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ABSTRACT

In this paper the equations of hydrodynamics in the 2}-post-Newtonian approximation to general
relativity are derived. In this approximation all terms of O(¢~?) are retained consistently with Einstein’s
field equations; it is also the approximation in which terms representing the reaction of the fluid to the
emission of gravitational radiation by the system first make their appearance.

The paper is in four parts. In Part I (by S. C.) the lowest-order terms in the metric coefficients are
derived which are consequences of the imposition of the Sommerfeld radiation-condition at infinity.
It is shown (following an early investigation of Trautman) that these terms are of O(¢™®) in gqo, of O(c™%)
in gog, and of O(c~®) in g,8. Unique expressions are bbtained for these terms. They are found to be purely
of Newtonian origin.

In Part IT (by S. C. and F. P. E.) the equations of motion governing the fluid in the 2}-post-New-
tonian approximation are derived. In addition to the coefficients already determined, these equations
depend on a knowledge of the term of O(c~7) in goo. This term is determined by an explicit appeal to the
field equation. It is further shown that this approximation brings no change to the density (c2pu®v —g)
and the linear momentum (,) that are conserved in the second post-Newtonian approximation.

In Part III (by S. C.) it is shown that the terms of O(¢™%) in the equations of motion contribute
principally to the dissipation of the energy and the angular momentum that are conserved in the second
post-Newtonjan approximation. The rates of dissipation of energy and of angular momentum that are
predicted are in exact agreement with the expectations of the linearized theory of gravitational radiation.

Finally, in Part IV (by S. C. and F. P. E.) the energy, 6% — c2pu®y —g, to be associated with the
2}-post-Newtonian approximation is derived by evaluating the (0, 0)-component of the Landau-Lif-
shitz complex and the conserved density in the 3}-post-Newtonian approximation.

PART I

THE LOWEST-ORDER TERMS IN THE METRIC COEFFICIENTS
" THAT DERIVE FROM THE OUTGOING-RADIATION
CONDITION AT INFINITY

S. CHANDRASEKHAR

I. INTRODUCTION

In two earlier papers (Chandrasekhar 1965 and Chandrasekhar and Nutku 1969; these
two papers will be referred to hereafter as Papers I and I, respectively) the equations of
hydrodynamics governing a perfect fluid were derived in the first and the second post-
Newtonian approximations to the equations of general relativity. In these two approxi-
mations the equations of motion include all terms of orders ¢~2 and ¢4, respectively, that
arise in a systematic solution of Einstein’s field equations in an expansion! in inverse
powers of ¢. The orders to which the different metric coefficients have to be known in
order to obtain the equations of motion, as well as the corresponding conserved quan-
tities, are set out in Table 1 in § II below (see also Table 1 in Paper II).

It is known that no term representing the reaction of the fluid to the emission of

1 Précisely, the expansion is in powers of v/c, ¥ U/c, ¥ (p/p)/¢c,and + I /¢, all of which are considered
to be of the first order of smallness and comparable.
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154 S. CHANDRASEKHAR AND F. PAUL ESPOSITO ~ Vol. 160

gravitational radiant energy appears in the first or the second post-Newtonian approxi-
mation; also, that on the standard linearized theory of gravitational radiation, the reac-
tion of the fluid to the emission of gravitational radiation by the system must first
manifest itself in the next ““}-approximation” by the explicit appearance in the equations
of motion of certain ‘“damping terms” of O(¢~®). The question, how the succession of
terms of higher even powers of 1/c, that follow one another on the standard post-
Newtonian schemes, gets broken at precisely the order ¢—%, has concerned many authors
including Infeld (1938; see also Infeld and Plebanski 1960), Hu (1947), Trautman (1958a,
b), and Peres (1960), all in the framework of the original theory of Einstein, Infeld, and
Hoffmann of # mass points. But the results of these authors were inconsistent with one
another, inconclusive, or incomplete.

More recently, in the framework of the hydrodynamics of a perfect fluid, Thorne
(1969b) has, in the context of his exact treatment of the nonradial oscillations of highly

relativistic neutron stars (Thorne 1969a), shown (developing certain ideas of Burke; see

below) that in the limit of weak fields his exact results on the rate of emission of gravita-
tional radiation are in accord with the expectations of the linearized theory. More gener-
ally, Thorne has concluded that the secular effects of the emission of quadrupole gravita-
tional radiation, in the lowest order, can be formally included by modifying the Euler
equation of Newtonian hydrodynamics,

dv.z ap oU :

-|- o, i 0, o A (1)

in the manner »
dva op _ U _ 26 ( &Ly _ 5 & I,,.,) _ '
T on Pom 58P\ g S )= 0 @

where :
Ig = S proxsdx @3)
¥ ,

denotes the moment-of-inertia tensor. However, as Thorne has himself emphasized, the
inclusion of the damping terms of O(¢c~®) in the Newtonian equation of motion overlooks
terms of the same order and, indeed, lower-order terms which describe nonsecular ef-
fects (of greater importance over shorter intervals of time).

A somewhat more general framework for Thorne’s ideas (but less exphc1t in 1mportant
details) has been described by Burke (1969).

In this paper, we shall develop an alternative approach to this same problem of the
reaction of the fluid to the emission of gravitational radiation that is in harmony with
the post-Newtonian scheme as set out in Papers I and II and in a related paper
(Chandrasekhar 1969b; this paper will be referred to hereafter as Paper III) on the con-
servation laws in general relativity. It should, however, be stated that the present paper
derives its basic ideas from Trautman’s (1958a, b) discussion of this same problem in the
framework of the original theory of Einstein, Infeld, and Hoffmann. In that discussion
Trautman failed to get agreement with the predictions of the linearized theory of
gravitation; but this disagreement arose, as we shall see, from a simple oversight. When
this is corrected, Trautman’s procedure (as applied and extended in this paper in the
framework of hydrodynamlcs) becomes consistent with the predictions of the linearized
theory. And to this writer it appears that Trautman’s approach to this problem is the
simplest and the most direct that has been devised so far.

II. PRELIMINARY CONSIDERATIONS

First it is useful to recall why the post-Newtonian schemes as normally developed for
obtaining the equations of motion as a series in inverse powers of ¢ automatically generate
an even series,

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1970ApJ...160..153C

9T T TI60. TI53C!

P

=4l
[=]]
=
[=h

No. 1, 1970 23-POST-NEWTONIAN EQUATIONS 155

The starting point of all post-Newtonian schemes is provided by initial values
go=1—-2U/¢+ ..., g.=0+4+..., and gg=—08s+..., @)

where the term —2U/c? in gy is demanded by the principle of equivalence. The first
iteration of Einstein’s field equations with the initial values (4) leads to an improvement
in the metric coefficients by determining further terms of O(c™*) in g, of O(c™%) in goa,
and of O(c™2) in g.g—it is these “improvements” that lead to the equations of motion in
the first post-Newtonian approximation. Had we supposed, in developing the expansion
for the metric coefficients, that terms of O(¢—3) in ge, of O(c™2) in go,, and of O(c™) in gag
occur, then we should have found that these terms satisfy komogeneous equations (unlike
the terms of one higher order which satisfy inkomogeneous equations); they can, conse-
quently, be set equal to zero by a suitable choice of gauge.?2 The same phenomenon will
be repeated when we proceed to the second post-Newtonian approximation: the terms
of O(c=%) in g, of O(c™%) in goa, and of O(c—?) in g,p will again satisfy homogeneous equa-
tions; and again, they can be set equal to zero by a suitable choice of gauge. By induction
it follows that we shall continue to skip the “odd” steps indefinitely if we continue the
scheme of iterations without any modifications. The question arises: How are we to
break this chain by providing a nonzero source that will provide “starting values” for a
first nontrivial odd step (even as the principle of equivalence originally provided the
“source” —2U/c? in gy for starting the even series)?

Clearly, the reason why the standard post-Newtonian scheme fails to provide a source
for a nontrivial odd step 1s that nowhere in the scheme do we impose on the solutions the
Sommerfeld radiation-condition, namely, that at “infinity” there is only outgoing radia-
tion. This condition cannot, however, be applied in any straightforward manner to the

.solutions obtained in a “slow-motion” approximation as the post-Newtonian approxima-

tions are, for these approximations, based as they are on the assumption that /¢ < 1, re-
quire that the operation of 9/dx, (=9/cdt) on any quantity lowers its order by one. This
last fact implies that the solutions obtained on the basic assumptions of the post-New-
tonian scheme can be valid only in the near zone where r < ct. What is required, then, is a
“matching” (in the sense of Thorne and Burke) of the solutions appropriate to the near
zone with those appropriate to the far zone (where the Sommerfeld condition is to be
imposed). A way in which this matching can be “painlessly’’ accomplished is the principal
burden of Trautman’s 1958 papers.

As we have already stated, an oversight in Trautman’s paper will have to be corrected.
But his (uncorrected) considerations are still useful (and, in the author’s opinion, neces-
sary) for answering the two main questions: (1) Why is there no nontrivial 13-post-
Newtonian approximation?; and (2) What are the lowest orders (in powers of ¢~!) in
which the outgoing-radiation condition at infinity modifies the metric coefficients in the
near zone?

‘We start with the equation which provides the basis for the standard linearized theory
of gravitational radiation. Letting

7 = gt — gt = gk — g/ — g, 5)
where 7% is the diagonal Minkowskian metric, (4+1, —1, —1, —1), and imposing on
v the de Donder condition

. 7ik,k =0 ’ (6)
we have the equation

2
D,yik — 16;‘G Tk (D = V2 — 1 6_), | (7)

2 By a choice of gauge we mean here the same as in Paper II (n. 1 on p. 60), namely, the choice of
the four arbitrary functions that naturally occur in the solutions of the field equations in each successive
approximation.
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where T is ascribed (in the first instance) its Newtonian value:
T = pc2, T% = pcv,, and T = pv,u5 + Pdas. (8)?

In writing equation (7), we do not foreclose the possibility that its use, together with
the imposed gauge on % and the choice of 7% may be inconsistent with the solutions
already derived (in a different gauge) in the ﬁrst and the second post-Newtonian ap-
proximations. Indeed, as we shall see in § III below, for consistency T* must be replaced
by the Landau-Lifshitz complex 6. On this account, it should be emphasized that our
present objective is only to obtain some preliminary answers to the two questions which
we have raised.

The solution of equation (7) which satisfies the outgoing-radiation condition is

v#(x, t) = I"/‘ |x 'Ttk(x t— lx— x,l/c) 9)

By this choice of the particular solution of equation (7), expressed in terms of the

“retarded potentials,” we have automatically excluded the possibility of any incoming
radiation at infinity. Also, it should be noted that equation (9) represents an exact solu-
tion of equation ) which satisfies the Sommerfeld radiation-condition at infinity (albeit
eq. [7] is itself not an exact consequence of the field equatlons)

We now expand T*(x’, ¢ — | x — x'|/c) as a series in inverse powers of ¢ in a manner
that is appropriate for the near zone. Thus
. x,!
vi(a ) = =25 T f
(10)

462( o fT"‘(x D]x — x| dx .
ct at"
Considering first the (0, 0)-component of equation (10) and writing out the first few
terms explicitly, we have

4U 2G 9
Y = T2 T Ay S o, )| x — x'|dx’
11)
4Ga v 26 & ' (

We recognize that the terms of O(c~2%) and O(c™%) in the solution (11) are the same as
those that occur in the solutions for the metric coefficients in the Newtonian and in the
first post-Newtonian approximations.* We also observe that the law of the conservation
of mass, in its Newtonian form

5 o, Dax =0, @

3 The convention regarding the indices is the same as in Papers I and II: Latin indices take the values
0, 1, 2, and 3, and Greek indices take only the values 1, 2, and "3 referring to the spatial coordinates; and
the summation convention will be restricted to their respective ranges. Also, %o will be replaced by cf
when the notation of ordinary Carfesian tensors is used; and when the notation of Cartesian tensors is
used, the Greek indices will aJways be written as subscrlpts, and the summation over repeated Greek
(Cartesmn) indices will also be assumed.

¢ However, in making the “identifications,” it must be borne in mind that the solutions in the post-
Newtonian approximations are expressed in a different gauge.
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already ensures that
Y0 =0, (13)
3

(By the numeral 3 below v we indicate that we are referring to the term of O(c~?) in
the series expansion of ¥* in the inverse powers of ¢. This notation for referring to the
terms of different orders in the expansion of a quantity will be adopted in the rest of this
paper.)

More precisely than equation (12), we know from the results of the post-Newtonian
approximations that

g’i S o&, 0ix’ = 0() (14

and is a function of time only. Again from the laws of the conservation of mass and of
linear momentum (in their Newtonian forms) it follows that the term of O(c~%), already
present in the solution (11), namely,

aaf ’ Igd/_asf ’ 2 7|2 2 Idl_dallm (15)
a_t3V p(x,t)|x—x| x_ﬁ P(xyt)(|x| +|x| - xﬂxn)x_ B

12

is also a function of time only. From the results (14) and (15) we may conclude that the
lowest-order nonvanishing odd term in 4% is of O(c™%):

¥® % 0 and is a function of time only . (16)
5

Considering next the (0, a)-component of equation (10), we have

/ (A 2
yle = — ég ;,f P, 00X, ) o 26 o a(, ) |x — |’

|x — &| S oy
+£ifp(x’ D va(x’ t)dx’+2—G—a—3—fp(x' Do (x', 8) | x — x'|2dx’ . n
o o P s 3a i P D |

The terms of O(c—3) and O(c—*) on the right-hand side of equation (17) occur in the solu-
tions for the metric coefficients in the first and in the second post-Newtonian approxima-
tions. On the other hand, since we know from the post-Newtonian results that

2 Lo, huly, D = O(c (18)
v
we may conclude without any ambiguity that
Yoo = while %2 #0. (19)
4 6

Turning. finally to the (&, 8)-component of equation (10), we have

4G, T(x', 1) 4G 9 N
af — ’ / af
v4(x, t) = VJ‘ r—7] dr’ + = a”,/‘T (x, )dx’ . (20)

Therefore, the lowest-order nonvanishing odd term in y*? is
1
v = 5 fas(l) - (21)
5

5 We are not writing here the explicit form for fo(?) suggested by the solution (20) since we shall find in
§ IIT below that the suggested form is in fact incorrect.
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The Newtonian forms of the laws of the conservation of mass and of linear momentum
have thus allowed us to infer that
700 = 'Yo"' = ‘Y“ﬂ = ()
3 2 3

and (22)

| 1 1
= — af = — 0o —
VW=5F0, 17=75/fs), and y*=0,

5

though it should be noted that the present considerations do not enable us to specify
F() and f,5(¢) in a unique manner.

TABLE 1

INFORMATION ON THE METRIC COEFFICIENTS THAT IS NEEDED
IN THE VARIOUS APPROXIMATIONS

OrpERs OF THE METRIC COEFFICIENTS NEEDED

EquATIONS -

oF MoTIoN 8af goa 800
Newtonian..... e —d8a8 0 1-2U/c**
1-post-Newtonian. .. ..... 0t ot ot
1-post-Newtonian. . ...... —2Ubapc™? Poc3 2(U%—2d)c™
1}-post-Newtonian. . . .... ot ot Qo ®¢c 53
2-post-Newtonian. ....... (..)c* R T [N T
2}-post-Newtonian§. . . ... Qap®c 5% Qoa ®c8% QuMe™
3-post-Newtonian. . . ..... .9 .
3%-post-Newtonian. . . .... Qas D¢ ||

*The term —2U/¢?in goo is demanded by the principle of equivalence.
t These terms vanish by virtue of the laws of the conservation of mass and of linear momentum.

1 These are the lowest-order terms in the metric coefficients that derive from the imposition of the
Sommerfeld radiation-condition at infinity. (All the other terms in the table are obtained by solving the
field equations.)

§ This is the approximation in which radiative-reaction terms first appear.

|| These terms are needed to determine the energy in the one lower approximation.

The foregoing results for v*/ when expressed in terms of the metric coefficients gi; (with
the aid of egs. [41] below) imply
g = g = gug = 0, (23)
3 2 1
and
1
go = 5 00®(@) and g =gs=0. (24)
5 4 3

The vanishing of the terms listed in (23) establishes why there is no nontrivial 3-post-
Newtonian approximation. Also, even though we do not as yet know precisely what
QOn® is, the fact that it is a function of time only is sufficient to ensure that by a gauge

" transformation (involving only the function W in the transformation equations given in

Paper 11, eq. [39]) among the coefficients (24), we can reduce Qu'® to zero. In other
words, there is also no nontrivial 1}-post-Newtonian approximation. These results are
in agreement with the known expectation that the terms representing radiation reaction
must first manifest themselves in the 23-post-Newtonian approximation. In Table 1 the
conclusions to which we have presently arrived are summarized.

III. THE UNIQUE SPECIFICATION OF Qu(®, 000 (®’, AND Q.5

The preliminary considerations of § IT have indicated that the lowest-order terms in
the metric coefficients that result from the imposition of the Sommerfeld radiation-condi-
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tion at infinity are O(c~%) in g, O(¢c®) in goa, and O(c~%) in g.s. We shall denote these
terms by

1 1 1
§oo =5 Qo® , §0u =% Owu®, and §aﬂ =5 Qus® . (25)

Our problem now is to obtain unique expressions for these coefficients. For this purpose,
we start with the field equation written in terms of the Landau-Lifshitz complex ©%.
We have (cf. Paper III, egs. [31] and [32])

) ) 167G .
(gkgim — gilghm) ;. = 01: Qi (26)

If in equation (26) we let ©% have the value ©%;, determined in the first post-Newto-
nian approximation and the metric coefficients have the values g#, appropriate to the
second post-Newtonian approximation, then the two sides of the equation will be bal-
anced with respect to the order of the terms that are retained on each side; and, more-
over, the equation will be satisfied to that order.

Let v* denote the lowest-order term in g* that derives from the imposition of the
boundary condition at infinity. From our considerations of § IT, we expect them to be

Y0, %, and 4. (27)
5 6 b

Now make the substitution (cf. eq. [5])
g% = gitg — y* (28)
on the left-hand side of equation (26) and linearize with respect to y%: the terms that

will thus be ignored will be of orders higher than any that are retained. We shall then
obtain

@*F 80 — 88" e — ¢%e7™ — "0 Y* + %o 7Y™ + "7 .im

_ 167G
T

So long as the v-*’s are of the orders specified in (27)—and we shall presently verify that
they are—we may consistently replace the g (2)’s, that occur as factors of the y--’s, by
the corresponding Minkowskian coefficients. Also, we may impose on the v-’s a gauge
independently of the one chosen in the solution for the g--(5)’s: there will be no conflict
since the g'*(2)’s do not include any terms of the orders of the y-’s. And we shall find it
convenient to impose on the v-’s the same de Donder condition (6). On these assump-
tions and restrictions, equation (29) becomes

%280 — ¢ @) . 1m + Oy* =

(29)
o .

167G ..
pr o, (30)
The terms in the g 2y’s on the left-hand side of equation (30) do not include any of
the orders specified in (27); and, moreover, as we have already noted, these terms (de-
rived from the g+ (3)’s), when consistently expanded, will just make up 167GO% 4,/c
Accordingly, 6%, provides the “source” for both the near-zone g-'(3y and the far-zone
v%; and we conclude that 4% is determined by the equation

) 167G .
Oy = 07‘: Ok, . (31)

This equation differs from equation (7) only by 6%, having replaced T%*; and this dif-
ference, as it will appear, is crucial for the unique specification of y*. Notice also that
by virtue of the property,

0% ; = Ok, =0, (32)
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of the Landau-Lifshitz complex, equation (31) is consistent with the de Donder condltlon
imposed on the v-”s (to the order required).

We may now treat equation (31) in the same way as we treated equation (7) in § II1.
Thus, by considering the (0, 0)-component of equation (31), we shall obtain (cf. eq. [11])

4 26 &
Y0 = g; J % (x, H)dx’ -I—3 T 3 SO0 (x, ) |x — x'|2dx", (33)

where we have not written the terms of even order. (It may be recalled here that the
dominant term in 6% is pc?.)
For 6%, determined in the first post—Newtoman approximation

% S % (x, )dx’ = 0(c™?) . (34)
The first term on the right-hand side of equation (33) is, therefore, of O(c™7) in contrast

to the second term which is of O(c~%). We thus obtain without any ambiguity that -

2G & : ‘
0 — —— — _ |2
'y5 3598 S o, t)|x — | dx’ . (35)

Considering next the (0, a)-component of equation (31), we similarly obtain (cf. eq.
[17], but recall that now the dominant term in 6% is pcv,)

v = 47;?5% J6%q (x', t)dx' + gG; gts SO (', )|x — «'|%dx" . (36)

For 6%, determined in the first post-Newtonian approximation,
2 foma, ix = (. e

The first term on the right-hand side of equation (36) is, therefore, of O(¢™8) in contrast
to the second which is of O(c—¢). We thus obtain, again, without any ambiguity that

2G &

0e — 2V — 2 (3
y = 2 S e, Do, D x = ¥ 39)
Finally, considering the (a, §)-component of equation (31), we obtain
o — gg i JOB(x', H)dx' , (39

where it will suffice for our present purposes to substitute for 02f its Newfonian expr&ssmn
(cf. Paper ITI, egs. [11] and [12])

) 0¥ = eaﬁ = Pl + Paaﬁ + tn.ﬁ ) .
where ’ - (40)
L= 1 [4 aU U — 2 (6_@'_)2] :
™ 162G L~ 9x, 95 4\ 9z,
It is important to observe that the expression (39) for y*# differs from that which
follows from equation (20) by the fact that 6°8 now includes the gramtatwnal contribution
1o the total stress; and this difference, it will appear, is decisive. The “oversight” in Traut- -

man’s treatment to which we have referred earher occurs precisely here: he has T8
where he should have had 694,
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The expressions (35), (38), and (39) that we have found for the 4+’s can be trans-
formed into expressions for the corresponding g.’s with the aid of the formulae

go =3(v+ 1), gu= —7%,

and o " (41)
gap = ¥ 4+ 30as(¥® — ),
n n n n

which follow from the general relation (Trautman 19585, eq. [27])

gii = mwu(z"’ — n*ny™) (42)

We thus obtain
00® = 1G— So(x, t)|x — x'|%dx’ + 2G j'G,.,.dx ) (43)
0u® = —1G fp(x Hva(x', )| x — x'|2dx’ (44)

and

0us® = 408% SOudx + aaﬂ[lc—— Lol )| x = |ax — 264 fe,,,,dx] (45)

It is satisfactory in many ways that the expressions which we have found for tke
lowest-order terms in the meiric coefficients in the near zone, which reflect the outgoing-
radiation condition at infinity, are purely of Newtonian origin in the sense that they do
not involve explicitly any quantity defined in the higher approximations.

a) Alternative Expressions for Qun®, Q0.®, and Q.s® in Terms
of the M oment-of-Inertia Tensor

We have already seen in § IT (eq. [15]) how by expanding | x — x’|* and making use
of the Newtonian laws of the conservation of mass and of linear momentum, we can write

‘_’/‘p(x',t)lx—x'|2dx'=%‘—'. (46)

Similarly,; we can transform the integral expression Qo,(® to give

3 3
S Lo, e, )] x — X [ = 5 f | x|
v v
(47)
—~2x,,ii?- S p(x, Do, (x', D)’ dx' .
as y

The further simplification of the expressions (43)-(45) depends on the following lem-
mas which derive from the tensor virial theorem and the associated definitions and rela-
tions (for a brief account of this theory, see Chandrasekhar 1969a, chap. 2).

LEMMA 1: The tensor

tus = —34pBas (mod div) , (48)°
where

Bue) = G f o) B Z0E 2D g 49)

denotes the tensor potential.

8 As defined in Paper III (§ IV), two functions are said to be equal modulo divergence if they differ
by the divergence of a vector which vanishes sufficiently rapidly at infinity that their integrals over the
whole space (assuming that they exist) are equal.
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PROOF: Clearly,
QU _ _,3U 0 o\
9%, Ixg 0%, 0%
(50)
= —87Gp 6 (mod div) .

Also (cf. Paper III, eq. [49]),

oU\? .
— 2048 (—) = —8rGpUd,s (mod div) . (51)
ox, ‘
From equatibns (50) and (51) and the known relation

Bap =

axaax + Ua"»ﬂ ’ v (52)

the result stated follows.
LEMMA 2: For ©.p defined as in equation (40),

L Plas
3 e

PROOF: From Lemma 1 and the definition of 0, it follows
S Oupdx = S (pvavs + pdus + lag)dx
= S'[p(vars — 3B0s) + plasldx (54)
= 2Tu5 + Was + Pous

S Oupdx = (53)

where : 7
B = S rix (55)

and T .5 and W, denote the kinetic-energy and the potential-energy tensors, respectively.
The result stated now follows from the standard form of the tensor virial theorem.
LEMMA 3:
Pl

d
% f’f pUxgdx = % F7R (56)

PROOF: The conservation of angular momentum ensures the symmetry of the integral
on the left-hand side with respect to a and 8. Therefore, we may write instead

-, d d d : 1.
2 di Il,/‘ P(vaxﬂ vﬂxa) dx 2 di Vf P di (xcxﬂ)dx 2 e’ (5 7)

and this is the result stated.
By making use of the relations (46) and (47) and the foregoing lemmas, the express1ons
(43)—(45) for the metric coefficients can be brought to the forms

o ™

Q00(5) = %G dt3 ) (5 8)
4 |
Qw—ﬁﬂﬁj—m—,mmna, (59)
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and
@l @I
Q® = 2G 7 %G&ap—#. (60)
An important consequence of the formula (60) for Q,s(® is
Qu® =0, (61)

i.e., Q.5® is traceless. We shall see that this traceless character of Q.5'® is essential for the
conststency of the whole development.
Further consequences of the foregoing formulae are

d0n® . 800® 900® _ 3Q0®
dat 2 9%, and dxg 9%, (62)

The first of these relations is equivalent to the de Donder condition that was imposed on
the v’ in obtaining the solutions, and the second is an expression of the conservation
of the Newtonian angular momentum.

PART II

THE EQUATIONS OF MOTION IN THE 23-POST-
NEWTONIAN APPROXIMATION

S. CHANDRASEKHAR AND F. PauL EsprosiTo

IV. THE SOLUTION FOR (Qgo(”

In Part I, we have seen how the metric coefficients go, and gas, to orders required for
the 21 -post—Newtonlan approximation, can be deduced by supplementing the solutions
obtamed in the second post-Newtonian approximation by terms of O(c~®) in g, and of
O(c™%) in gag—terms which are requlred by the outgoing-radiation condition at mﬁnlty
But the equations of motion in the 23-post-Newtonian approximation cannot be written
down without a knowledge of the term of O(c™") in ge. Our earlier considerations have
determined Qg (® ; this is not sufficient for our purposes. We need to know “Qg‘™’’; and
to determine it an appeal must be made to the field equation

8
Ry = — "WE (Too — 3gwT) . (63)

We shall presently see how our knowledge of Qn®, Qua(®, and Qa.s‘® just suffices to
determine Q™. It is perhaps significant that an explicit appeal to the field equations'is
necessary before the radiation-reaction terms in the equations of motion can be made
determinate: it emphasizes the essential nonlinear character of the theory.

Considering equation (63), we readily verify that no contributions of O(c™7") to Ry are
made by terms in the Ricci tensor which are quadratic in the first derivatives of gi;—
terms which are usually written as products of the Christoffel symbols. Precisely, the
contributions of O(¢c™7) to Ry arise from the terms

8%gw 9 0gw _ 0g o)
= Louv v — (10K __ oK),
17200 28" 6x,ax,+ \“ oy \* oxy O/’ (64)
7 7
and we find
EY 9 BQ () aQo (s)>

= —1 @ — 10 ® b a } 65
17300 V20w 30w 0w, 50 - (65)

ot at 3%,
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Remembering that
go = —2U, (66)
and making use, also, of the relations (61) and (62), we can rewrite equation (65) in

the form .
U s 8?000®

-600 = _%V2Q00(7) + an(s) ax“axv + 2 or (67)
Considering next the right-hand side of equation (63), we readily find that
Lo — 380T = 3000 . (68)
3
The equation governing Qg™ is, therefore,
V200® = 87GpQu® + 20,,©® U 32Qp® (69)

dx,0%, o’

where it may be recalled that Qp® and Q,,® are, according to equations (43) and (45),
functions of time only.

a) The Solution for Qo™

The part of the integral of equation (69) which derives from the first two terms on the
right-hand side of equation (69) is readily written down. We clearly have

0%
9x,0x, '

—200®U — Q,,® (70)
It is less straightforward to write down the part of the integral which derives from the
last term. The principal question here is one of uniqueness. It appears that the question
can be resolved as follows.

First, we state the following readily verifiable lemma.

LEMMA 4: If
¥ (x) = SY()|x — x'|"dx’, | (71)

where Y(x) is @ good function,” then : '
VM (x) = n(n 4+ 1) SYE) | x = & |72%dx = n(n + )T (x) . (72)

In writing the integrals corresponding to terms such as (cf. eq. [43])

20,0 ® 5 , 3
PO 46 2% S o, 0l — ¥ [3X + 26 05 SO, 0Ix  (73)

in equation (69), we shall make use of the converse of Lemma 4 in the operational form
W (nt2) (x)
(n+2)(n+3)° |
The justification for this method of inversion is that in this way the solutions are
unambiguously and uniquely expressed in terms of the sources. But more importantly,

the only terms (such as 9?Qn‘®/8¢ in eq. [69]) which require this procedure, when so
inverted, lead precisely to those terms in the expansion of the solution,

(V) (x) = (74)

4G dx’ )
- = S +—0%,t — |x— x'|/c (75

cgflx_xll (7 l x'/)) . ()
7In the following sense defined by Lighthill (1958, p. 15): “a good function is one which is every-

where diﬁ‘grentiable any number of times and such that it and all its derivatives are O(| x|™¥) as | x| — «
for all N,
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of equ;ttion (31) which appear in the requisite order as (cf. eq. [10] with T replaced
by O%
4G (—1)mn o
¢t gl Otn

SOK, )| x — o|»dx (76)

where 9"‘ is the Newltonian expression for the complex. Thus when we are considering
Qw™® the requisite order is ¢~7; and, in accordance with expression (75) and®equation
(42), the term in question is
;[f&ifﬁ_
2517 o
whereas, inverting the expression on the right-hand side of equation (73) in accordance
with equation (74), we have

Sol, D]x = 2 |ax + e B peme, i|x— ¢ jax]; (D)

o° 08
Gﬁ So(x,0)|x — x'|4dx + %Gé‘ﬁ JO,.(,0|x — x|2dx (78)

and we observe that the two results agree.
. Combining the results (70) and (78), we can now write the complete integral of equa-

tion (69); we have

5
D= —20.O — 0.6 / Ve
Qoo 200U — Qu ax 6x + & at5 S, 0|x — x'|4dx

(79)

+13 fems(x H|x — x'|%x .

8t3

Since Q,,® is traceless, we can in view of the relation (52) rewrite the solution (79) in
the form

0u® = —200OU — 0u®By + 1G> S o(x', )| x — |43

afs
(80)

3
1655 SO, )]x — ¥ |%x .

V. CHRISTOFFEL SYMBOLS AND RELATED QUANTITIES

With the metric coefficients Qu™, Q0.(®, Qas'®, and Qu® determined, we readily
find that

1 1 1
é.oo = ngo“’ , g¥=—=04s®, and V—g = 5 Qw® . (81)

3 65 T/

With this knowledge, we find on evaluating the various Christoffel symbols that the
terms in them which follow those listed in Paper II, equations (47), are

1 dQw® 1 /3Q0p® oU
0 0
o =26"a > T =32 Ton, + 20w
aQOa(s) aQoﬂ(s) (')Qaﬂ(li))

0 _— e - — a = 82
l‘ @ 26‘5 d%g 9%, a ) T o, 82)
. 1 /30w® aQOu o U L1 dQu®
Ew 20\ 9%, ot ~ 20w %/’ 16105 T 288 dt
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Also,
1 dQwn®
=9l —g/dw = ——"— and 3.=0. 83
Yo og v — g/0x 2 and y (83)

6

VI. THE EQUATIONS GOVERNING THE FLUID IN THE
21-POST-NEWTONIAN APPROXIMATION

First we observe that our present increased knowledge of the metric coefficients en-
ables us to supplement the expressions for the components of the energy-momentum
tensor given in Paper II, equations (49)-(51), by the additional terms

1 1 1
w = — % 0n®, ™M=—-3 pOu®, T = — 7 pQn®t,

and 1 (84)
= =5 (— o900 + pQus®) .

The relevant equations governing the motion of the fluid in the 23-post-Newtonian
approximation can now be obtained by simply writing out the equation

Tii; = 0 ~(89)

to the required order with the aid of equations (82)—(84).

Considering first the O-component of equation (85), we find that there are no additional
terms beyond those included in the second post-Newtonian approximation. The reason for
this circumstance is that the term of O(¢c=") in the conserved density, pu®/— g, vanishes
(cf. egs. [81] and [84]):

pu'y/ —g=0. (86)

5

In other words, no alteration in the baryon number, conserved in the second post-Newtonian
approximation, is introduced in this higher approximation. This fact is consistent with
the requirement that the present “intermediate” approximation does not alter the expres-
sion for the density conserved in the third post-Newtonian approximation given in Paper
II, equation (95) (which in turn is required in the determination of the energy conserved
in the second post-Newtonian approximation).

Considering next the a-component of equation (85), we find

1 1 aQog(‘”
=T == ) | () | (6) |
¢ Z‘ 7 C5 [ P, dt (QOO Va Q“ﬂ "’ﬂ QO"' ) 7) axa
Q 9Qw™ &7
i 00 (5) 00
+ 3p% + Qw0 6 xa P o, ]

By making use of the relations (62), we find that the foregoing equation can be brought
to the somewhat simpler form

1, . 1 dv, dQu®
z{a];j = —[ pQun® _‘U — 3PV Q(;; - P57 7 (Qaﬂ(s)vﬂ)
(88)
aQOu aQ00(7)]
+3p dx, 1°

Finally, inserting in equation (88) the solution (80) for Q™ and simplifying, we are
left with
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. dv, dQe® d 0%,
e =% [_PQOO(s) a — 3p% Qdmt] - Pa? (Q¢g(5)'l),9) - %Pan(s) ax’:

aQ (6) 86 A 4 4
- 60; + 350G 55 Sox, )| x — & |2(xe — #a)dx (89)
1 as 4 ! ’
+ 30G or femz(x y D) (% — xa")dx ] .

VII. THE COMPONENTS OF THE LANDAU-LIFSHITZ COMPLEX
IN THE 23-POST-NEWTONIAN APPROXIMATION

Expressions for the components of the Landau-Lifshitz complex in the second post-
Newtonian approximation have been given in Paper II, equations (58), (72), and (90).
The terms of one higher order that must be added to these expressions in the 23-post-
Newtonian approximation can now be evaluated with the aid of the Christoffel symbols
listed in Paper II, equations (47), supplemented by equations (82) of the present paper.
We find that

=0 and 6%=0, (90)
3 4

while

?‘ﬁ = ‘:E["‘PQoo(5)7’a”a + 10:5® + Qu® (pvav5 + poas + las)]

1 AU\ U U  dU dQus®
) (LY - ® Y oYU 90U Gcas
T 162G 3 2Qas (ax,, 8Qu® o oxg of di
aP. . 3P\ d0u® . AP, d0s® | 9P, d0.,®
1 B (od o Cod
t3 (ax,g + ox,/ dt + 0x, dt + dxg dt
oU aU oU
9y ® 27 ® 27
T4 ax, (Q"“ 925 + O 0%, (1)

+a(SU208Y | BV 30uY 5 (9U30a , U 30u
ox, OJt dxg Ot 0x, 9xg dxg 0%,

QU U |, 3U 30y,

aU\?
® (L) — ®»2Y
T 8us [4Q°° (ax,,) 20w 9%, ox, T2 ot 9z,

— 4 14 0Q0,® _ 9P, 40uw® +2 24 ___ame]$
dx, a¢ dx, dt 9x, 9%, )

Accordingly, the (0, 0)- and the (0, a)-components of the Landau-Lifshits complex retain,
in the 23-post-Newtonian approximation, the same values as in the second post-Newtonian
approximation. These facts are consistent with what we shall find in Part III, namely,
that the terms (89) of O(¢~%) in the equation of motion governing the fluid principally
contribute only to the dissipation of the energy and the angular momentum that are
conserved in the second post-Newtonian approximation.?

Next by evaluating the divergence of the terms (91) (with respect to 8), we find that
we simply recover the terms (87). Therefore, in view of equations (90), we may write

1947"1- = e“ﬂ.ﬂ = 1 T“i;j . (92)
C 4 5 0 4

. 8The statement is strictly correct only with respect to the angular momentum; a slight amplification
is necessary with respect to the energy (cf. Part IV).
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In other words, the identity of the equations,
0% ;=0 and T%;=0, (93)

verified in the first and the second post-Newtonian approximations, continues to be maintained
in the 23-post-Newtonian approximation.

PART III

THE DISSIPATION OF ENERGY AND ANGULAR MOMENTUM

COMPARISON WITH THE LINEARIZED THEORY
OF GRAVITATIONAL RADIATION

S. CHANDRASEKHAR

VIII. THE RATE OF DISSIPATION OF ENERGY

The equations governing the fluid motions in the 2}-post-Newtonian approximation
can be written as the sum of the second post-Newtonian terms, included in Paper II,
equation (54), and the terms of O(¢c®), included in equation (89). Symbolically, we
may write . )

= Tei; 4 -Tei; =0, E (94)

C 2 post—N C 4
Contracting this equation with v, and integrating over the volume occupied by the fluid,
we obtain

~ _/'v, Tei; dx + = _/'vaT“’ dx = 0. (95)
2d posb—N

The first term on the left-hand side of this equation represents d( '€ «)dx)/dt, where
&) (given by Paper II, eq. [110]) is the energy conserved in the second post-Newtonian
approximation (cf. Chandrasekhar 1970). We can, therefore, write

'd— f@(z)dx + 1 fv,,T“";,-dx =0. (96)
dty cv 4

We shall presently show that this equation predicts a rate of dissipation of energy by the
system that is in accord with the predictions of the linearized theory of gravitational
radiation.

First, we shall simplify the last two terms on the right-hand side of equation (89). By
expanding |x — x’|* that occurs under the integral sign in the first of them and ignoring
those terms which vanish by virtue of the conservation of mass and of linear momentum,
we obtain

5
6—6;5‘;/‘,:({, Dx — «|2(x, — «',)dx’

= e S0, D] + |12 — 2/ )ax

——t;;’fp(x’, (| x]2 + | ¥ |2 — 2x,4,)dx

b , (97)

— o ’ ar
xudts‘;fp(x,t)lx |2dx

5
- '(%g I:/'.P(x,) t)xla(lx'P - anx,u)dx,

Bl & I,.,m e
= % g + 25
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where we have let
Iy = J pxattprydx (98)
v

denote the third-order moment of inertia. Next, by making use of Lemma 2, we can
reduce the last term on the right-hand side of equation (89) in the manner

a? a
J‘ 0,.(x, t)(xe — ¥/5)dx = x, P JSO,.dx — 7P J 6,,%.dx

8t3
" . (99)
- 1n, d—d‘;;‘" _ ;}iﬁ S O,uadx .
Alsd, by equation (59), '
000® _ , & 2dy — 320Gy, & lue
at - 3PG dt4 i’/‘Pva | xl dx iplel dts ¢ (100)
Substituting the results of these reductions in equation (89), we obtain
1. 1 dve dQw® d
2Te = — ® 2% _ 1 — 2 ®
¢ { 1»..1 P [ PQOO dt — 2P di N P dt (vllQua ,)
@ (1)
328 ’ d 5] &I
\_ 'ZLPQM@ . + Lp%.G dt;m - %P%G—d_—tﬁa (101)
(III) (av)
A% ypa d? d
| - sopG d’m PGa—ts‘ S Ouxadx + %PGE J‘Pvulxvdxj] .

\%
We shall now write down the results of contracting the different groups of terms in

equation (101) by 7, and integrating over the volume occupied by the fluid. The first
three groups of terms give

(D: = 0u® f . 5 dx — $IB L ploltdx = — 4 Qa0 (102)
(ID): — “”f pUa ) dv,. dx — dQ““ S pvav,dx
T dQ ' d < (103)
= — ®) os ap - =7 = ) as
Q"'l‘ dt dt Iﬂ-l‘ 2 dt (Qal‘ z“ﬂ) + Q‘l‘ dt ’
and

v

(IID): — 30u® S pta Do “ dx = $0u" J‘
(104)

_% nv(S)f ap %n dx = 2qu(5) d%‘w;

These three groups of terms combine to give

(M + a0 + (I : — % (00®T s + 200, 9T,) + 306, ® (2 %ﬂ + % , (105)
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or in view of the traceless character of Q,,(® and the tensor virial theorem, we can write

3
O+ D + WD — L QeOT + 20T + 0.9 T2 (106)

Finally, substituting for Q,,(® its expression given in equation (60), we obtain

M + D + (10 : = £ (Ox®Tom + 20uTur)
(107)

1 ( 3 Pl Ploy _ Ploo Pl
a# df ~ dP df

Returning to equation (101), we find that the contribution by the group of terms IV is

av): 36 forvdx — ‘”'“‘ S pran,dx
i 7 5

e ( 3 Plie 8lue _ &Ly Ao
- To ar " dt ar  dt

- — 2638 L _ Pl L
aB ar de

>(108)

Blie Plia Bl Ples 40 Al | ALy dlue
t1C g (3 B dp  af ap Car a4 ' b a

The contribution by the last group of terms V can be directly written down and calls
for no special comment.
Combining then the results of the foregoing reductions, we obtain

1 1 Pl Lo Ly P
2 LT dx = — ® ® po CPlya Pl Ploy
¢ Tondx = [ = 00T +20,0) + 356 (3 G — 2

&Bloy, &1y Bl &Pl Ay, Al | A dl,,

. _ E :
100 g (3 i dp T df af " STar @ Y ar & (109)
d I a? )
2y — mia 3 @
+ G( fpv,,|x| dx T 3 g S 6, x.dx IJ‘pv.,dx] .
In terms of the tensor,
Dog = 3Iag — bupli » (110)

defining the quadrupole moment of the system, equation (109) can be written more
compactly in the form

1
e
d (@Dug &®Dog  d*Deg dD¢g>
dit\ df¢ af at dt

Pl a?
+ G( fpvalxlzdx - o d;: - %EE J‘G,.,.xudx) I"/'p'v.,bdx] .

d @Dy @ Dy
—_— ) + ) + .1
[ d t (QOO E“" ZQap iap) IB-G d t3 d t3

1 f T“j; jvadx =
Cy 4

+ £GT

(111)
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Equation (111) can now be inserted in equation (96). We shall consider the result in
a frame of reference in which the center of mass is at rest. In this frame, the terms in
the last line of equation (111) vanish and we shall obtain

f Codx — 65 = (QOO(B)IM + 20.,9%a)
(112)

4 G d (@D d’Deg  d*'Dyg dDag) G dDgs d"’D.,g
dtt

308 dt\ dB df T 4565 4B 4B

In Part IV (§ XII) we shall show that we must associate with the 2}-post-Newtonian
approximation the additional energy (cf. eq. [167] below)

1 d ] d'lag dl dlap
_ (5) (®) — _.
f%&dx & [ (QOO Tow + 206,9L0y) ar di 11
@ D.g dzDuﬁ dD,s dDygs
o1 & Hap
1 8G B de G Tt dt ] ’

Including this energy together with €, we can rewrite equation (112) in the form

G d“Dapd3Dug_|_ G & d3D.,ngan>
T 455 4R af WA

605 dt2 ar  dt ar d
We observe that the first term on the right-hand side of equation (114) is negative
definite. It therefore represents a secular decrease of the integrated energy in the system.

In contrast to the first term, the two remaining terms (being total time derivatives)
may be expected to vanish when averaged over a long enough interval of time. We may

therefore write
<dit f@(z.s)dx> = " 5s < | d3DB| > (115)

This result is in exact agreement with the rate of emission of gravitational radiant energy
predicted by the linearized theory of gravitational radiation.

d
a S Cerdx =
(114)

IX. THE RATE OF DISSIPATION OF ANGULAR MOMENTUM

" We have seen in §V IT that there is no contribution of O(c4) to 6. Accordingly,
we may write the equation satisfied by the a-component of the Landau-Lifshitz complex
in the form

_1_390“(2) 0% 5, B —
PR TR dxg +axﬂ95 =0, (116)

where 0% (5, and 0% 5, are the contributions to the complex in the second post-Newtonian
approximation. (Explicit expressions for these quantities are given in Paper II, egs. [72]
and [90].) In view of the relation (92) established in § VII, we may write instead

Oa
1ae (2) 48 A _|_1T..,-”.=.0, 117)
c 5 C 4

where the last term on the left-hand side is again given by equation (101).
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Now applying to equation (117) the same procedure that one follows in obtaining the
angular-momentum integral from the equation satlsﬁed by the Landau-Lifshitz complex,
we shall obtain

i) 1 . . ‘
v S Lypdx = p I7/'(9&9{"’;:‘ - xa{ﬁ';,-)dx', (118)

where Ly (= %,0%0) — xpe“"(z)) is the angular momentum that is conserved in the
second post-Newtonian approximation.

The results of multiplying the first four groups of terms in equation (101) by x5 and
integrating over the volume occupied by the fluid are ,

(D : 10002 — Bas — Pous) — 3 5 (Ou® S pvatpdz),  (119)
14

1) : 20490 — 2 (0u® f mitnd) (120)
(I11) : Qu,®Wus + 20, BW,as (121)
an
&1 4 &I, . :
(IV) . %Glap an 3-GI,¢1 d “, (122)
where , , , ,
Bons = Gf S p(0p(a) B L0 = 2 220G = 35 gy (129)

is a completely symmetric (Cartesxan) tensor.

The last group of terms (V) in equation (101) does not contribute to the requlred
integral in the center-of-mass frame. And we shall ignore these terms on the understand-
ing that the evaluation is carried out in this frame.

Combining the results (119)-(122) and antisymmetrizing the sum with respect to a
and B in accordance with equation (118), we find after some further reductions

2G (Plpy Ploy _ Pl Flp,
dt 7 S Luwdx = 5e\de df P dp

da.[ﬁ“ dIa,

, .
Fdi + (124)

3G d(de,. dI

a1, dl,
ol un ap GLBy
56 di Lo Tou — )

ag dt

| 65 dt (— EQOO(E)L'y(O) + Quu“”f p‘l),,xpdx - Qﬁu(s)f p'v,,x,dx)

On averaging equation (124) over a long enough interval of time, we may expect the
terms in the second and the third lines of equation (124) to vanish; and we shall be

left with
<dt ,/'L.,(z)dx> 2G /&g Bloy  Blay Bl . (125)

565 N\ de 4P aer dg

This last result for the rate of dissipation of the angular momentum, which is conserved
in the second post-Newtonian approximation, is again in agreement with the predictions
of the linearized theory of gravitational radiation.
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PART 1V

THE ENERGY ASSOCIATED WITH THE 23-POST-NEWTONIAN
APPROXIMATION

S. CHANDRASEKHAR AND F. PauL EsposiTo

X. THE EXPRESSION FOR (63

To obtain the energy in the 21-post-Newton1an approx1mat10n we must evalua.te
6" and c%pu’/—g to O(c™®) (i.e., in the 33-post-Newtonian approximation) in order
that their difference, the energy €, may be known to O(¢c~*), appropriate for the 23-post-
Newtonian approximation. As we shall presently see, the evaluation of 9°° and c?pu’/—g
to O(c™®) requires a knowledge of g.s to O(c™7).

Letting, then,

1
| g = 0us® , (126)
we find
1
— g = 5 (Ou® — 0u® + 6U0u),
1
vV —g= 7 (Q0® — 0@ + 4UQw®) , (127)
\_\7,_/ A
lOg \/ -g/ — 267 (Q00(7) —_ Q ()] _|_ ZUQOO(B))
7
and

W = = 55100 + 20605 + 0uOu, + 36 + 20)0u0],

7

(128)
1 N
P = — (0™ + 200 + QuOun, + 26* + 20)0u®]
With the aid of these results we find
o/ — g = — _2175 p(Qu® + 200,®1, + Quw®u,0, + Qu®?) . (129)
5

We also find that

{m - %p[QOOm + 200,97 + Qw®u0, + Qw®(20* + 4U +1)]  (130)
and

1
=% = — = p(Qu® + 200,99 + w01, + Q0a®?) . (131)
5

Turning next to the evaluation of the terms of O(¢c?) in {*—the (0, 0)-component of
the pseudo-tensor of Landau and Lifshitz—we find that we need the terms in I'%g, and
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v.(= 9 log v/—g/dx,) beyond those listed in equations (82) and (83). We find that
these terms are given by

o = L [_1(9Q® | 00uy® _ 3057“’)
E‘ﬁ" o c"[ 2 ax., + dxg 0%, (132)
BU aU
+ Qaﬁ(s) Y + Qav(s) 6ﬂ7Qw(5) 3x,,]
and 1 oU \
%o = 507 | 2z (@ — 0w + 2000 57 - (133)
And evaluating % to O(c~%), we find
1 EYoak aQ,,,,m 5 90u® U
. ) aa B (a)__
500 167Gt [14@00 <0x,,) +2 o, (3 9, dx, — 30w x, (134)
9V 30u® | 3Py (30u® | 90w® _ aqu(B))]
a I ox, \ 9z, ax, ot ’
Remembering that
1
— o — = Op®
S T (135)

where (cf. Paper III, eq. [46])

7 (U |
o=~ 555 (136)

we can now combine equations (129), (131), and (134)-(136) to give
C=0%— 7o'y —g=—(T"+ ) — o’V — ¢
5 S , >

5

VT h N
13 5 )

== 21?5 PQu® + 200, + Quw®uu, + Qw®r?)

30 Q) 30,® oU (1‘37)
o0 — ny — (5)
t 162G 161ch5 ax,, (3 ax, 2 ox, 30w 0%,
AU 30u® | 9Py (300® | 80u® an-('”)
+ at ot + dox, \ dx, + ox, a¢ ]

The integral of this last expression over the whole of the three-dimensional space—we
shall verify that the integral converges in the center-of-mass frame—will give the con-
tribution of the 2}-post-Newtonian approximation to the ‘“‘conserved” energy (con-
served, that is, in the absence of the effects of the radiation-reaction terms in the equation
of motion).

We observe that in the expression (137) for ? the 3%-post-Newtonian term Q,,@

occurs; it must accordingly be determined. For this last purpose we shall derive in § XI
below the equation which governs this term.
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XI. THE EQUATION DETERMINING Qo5
The equation governing Q.5 is readily obtained by considering

87G

Ifaﬁ =—— s —3 38.8T) . (138)
We find
& (00,® 3Q"<7>) 3 (90D aQ”m)
200 — 9 W 1 e 9 (O 19 " _ ¢
Vet %\ 9x, > oxg oxg\ ox, 2 o, S 5 (139)
where
32U aonoa)

N — — 5) 5
Sep 81GpQu® + 20u® 5 T Sx.0m

o:U U U
) - ® — ) (
T 200500 9x,0x, 20k x50, 20w 0%,0%, (140)
48 (300 000 _ 30u)
ot \ at E oxe /-

As was to be expected, there is an integrability condition for the solvability of equa-
tion (139), namely (cf. Paper II, § ITla, eq. [19]),
d

o= (S ® — epSes®) = 0. (141)

It can be verified that this integrability condition is indeed satisfied by virtue of equation
(69) governing Qoo™
With the integrability condition (141) satisfied, the general solution of equation (139)
_involves an arbitrary vector function W, (cf. Paper II, §§ Il and II1d). Thus, if Qo™
is a solution, then so is

a Wa, a Wﬂ
@) e
Qus® + 7o + S (142)
To be specific, we shall select the solution which satisfies the coordinate condition
aQaﬁm 1 ame —
7 P om = 0. (143)

In this “gauge,” the equation satisfied by Q.s(" is
V20us® = Sag® . (144)

For the determination of € in § XII below, we shall be particularly interested in

the solution for Q,,™. By corftracting equation (140) and making use of equation (69)
satisfied by Qg (", we find

a?U
"N = ®)
Soo 40,, 3%5,0m, " (145)
Therefore, in the gauge (143), the equation satisfied by Q,,™ is
a2U
2 (7 — )
V2Q,u 4Q,, 25,07, (146)
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Since Q,.,¢? is independent of the spatial coordinates, the required solution of equation
(146) is
0u® = —20,,® x_ . (147)
i T

or, in view of the traceless character of ,,® and the relation (52), we can write
thm = —20,®B,, . ,(148)

XII. THE ENERGY IN THE 2%-POST-NEWTONIAN APPROXIMATION

Before we insert in equation (137) the solution for Q,,” derived in the gauge (143) ,
it is important to verify that the integral of € over the whole of space (which is the

only quantity of interest) is independent of the choice of gauge. This independence on
the choice of gauge is necessary since the integral in question pertains to the 2}-post-
Newtonian approximation and as such should not depend on the choice of gauge relevant
in the 33-post-Newtonian approximation.

To show the required independence on gauge, consider the terms in equation (137)
which are dependent on Q5. These are (apart from the factor ¢=%)

1 U [, 80s® aQ,,,m)
— 1 () - = —
100u® + g7 5 (3 e 220, o (149)

If in these terms we replace Q,, ™ (defined, say, in some particular gauge) by the general
solution (142), we shall find the additional terms

oW, . 1 dU /[, W,

ox, + 4G -c'}__x,, 9x,0%,

— —ww&. (150)

It can be readily verified that these additional terms are zero, modulo divergence, if

U W, and 3*W,
9%, 0x, 02,0,

(151)

vanish at infinity more rapidly than r—2

In view, then, of the invariance of the terms (149) to the choice of gauge, we may,
without loss of generality, consider them in the special gauge (143). In this gauge the
terms reduce to ’

10U 8Q.,®
— 1,0.® 90U 9C00
2P0 T 4G dx, 0x,

) Ql‘“a) :
= —1 7 . k8
= —300u G V2U (mod div) (152)

= +300u? = —p0w®By ,

where in the last step of the reductions we have substituted for Q,,® its solution (148).
Also, it can be verified that

6 U aU 3 2 )
— 6 L = e (5)
162G 2 3%, 9%, 162G 2V 3.5, V X (mod div)
(153)
— 3 ® _9x 3 ®)
= ZPQM ax“ ox, = ZPQ}W QSuv .

Now replacing the terms (149), in the expression (137) for Cﬁ&, by their equivalent (152)
and substituting also the result of the reductions (153), we obtain
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1
5 =7 265 p(200,®, + Quw®v0, + 30,9B,, + Qo®v?)
(154)
+ 1 [ U 30n® 4 9P 300, ® N 300® aQ,‘,(’i))]
167Gco L at ot dx, \ 9%, 9z, at )
"

The terms in brackets in equation (154) can be simplified by substituting for Qn‘®,
00,(®, and Q,,® their values given in equations (58)-(60) and making further use of
the relation

P, _ _,0U
o5, 3 5 (155)
We thus finally obtain
1 1 0P, d*D
= — — ® ® 10 ® ®q2) — 9Ly & D
5 265 p(ZQUu v“ + qu v,ﬂ)y + ZQMV %py + QOO '1’2) 727]’65 ax“ dt4 ) (156)
where it may be recalled that
d%x p(x', Dv,(x, ¥) d%x
= -1 = PAX, VXY gy — 1 TX
P, =4U, — 3555 401}/‘ %= ] ¥ = § a0 (157)

a) The Evaluation of J ?dx

We shall now evaluate the integral of € over the whole of the three-dimensional space

3 3 . 5 . . . .
in a frame of reference in which the center of mass is at rest—it will appear that only in
this frame does the integral converge.

The evaluation of the integral of the terms in € which occur with the factor p is

3
straightforward if appropriate use is made of the relations familiar in the theory of the
tensor virial theorem. We find that they combine to give

1 a*D,, &®D, d‘l,, dI
] — (5) (5) 3 [ w1 wy &Ly
65 [ (QOO z}m + ZQ”v Iuv) + ﬁ(’ dt2 dt3 3G dt4 dt ] . (158)

- The evaluation of the integral over all space of the term in d P,/dx,in ng isless straight-

forward since its existence will have to be established at the same time. On this last
account, we shall first evaluate the integral over a large spherical volume of radius r
(bounded by the surface S, say). We shall then let both » and S tend to infinity. The
limit we have to consider is then

_ 1 &D, N N Sy TOUAR - &
e b = i an oL (B0 T ¥ ga,) 05k (159)

Consider first the contribution to the surface integral (159) by U,. Since U, is the
Newtonian potential derived from the “‘source” pv,, it is clear that in the center-of-mass
frame, in which the integral of this source vanishes, the asymptotic behavior of U, as
r— o is

U, — G% S o, Do, (', D' ,dx’ = G;lg S pvx.dx (160)
v v
where ! denotes the direction cosine of the outward radial direction. Therefore,

s S UAS, = 4xG(l,1,) S pv,xedx = £7G S pv,2,dx . (161)
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To evaluate the contribution to the surface integral (159) by the term in x, we first
observe that in the center-of-mass frame the asymptotic behavior of dx/dt as r — =,
as deduced from the integral representation

x=—GJS p(x,0|x — x'|dx, ' (162)
v
is . (
ax _1G dI.,,, 1 dI.,g XaXp
o I TG - (163)
From this last formula it follows that
_6.25__ g dI" _ dlﬂﬂ uv )
30w, 1 5 L —32 r lalgl, + l (164)
Therefore,
o a?ax dS, = 4xG ‘”“ a0 — “" (udsb ) + = (L4, ))
(165)
—_ 4;'.56 6“,, dI oo + 2 dIIlv

Inserting the results (161) and (165) in equation (159) and remembenng that D,, is
traceless, we obtain

1 D,

G @Dydl, G @DuwdDy 4 o
T 72xds dtt sf PdSi= ~3087a8 @ — %06 af dt (166)
Combining the results (158) and (166), we now have
d 1,y d1,,
S G = 5 [~ QT + 20,9%,) - G \
d*D,, &D, d*D,, dD (167
1 By [ | [oid [id
+ 856 5 G — 6
An alternative form of this expression is ‘
@D, d&#D,, d&D,dD
. — = (Op® ® e =
S Gx = — 5 On¥T + 20T + 500 (3 ¢ dr P & )(168)
+ 6 d(Ple Pl _ &L dI,,,.)
6c5dt\ det di? ¢ dt /)’

It is of interest to observe that, if equation (168) is averaged over a long enough
interval of time, the terms in the last two lines of the equation may be expected to vanish
and we shall be left with

(S Cdx) = = % (QuOT o + 20uT) (169)

XIII. CONCLUDING REMARKS

Papers I, II, and III, together with the present one, have carried the solution of
Einstein’s field equations for a perfect fluid far enough to incorporate, in an explicit set
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of equations governing the motion of the fluid, the first radiative corrections. It is worth
noting that at no stage in the development of the theory was it necessary to make any
assumptions beyond those already implicit in the initial choice of the form of the energy-
momentum tensor and the postulation of the conservation of the rest-mass energy (or,
equwalently, the conservation of the baryon number) The entire development manifests
once again the marvelous logical simplicity and the inner self-consistency of the general
theory of relativity.

One of us (S. C.) is grateful to Professor G. Wentzel and Dr. Kip S. Thorne for many
fruitful discussions on topics related to this paper; in particular, Dr. Thorne’s alternative
ideas on the subject have greatly influenced this paper.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chlcago

Notes added in proof by S. C.:

1. Professor Andrzej Trautman, to whom I sent a preprint version of this paper,
wrote on October 1, 1969:

“During the last years of his life, Leopold Infeld worked, together with my wife, on
the problem of radiation and its connection with that of motion. Among other results,
they obtained the correct expression (i.e. in agreement with yours) for the lowest order
radiative terms in the metric corresponding to a system of point particles. This is con-
tained in a paper by L. Infeld and R. Trautman about to appear in the Annals of
Physics. Your results are certainly more general than theirs.”

The papers to which Professor Trautman refers have since appeared: Annals of
Physics, 55, 561-575 and 576-586, 1969.

2. Professor Philip C. Peters has similarly drawn my attention to his paper on “Gravi-
tational radiation and the motion of two point masses” (Phys. Rev., 136, 1224, 1964) in
which he has derived expressions (in the context of the two-body problem) for the rates
of dissipation of energy and angular momentum in agreement with the linearized theory
of gravitational radiation. I regret that I was not aware of Professor Peters’s paper.

It will, however, be clear that the object of the present series of papers on post-
Newtonian approximations is to have a complete set of post-Newtonian equations and
conservation laws derived explicitly to the requisite orders; it does not appear that
this completeness has been attempted before.
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