on a second (positive) parameter
p0 with dimension of momentum, such that p0 6 2π/q0. The
first is the ST recalled in this section [1]. The second, taken
up in the next section, is the property of (over) completeness
possessed by certain lattices of standard quantum mechanical
(Schrödinger) coherent states.
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Let |ψ〉 ∈H be such that its momentum space
wavefunction ϕ(p) vanishes for p outside the interval
[− 1

2 p0,
1
2 p0] of width p0, for some positive p0. Therefore,

ψ(q)=
1

√
2π

∫ 1
2 p0

−
1
2 p0

dp eipqϕ(p). (5.1)

We will then say that ψ is band-limited and has bandwidth p0.
(Conventionally, the bandwidth is the length of the smallest
closed interval, centred about zero, outside of which ϕ(p)
vanishes; however, in the present context it is more convenient
to use the above definition, without insisting that ϕ(p) be
nonzero throughout the interval [− 1

2 p0,
1
2 p0].) It is then

useful to define a subspace H0(p0)⊂H, made up of band-
limited ψ(q) with bandwidth p0, as follows:

H0(p0)= {|ψ〉 ∈H|ϕ(p)= 0 for p 6∈[− 1
2 p0,

1
2 p0]} ⊂H.

(5.2)

(The reason for the subscript zero will become clear in
the following section.) We can now see that if p0 6 2π/q0,
the subspace H0(p0) is simply characterized in terms of
Zak wavefunctions, namely as is clear from equations (3.2)
and (3.4):

|ψ〉 ∈H0(p0),

p0 6 2π/q0 ⇔ χ̃(q, p)= χ̃(p) independent of q,

ϕ(p)= q1/2
0 χ̃(p), p ∈ [− 1

2 p0,
1
2 p0] ⊆ [−π/q0, π/q0].

(5.3)
We will hereafter regard q0 as given right at the start and kept
fixed, so that the domain of definition of Zak wavefunctions
χ(q, p), χ̃(q, p) is the rectangle R(q0) in phase space, and
this is unvarying. The second parameter p0 will be permitted
to vary subject always to p0 6 2π/q0. With this understood,
the relation (5.3) discloses a natural connection between
position-independent Zak wavefunctions χ̃(q, p) and band-
limited wavefunctions ψ(q) with bandwidth p0.

Now we proceed to the ST. We appeal to the Poisson
Summation Formula (2.19) which holds for any q0 > 0.
For a given band-limited ψ(q) with bandwidth p0 6 2π/q0,
i.e. |ψ〉 ∈H0(p0), the interval [− 1

2 p0,
1
2 p0] does not extend

beyond the interval [ −π/q0, π/q0]. If we now take p ∈

[− 1
2 p0,

1
2 p0], all the conditions for the validity of equation

(2.19) are obeyed and furthermore only the term n = 0
survives on the right-hand side of that equation. Therefore,
for |ψ〉 ∈H0(p0), p0 6 2π/q0, we have:

ϕ(p)=
q0

√
2π

e−iq ′ p
∑
n∈Z

e−inq0 p ψ(q ′ + nq0),

q ′
∈ [− 1

2 q0,
1
2 q0], p ∈ [− 1

2 p0,
1
2 p0] ⊆ [−π/q0, π/q0] .

(5.4)
Using this in equation (2.18) we are able to express ψ(q) for
any q ∈R in terms of the discrete equispaced sequence of
values ψ(q ′ + nq0):

ψ(q)=
q0

2π

∑
n∈Z

ψ(q ′ + nq0)

∫ 1
2 p0

−
1
2 p0

dp eip(q−q ′
−nq0)

=
q0

π

∑
n∈Z

sin{p0(q − q ′
− nq0)/2}

(q − q ′ − nq0)
ψ(q ′ + nq0),

q ∈R, q ′
∈ [− 1

2 q0,
1
2 q0], p0 6 2π/q0. (5.5)

This is, as is well known, the ST for band-limited ψ(q).
However, in the usual statement, the bandwidth p0 is supposed
to be known, and the inequality p0 6 2π/q0 is read as q0 6
2π/p0 and taken to mean that the values of ψ(q ′ + nq0) are
needed at sufficiently close spacing in order to be able to
determine ψ(q) for all q.

If in equation (5.5) we let q → q ′ + mq0 for some m ∈ Z,
we find:

ψ(q ′ + mq0)=
q0

π

(
p0

2
ψ(q ′ + mq0)

+
∑
n∈Z
n 6=m

sin{(m − n)q0 p0/2}

(m − n)q0
ψ(q ′ + nq0)

)
,

q ′
∈ [− 1

2 q0,
1
2 q0]. (5.6)

For p0 < 2π/q0 this shows that the values of ψ(q) at the
discrete set of points q ′ + nq0, while certainly adequate
to determine ψ(q) in its entirety, cannot be chosen
independently. There are linear relations among them, and
more such relations will be described below. For p0 = 2π/q0,
equation (5.6) becomes an identity.

In the form (5.5) for the ST, when p0 < 2π/q0, the
bandwidth p0 appears explicitly on the right-hand side.
It is interesting that there is an alternative derivation and
expression of the ST, based on Cauchy’s theorem for analytic
functions, in which p0 does not appear explicitly but only
implicitly. From equation (5.1) it is evident that ψ(q) is the
boundary value, on the real axis, of an entire analytic function
ψ(z) defined for all z ∈ C by

ψ(z)=
1

√
2π

∫ 1
2 p0

−
1
2 p0

dp eipz ϕ(p). (5.7)

Whereas, by the Riemann–Lebesgue lemma, as q → ±∞

along the real axis ψ(q) definitely tends to zero, we now see
from the band limitedness that as |z| → ∞ in the complex
plane the behaviour of ψ(z) is controlled by

|ψ(z)|6 constant exp( 1
2 p0| Im z|). (5.8)

Now, for fixed q ′
∈ [− 1

2 q0,
1
2 q0], set up the analytic

function

f (z)=
π

sinπ z/q0

ψ(q ′ + z)

q ′ + z − z0
, (5.9)

where z0 ∈ C with Im z0 6= 0. This function has simple
poles at z = z0 − q ′ and z = nq0, n ∈ Z . As |z| → ∞, on
account of (5.8) | f (z)| tends to zero exponentially rapidly
(and for this we do need the strict inequality p0 < 2π/q0).
Thus using Cauchy’s residue theorem for a contour consisting
of a circle of large radius centred at the origin, and letting the
radius tend to infinity, we get the result

ψ(z0)=
q0

π
sin{π(z0 − q ′)/q0}

∑
n∈Z

(−1)n
ψ(q ′ + nq0)

(z0 − q ′ − nq0)
.

(5.10)
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We now let z0 → q ∈R to finally get:

ψ(q)=
q0

π
sin{π(q − q ′)/q0}

∑
n∈Z

(−1)n
ψ(q ′ + nq0)

(q − q ′ − nq0)
,

q ′
∈ [− 1

2 q0,
1
2 q0], p0 < 2π/q0.

(5.11)

This differs in structure and properties from equation (5.5). As
mentioned earlier, the bandwidth p0 is not explicitly present
on the right-hand side; and as q → q ′ + mq0 for some m ∈ Z,
we get an identity rather than a nontrivial relation like (5.6).
The fact that the values of ψ(q ′ + nq0), n ∈ Z, are not all
independent when p0 < 2π/q0 permits the existence of both
equations (5.5) and (5.11) having somewhat different forms.
It is interesting to notice that even though we assumed p0 <

2π/q0 in the Cauchy theorem derivation of equation (5.11),
if we do take p0 = 2π/q0 the two results (5.5) and (5.11)
become identical.

To show even more forcefully, when p0 < 2π/q0, that
ψ(q ′ + nq0) for n ∈ Z are not all independent, consider in
place of f (z) of equation (5.9) the analytic function

g(z)=
π

sinπ z/q0
·ψ(q ′ + z) P(z), (5.12)

where P(z) is any finite degree polynomial. The conditions
for the use of Cauchy’s theorem for the same circular contour
as before, and going to the limit of infinite radius, are all
obeyed. In that limit we get the result∑

n∈Z

(−1)n P(nq0)ψ(q
′ + nq0)= 0. (5.13)

Thus we have infinitely many such linear dependence
relations, the independent ones among them corresponding to
choosing P(z) to be any monomial zm,m ∈ Z. The important
point is that in the above argument P(z)must be a polynomial
of finite degree. If it were a nontrivial entire function, its
behaviour as |z| → ∞ could spoil the behaviour of g(z) and
then Cauchy’s theorem becomes inapplicable in general.

6. Extended ST and standard coherent
state lattices

We have mentioned in section 1 that certain well-known
theorems pertaining to phase space lattices of the standard
coherent states in quantum mechanics have a character
very similar to the ST discussed in the preceding section.
Furthermore, the Zak representation of quantum mechanical
wavefunctions has proven very useful in understanding (at
least) the von Neumann lattice of standard coherent states,
and in posing the problem of generalizing this lattice [8].
In this section, we combine the usual statement of the ST
with the operator machinery provided by the H-W group to
find the maximum extent to which the ST can be generalized
and expressed in terms of the standard coherent states. Thus
our aim is to see if the ST can be extended from vectors
|ψ〉 ∈H0(p0) to all |ψ〉 ∈H . We then state the known results

about lattices of standard coherent states, and show how close
the two results are in appearance and exactly where they differ.

We first recall briefly the definition and wavefunctions of
the standard coherent states [2, 4], the actions of the phase
space displacement operators on them, and an interesting way
in which certain coherent states can be obtained from the
(ideal) position and momentum eigenvectors |q〉 and |p). With
this preparation we are able to recast and extend the ST in the
language of phase space lattices of coherent states.

The standard coherent states are labelled by complex
numbers z ∈ C; for clarity they will be written as |z)). Their
definition in terms of the H-W displacement operators and
their wavefunctions are:

z =
1

√
2
(q + ip):

|z))=

∣∣∣∣ 1
√

2
(q + ip)

))
= D(q, p)|0))

= e(i/2)qpV (q)U (p)|0))

= e−(i/2)qpU (p)V (q)|0)) (6.1a)

〈q ′
|z))=

1

π1/4
exp

{
−

i

2
qp + ipq ′

−
1
2 (q

′
− q)2

}
,

(6.1b)

(p′
|z))=

1

π1/4
exp

{
i

2
qp − iqp′

−
1
2 (p

′
− p)2

}
.

These states are normalized to unity and no two of them
are mutually orthogonal. They are (right) eigenstates of the
annihilation operator â:

â =
1

√
2
(q̂ + i p̂) : â|z))= z|z)). (6.2)

The actions of V(q ′) and U(p′) are easily obtained:

V (q ′)

∣∣∣∣ 1
√

2
(q + ip)

))
= e−(i/2)pq′

∣∣∣∣ 1
√

2
(q + q′ + ip)

))
,

U (p′)

∣∣∣∣ 1
√

2
(q + ip)

))
= e(i/2)qp′

∣∣∣∣ 1
√

2
(q + ip + ip′)

))
.

(6.3)

It is interesting that particular cases of these coherent
states can be obtained from the ideal vectors |q〉 and |p)
by application of certain bounded hermitian operators to
them [11]. Define two operators S1, S2 on H by

S1 = e−(1/2)q̂2
, S2 = e−(1/2) p̂2

. (6.4)

It is clear that they are both hermitian and bounded, while
their inverses are hermitian and unbounded. Under similarity
transformations applied respectively to p̂ and to q̂ we find:

S1 p̂S−1
1 = −i

√
2â, (6.5a)

S2q̂ S−1
2 =

√
2â. (6.5b)
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Therefore S1|p) and S2|q〉 are particular coherent states |z)).
We find upon checking their wavefunctions that

S1|p)=
1

π1/4
√

2

∣∣∣∣ i
√

2
p

))
, (6.6a)

S2|q〉 =
1

π1/4
√

2

∣∣∣∣ 1
√

2
q

))
. (6.6b)

Hereafter, we mainly exploit equation (6.6b). On the basis of
these relations we can express the content of the ST, equations
(5.5) and (5.11), in an equivalent way in the language of these
coherent states.

In equation (5.2) we have defined the subspaceH0(p0)⊂

H consisting of band-limited wavefunctions ψ(q) with
bandwidth p0. ClearlyH0(p0) is invariant under action by S2,
and moreover when restricted to H0(p0) the inverse S−1

2 is
also bounded. Now the content of the ST may be expressed
in this way: given q0 to begin with, ensuring p0 6 2π/q0 and
choosing q ′

∈ [− 1
2 q0,

1
2 q0],

|ψ〉 ∈H0(p0), ψ(q ′ + nq0)= 0,

all n ∈ Z ⇒ |ψ〉 = 0. (6.7)

In other words such a band-limited |ψ〉 is (possibly over)
determined by the values of ψ(q ′ + nq0) for fixed q ′ and
all n ∈ Z . For simplicity now set q ′

= 0. Then the ST is
equivalent to the statement

|ψ〉 ∈H0(p0), 〈nq0|ψ〉 = 0,

all n ∈ Z ⇒ |ψ〉 = 0. (6.8)

The interesting aspect of this statement is that the (ideal)
vectors |nq0〉 are in no sense vectors in H0(p0), though they
of course have nonzero projections on to H0(p0). Now from
the above mentioned properties of S2 with respect to H0(p0)

we have on the one hand

|ψ〉 ∈H0(p0)⇐⇒ S2|ψ〉, S−1
2 |ψ〉 ∈H0(p0) , (6.9)

and on the other hand

S2|nq0〉 =
1

π1/4
√

2

∣∣∣∣ 1
√

2
nq0

))
,

〈nq0|S2 =
1

π1/4
√

2

((
1

√
2

nq0

∣∣∣∣. (6.10)

Combining these facts we see that the ST is equivalent to the
following claim:

|ψ〉 ∈H0(p0),

((
1

√
2

nq0

∣∣∣∣ψ〉
= 0,

all n ∈ Z H⇒ |ψ〉 = 0.

(6.11)

This is so even though again |
1

√
2
nq0)) 6∈H0(p0) . Thus band-

limited |ψ〉 are (possibly over)determined by the overlaps
(( 1

√
2
nq0|ψ〉 of |ψ〉 with a discrete sequence of (normalized!)

coherent states, provided p0 6 2π/q0.
We can now see that in this form the ST permits an

extension to all vectors in H, using the properties (6.3) of

the standard coherent states. We define a sequence of pairwise
orthogonal subspaces Hm(p0)⊂H for all m ∈ Z by:

Hm(p0)= {|ψ〉 ∈H|ϕ(p)= 0 for p 6∈ [(m −
1
2 )p0,

(m + 1
2 )p0]} ⊂H,

H=
∑

m∈Z
⊕ Hm(p0).

(6.12)

(Now the meaning of the subscript in Hm(p0) is evident.)
Thus H consists of all off-centre band-limited wavefunctions
ψ(q) such that the centre of the momentum space interval
is shifted from zero to mp0, the width remaining p0. On
the one hand one sees easily that the Hm(p0) arise from
H0(p0) by action by integer powers of the momentum space
displacement operator U(p0):

Hm(p0)= U (p0)
mH0(p0)

= U (mp0)H0(p0), m ∈ Z, (6.13)

and on the other hand each Hm(p0) is invariant under action
by S2 as well as by S−1

2 . Moreover, when restricted to any
Hm(p0) (or any direct sum of them over a finite range of m
values), both these operators remain bounded. It is also clear
that under the action by U (mp0), we have the twin results:

U (mp0)

∣∣∣∣ 1
√

2
nq0

))
=

∣∣∣∣ 1
√

2
(nq0 + imp0)

))
,

((
1

√
2

nq0

∣∣∣∣U (mp0)
−1

=

((
1

√
2
(nq0 + imp0)

∣∣∣∣,
(6.14a)

|ψ〉 ∈H0(p0)⇐⇒ U (mp0)|ψ〉 ∈Hm(p0). (6.14b)

We can now transfer the statement (6.11) of the ST from
H0(p0) to each Hm(p0) individually:

|ψ〉 ∈Hm(p0),

((
1

√
2
(nq0 + imp0)

∣∣∣∣ψ〉
= 0,

all n ∈ Z H⇒ |ψ〉 = 0. (6.15)

In other words such a band-limited |ψ〉 is (possibly over)
determined by its inner products with the standard coherent
states |1/

√
2(nq0 + imp0))) keeping m fixed and taking all

n ∈ Z. Once again we appreciate that this is so even though
these coherent states are not in Hm(p0).

To pass from Hm(p0) to H is quite easy. We define
the projection operators Pm(p0) on to the various orthogonal
subspaces Hm(p0) with standard properties:

Pm(p0)=

∫ (m+ 1
2 )p0

(m−
1
2 )p0

dp |p)(p|

= U (mp0) P0(p0)U (mp0)
−1,

Pm ′(p0) Pm(p0)= δm ′m Pm(p0),

Pm(p0) S2 = S2 Pm(p0).

(6.16)
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Then the content of the original ST is fully equivalent to the
following:

|ψ〉 ∈H,
((

1
√

2
(nq0 + imp0)

∣∣∣∣Pm(p0)|ψ〉 = 0,

all m, n ∈ Z H⇒ |ψ〉 = 0, p0 6 2π/q0. (6.17)

It is worthwhile exploring a little bit the real meaning
of implication statements such as equations (6.8), (6.11),
(6.15) and (6.17) in the following manner. The subtleties
mainly arise from the use of nonorthonormal systems of
vectors as ‘bases’ in infinite dimensional Hilbert space. If
one has a complete orthonormal basis {|en〉, n = 1, 2, . . .}
for a Hilbert space H, then any vector |ψ〉 ∈H has well-
defined projections 〈en|ψ〉 on to these basis vectors, and the
expansion of |ψ〉 in terms of |en〉 with these projections as
coefficients indeed converges to |ψ〉 in norm. The inclusion
of more and more terms in the expansion improves the
accuracy with which |ψ〉 is approximated, while in the process
the coefficients of already included terms suffer no change.
Moreover, the vanishing of 〈en|ψ〉 for all n implies the
vanishing of |ψ〉. Lastly we can in principle choose each
projection 〈en|ψ〉 independently as we wish, provided that the
norm of |ψ〉 is kept finite.

If we now replace the orthonormal basis {|en〉} by a
nonorthonormal one, {| fn〉} say, which may in particular be
overcomplete, the statements that can be made get modified.
In general, the inner products 〈 fn|ψ〉 may not be specifiable
independently of one another (over completeness of {| fn〉}).
On the other hand, the vanishing of all 〈 fn|ψ〉 indeed implies
the vanishing of |ψ〉 (totality of {| fn〉}). This means that the
closure of the set of all finite linear combinations of the | fn〉

is the total space H. However, even given all these properties,
there may be no definite set of expansion coefficients with
whose help |ψ〉, in general, can be expressed as a convergent
linear combination of the | fn〉. (Over) completeness of {| fn〉}

will ensure that any |ψ〉 can be approximated as closely as
desired via finite linear combinations of the | fn〉, but ‘in
the limit’ there may be no ‘actual expansion’ for |ψ〉 in
terms of | fn〉. Vectors |ψ〉 in H expressible as finite linear
combinations of the | fn〉 or as infinite convergent linear
combinations with well-defined expansion coefficients will
form a dense subset in H. This situation is well known in
the theory of nonharmonic Fourier series [12]. It has also
been analysed to a considerable extent in the case of the von
Neumann lattice of standard coherent states, clarifying the
meaning of expansions of vectors in terms of them or of their
dual basis vectors [13].

Keeping all these subtleties in mind, let us agree to use
the word ‘basis’ in a broad sense for a general possibly over
complete set of possibly nonorthonormal vectors in H. Then
the final result of the original ST of equations (5.5), (5.11) and
(6.11) is:{

Pm(p0)

∣∣∣∣ 1
√

2
(nq0 + imp0)

))
, n ∈ Z, m fixed

}
= basis forHm(p0), (6.18a){

Pm(p0)

∣∣∣∣ 1
√

2
(nq0 + imp0)

))
, n,m ∈ Z

}
= basis forH, p0 6 2π/q0. (6.18b)

It has led to a basis forH by setting up bases for eachHm(p0)

in turn, and then taking the union over m ∈ Z .
At this point we turn to the well-known results

concerning lattices of standard coherent states, which have
been mentioned earlier. These lattices consist of the vectors
|

1
√

2
(nq0 + imp0))) with n,m ∈ Z and p0 6 2π/q0. For p0 =

2π/q0 we have the von Neumann lattice, while for p0 <

2π/q0 we have a finer lattice. Then we have the result [7]

|ψ〉 ∈H,
((

1
√

2
(nq0 + imp0)

∣∣∣∣ψ〉
= 0,

all m, n ∈ Z H⇒ |ψ〉 = 0. (6.19)

Thus the von Neumann (or any finer) lattice forms a basis
for H. At p0 = 2π/q0 (von Neumann Case) we have over
completeness by one vector, while for p0 < 2π/q0 removal
of any finite set of vectors from the lattice does not destroy
over completeness. Of course for coarser lattices, p0 > 2π/q0,
totality is lost.

We can now appreciate how tantalizingly close the
statements based on the ST and on the well-known quantum
mechanical theory of coherent state lattices are to one
another. The former leads to the twin statements (by virtue
of symmetry between q̂, p̂):{

Pm(p0)

∣∣∣∣ 1
√

2
(nq0 + imp0)

))
, m, n ∈ Z

}
= basis forH,{

P̃n(q0)

∣∣∣∣ 1
√

2
(nq0 + imp0)

))
, m, n ∈ Z

}
= basis forH,

q0 p0 6 2π, (6.20)

where the new projection operators P̃n(q0) are defined
analogously to equation (6.16):

P̃n(q0)=

∫ (n+ 1
2 )q0

(n−
1
2 )q0

dq |q〉〈q|. (6.21)

The latter leads to the statement{∣∣∣∣ 1
√

2
(nq0 + imp0)

))
, m, n ∈ Z

}
= basis forH. (6.22)

These are two distinct properties possessed by the same
lattices of standard coherent states. It may not be out
of place to mention that all the results flowing from the
ST are ultimately based on the properties of the Fourier
transformation, while the results concerning von Neumann
or finer standard coherent state lattices are generally derived
by appealing to the sophisticated theory of entire analytic
functions, and relations between their orders and types and
distribution of zeros.

7. The ST and lattice systems of H-W
generalized coherent states

We have seen how to express the ST in the language of
standard coherent states, and how close the results are to
earlier results pertaining to certain phase space lattices of the
latter. Now, as mentioned in section 1 and as seen in section 3
in an idealized sense for the Zak basis vectors |q, p〉, the
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standard coherent states have been extended to systems of
generalized coherent states (GCS) associated with the H-W
group, obtained by replacing the Fock ground state |0)) in
equation (6.1) by a general normalized fiducial vector |ψ0〉 ∈

H [4, 7]. Since the ST in itself does not refer to any coherent
state system at all, it is natural to ask if its content could be
expressed in terms of certain lattices of suitably chosen GCS
systems as well. We shall find that this can sometimes be done.
This section will explore the interrelations among H-W GCS
systems, von Neumann type and finer lattices of such systems,
the Zak representation and the ST. The new terms appearing
here will be defined as we proceed. While for completeness
some old results will be briefly recapitulated and sometimes
sharpened, we will arrive at several new insights and results
as well. As we shall throughout be concerned with the H-W
group, continual reference to this group will be avoided.

Let |ψ0〉 ∈H be a general normalized fiducial vector,
with Schrödinger, momentum and Zak wavefunctions
ψ0(q), ϕ0(p), χ0(q, p) respectively. (Remember that the last
of these depends on the parameter q0.) The system of GCS
based on |ψ0〉, referred to as ψ0-GCS hereafter, is defined as
the family of normalized vectors

|q ′, p′
;ψ0〉 = D(q ′, p′)|ψ0〉, (q ′, p′) ∈R2. (7.1)

It is a well-known result that for any choice of |ψ0〉, the ψ0-
GCS family is total, i.e. (over) complete in H (Klauder and
Skagerstam in [5] p 21). This is a consequence of the square
integrable property of the unique UIR of the H-W group.

To obtain the Zak wavefunctions of the ψ0-GCS, we need
the effect of a general phase space displacement operator
D(q ′, p′) on a Zak basis vector |q, p〉. From the results in
sections 3 and 4 we find:

(q, p) ∈ R(q0), (q ′, p′) ∈R2 :

D(q ′, p′)|q, p〉 = e−iξ(q,p,−q ′,−p′)
|[q + q ′], [p + p′]〉,

〈q, p|D(q ′, p′)= eiξ(q,p,q ′,p′)
〈[q − q ′], [p − p′]|,

ξ(q, p, q ′, p′)= qp′
− pq ′ + 1

2 (qp + q[p − p′] − p[q − q ′]

− [q − q ′][p − p′]). (7.2)

Here the fractional parts [q ± q ′], [p ± p′] are defined as in
equation (3.4). We then find that the Zak wavefunctions of the
vectors in the ψ0-GCS are given in terms of χ0 by:

〈q, p|q ′, p′
;ψ0〉 = eiξ(q,p,q ′,p′)χ0([q − q ′], [p − p′]). (7.3)

These are thus phase factors times phase space translations
(reduced to or modulo R(q0)) of χ0(q, p).

The von Neumann lattice of ψ0-GCS is the discrete
(q0-dependent) subset of the states (7.1) defined as follows:

|n,m;ψ0〉 ≡ |nq0, 2πm/q0;ψ0〉,

= (−1)mnU m
0 V n

0 |ψ0〉, n,m ∈ Z. (7.4)

We shall refer to these as the ψ0-von Neumann GCS lattice.
Their Zak wavefunctions are naturally simpler than the
general case in equation (7.3):

〈q, p|n,m;ψ0〉 = (−1)mn e−inq0 p+2π imq/q0χ0(q, p). (7.5)

Naturally no translations of the arguments of χ0 are involved.
Two noteworthy results which have been obtained very simply
via the Zak description, may be recalled at this point (Bacry
et al [8]):

{|n,m;ψ0〉} total inH ⇐⇒ χ0(q, p) 6= 0,

(q, p) ∈ R(q0); (7.6a)

{|n,m;ψ0〉} orthonormal ⇐⇒ |χ0(q, p)| = 1,

(q, p) ∈ R(q0). (7.6b)

We see quite interestingly that property (7.6b) implies (7.6a):
if the vectors of the ψ0-von Neumann GCS lattice are
mutually orthogonal, they are also complete in H.

A connection to band-limited wavefunctions may now
be easily seen. Suppose |ψ0〉 ∈H0(p0) for some p0 < 2π/q0,

from equations (5.3) we know that then

χ0(q, p)= q−1/2
0 eiqpϕ0(p), (7.7)

and this certainly does not obey either equations in (7.6). Thus
for such band-limited |ψ0〉, even though the ψ0-GCS is total,
the ψ0-von Neumann GCS lattice is neither orthonormal nor
total.

Finer lattices of ψ0-GCS than the von Neumann lattice
are naturally defined in terms of a pair (q0, p0) obeying p0 <

2π/q0. We shall simply call them ψ0-finer GCS lattices and
define their elements by:

|nq0,mp0;ψ0〉 = D(nq0,mp0)|ψ0〉

= eimn q0 p0/2U (mp0)V
n

0 |ψ0〉

= e−imn q0 p0/2V n
0 U (mp0)|ψ0〉, n,m ∈ Z.

(7.8)

Since U(mp0) is not now an integer power of U0, their Zak
wavefunctions are not as simple as in equation (7.5). We shall
see from the ST that we can derive some properties of totality
for such finer lattices, analogous to the results of section 6.

To proceed in this direction let us recall the way in which
the ST was related to lattices of standard coherent states in
section 6. It was by realizing that the (ideal) position eigenket
|0〉 and the Fock ground state |0)) are related by the bounded
invertible hermitian operator S2 = e−(1/2) p̂:

|0))=
√

2π1/4S2|0〉 =
1

π1/4

∫
∞

−∞

dp e−
1
2 p2

|p). (7.9)

As is evident, the momentum space wavefunction of |0))
is essentially e−(1/2)p2

which is (i) square integrable, (ii)
bounded and (iii) non-vanishing for all (finite) p. This gives us
the hint to link up the ST to suitably chosen lattices of certain
ψ0-GCS systems.

Assume that the fiducial vector |ψ0〉 has a momentum
space wavefunction ϕ0(p) which is (of course) square
integrable, bounded for all p and non-vanishing for all (finite)
p. It can in general be complex. Then we can express |ψ0〉 in
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the following manner:

|ψ0〉 =

∫
∞

−∞

dp ϕ0(p)|p)

= S
∫

∞

−∞

dp |p)

=
√

2π S|0〉

〈ψ0| =
√

2π〈0|S†, S = ϕ0( p̂). (7.10)

The similarity to equation (7.9) is clear; however, S unlike
S2 may not be hermitian. Now from the properties assumed
for ϕ0(p)we see that both S−1 and S†−1, while definable since
ϕ0(p) is always nonzero, are expected to be unbounded since
ϕ0(p)→ 0 as p → ±∞. However, upon restriction to the
subspace H0(p0), all the four operators S, S−1, S†, S†−1 are
well defined and leave this subspace invariant. As in equation
(6.9) here we have

|ψ〉 ∈H0(p0)⇐⇒ S|ψ〉, S−1
|ψ〉, S†

|ψ〉,

S†−1
|ψ〉 ∈H0(p0).

(7.11)

Now we bring in the ST in the form (6.8) and combine it with
equations (7.10) and (7.11). Subject to p0 6 2π/q0 and since
V0 commutes with S and S†, it is equivalent to the statement

|ψ〉 ∈H0(p0), 〈ψ0|V
n

0 |ψ〉 = 0,

all n ∈ Z H⇒ |ψ〉 = 0. (7.12)

The vectors V n
0 |ψ0〉 are particular elements of the ψ0-von

Neumann or ψ0-finer GCS lattice defined in equations (7.4)
and (7.8) above:

V n
0 |ψ0〉 = |nq0, 0; ψ0〉. (7.13)

Therefore, we can reexpress the ST (7.12) as:

|ψ〉 ∈H0(p0), 〈nq0, 0;ψ0|ψ〉 = 0,

all n ∈ Z H⇒ |ψ〉 = 0.
(7.14)

This is a generalization of (6.11) valid (at least) when ϕ0(p)
obeys the stated conditions. We see here too, as in section 6,
that even though the vectors |nq0, 0;ψ0〉 do not belong to
H0(p0), the overlaps of a band-limited |ψ〉 ∈H0(p0) with
them are enough to (possibly over) determine |ψ〉.

This result can next be extended to all the subspaces
Hm(p0) defined in equation (6.12). On the one hand we have
equation (6.13) connecting H0(p0) to Hm(p0). On the other
hand we have from equation (7.8):

|nq0,mp0;ψ0〉 = eimnq0 p0/2U (mp0)|nq0, 0;ψ0〉,

〈nq0,mp0;ψ0| = e−imnq0 p0/2〈nq0, 0;ψ0|U (mp0)
−1.

(7.15)

Then combining equations (6.13) and (7.15) and the form
(7.14) of the ST we arrive at the statement:

|ψ〉 ∈Hm(p0), 〈nq0,mp0;ψ0|ψ〉 = 0,

all n ∈ Z H⇒ |ψ〉 = 0.
(7.16)

This generalizes equation (6.15) to those fiducial vectors |ψ0〉

whose momentum space wavefunctions ϕ0(p) are pointwise
non-vanishing and bounded. Bringing in the projection
operators Pm(p0) on to Hm(p0) defined in equation (6.16),
we can give the extended form of the ST to von Neumann or
finer GCS lattices in H:

ϕ0(p) normalizable, bounded, pointwise non-vanishing H⇒

{Pm(p0)|nq0,mp0;ψ0〉, n,m ∈ Z} total inH, p0 6 2π/q0.

(7.17)

We can now summarize our findings. From the standpoint
of the ST the ‘best statement’ in the direction of totality
of suitable lattices of GCS is given by equation (7.17), and
here the presence of the projections Pm(p0) is unavoidable
as they reflect the band limitedness property basic to the
ST. This statement is available for both p0 < 2π/q0 (finer
lattices) and p0 = 2π/q0 (von Neumann lattices). On the other
hand, if we ask for the ‘best statements’ that can be made
directly about totality of these lattices, independent of the ST
and avoiding the projections Pm(p0), the picture is somewhat
complicated. For ψ0-von Neumann GCS lattices we have the
result (7.6a) obtained most effectively by exploiting the Zak
representation. For ψ0-finer GCS lattices there seem to be no
comparable general results, as the Zak representation cannot
be easily exploited and we have no recourse to the theory of
entire functions either.

To all this we must add the remark that boundedness and
pointwise nonvanishing of ϕ0(p), and pointwise nonvanishing
of χ0(q, p), are properties not easily related to one another. In
the case of the standard coherent states, studied in section 6,
both conditions happen to be satisfied; and for p0 < 2π/q0 the
theory of entire functions comes to our aid. These remarks
suggest that there are two independent lines of argument
at work here, leading to results of somewhat divergent
characters.

8. Concluding remarks

In this work we have given an account of the interrelations
between the Poisson Summation Formula and ST on the one
hand and specific families of coherent state lattices associated
with the H-W group on the other. In particular, by analysing
the content of the usual ST from this perspective we are able
to arrive at certain results on standard coherent state lattices
which come pretty close to known results on von Neumann
and finer standard coherent state lattices without recourse to
the theory of entire analytic functions. We then pursue this
line of thought further and show that it enables us to make
specific statements concerning generalized coherent state
lattice systems as well. We hope that the unified perspective
developed here would evidently deepen our understanding
of these matters and point the way to further interesting
developments and generalizations.
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