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Agricultural production and the availability of fresh water in Indian subcontinent critically depend on the monsoon rains.
Therefore it is vital to understand the causal mechanisms underlying the observed changes in the Indian monsoon in the past.
Paleomonsoon reconstructions show that the water discharge from the Ganges-Brahmaputra River system to the Bay of Bengal
was maximum in the early to mid-Holocene; data from the Western Arabian Sea and Omanian speleothems indicate declining
monsoon winds during the Holocene, whereas records from the South West Monsoon (SWM) precipitation dominated eastern
Arabian Sea show higher runoff from the Western Ghats indicating gradually increasing monsoon precipitation during the
Holocene. Thus there exists considerable spatial variability in the monsoon in addition to the temporal variability that needs
to be assessed systematically. Here we discuss the available high resolution marine and terrestrial paleomonsoon records such
as speleothems and pollen records of the SWM from important climatic regimes such as Western Arabian Sea, Eastern Arabian
Sea, Bay of Bengal to assess what we have learnt from the past and what can be said about the future of water resources of the
subcontinent in the context of the observed changes.

1. Introduction

The Indian economy is based on agriculture, which mostly
depends on the monsoon rain and to some extent on river
flow and ground water resources. In the absence of monsoon
that brings adequate rain, crop yield is reduced and due
to recurrent droughts there may even be severe shortage of
drinking water. The water resources of India comprise rivers,
lakes, and ground water aquifers and the amount of water
they hold is linked to the rainfall on the one hand and human
exploitation on the other. Thus it is important to have a
correct long-term forecast of the monsoon that can help in
the proper management of our water resources [1]. Monsoon
prediction is seriously hampered by the nonavailability of
past data, which is limited to about hundred years [2]. It is
very difficult to predict the monsoon without understanding
its full variability. Generating quantitative paleomonsoon
data using available, dateable, natural archives, such as deep

sea and lake sediments, varved sediments, and speleothems
is a starting point towards this end [3–6].

Monsoon is a term derived from an Arabic word
“Mausim” meaning weather. It is technically applied to the
seasonal reversal of winds in the Indian subcontinent and
Africa, especially in the Arabian Sea, due to land-sea thermal
and pressure contrast. It is mainly due to coupled heating
and cooling of Himalaya (Tibetan plateau) and the southern
Indian Ocean and the consequent movement of the ITCZ
[7]. The Asian monsoon system is a dynamic component of
the modern climate system and changes in this convectively
active region can result in severe droughts or floods over
large, densely populated regions [8]. The inherent seasonality
of monsoon circulation leads to cool, dry winters and
warm, wet summers over the Asian landmass. These sea-
sonal changes in atmospheric circulation and precipitation
also affect the ocean, leading to a strong seasonality in
the strength and direction of ocean currents, sea-surface



2 Journal of Geological Research

temperature (SST), and salinity patterns, as is observed
in the Indian Ocean and the South China Sea (SCS). In
specific regions, such as the Northwestern Arabian Sea, these
dynamics lead to well-defined seasonal upwelling regimes
in the open-ocean and near-shore environments [9]. The
south Asian monsoon has been known to be stronger during
warm climate (interglacial/interstadial) and weaker during
cooler periods (glacial/stadial) ([10] and references therein),
while the winter monsoon behaves the other way [11–13].
Thus monsoons are components of the global climate that
play an important role in water resources of the Indian
subcontinent.

The Southwest monsoon (SWM) occurs during June to
September and the Northeast Monsoon (NEM) affects the
southern parts of the Indian subcontinent during October
to December [14]. AISRTS (All India Summer Monsoon
Rainfall Time Series) is available from 1871 onwards [15],
which has documented the last ∼140 years of rainfall. If
rainfall exceeds by more than 10% from the long-term
average, it is called as excess rainfall year, while when it is
lower by 10% or more, it is a deficient rainfall year. But
to understand full variability of monsoon, which assumes
added importance in view of the presently experienced
global warming, we require records of monsoon during
differing climatic conditions extending back to thousands of
years.

2. Multiproxy Comparison of Studies from
Different Regions

Evolution and variability of the Asian monsoon system
are believed to respond to at least five types of large-scale
climate forcing or changes in boundary conditions [49],
including (i) the tectonic development of the Himalayan-
Tibetan orography, in million-year time scales, (ii) changes
in the atmospheric CO2 concentration, in time scales of tens
of thousand of years, (iii) changes in the Earth’s orbit that
result in periodic variations of seasonal solar radiation, in
time scales of tens of thousands of years, (iv) changes in
the extent of ice sheets (thousand years time scales), and (v)
internal feedbacks within the climate system (multiple-time
scales). These factors act simultaneously and over different
time scales to amplify or lessen the seasonal development
of continental heating/cooling, land-sea pressure gradients,
latent heat transport, and moisture convergence, all of which
control the strength of the monsoon circulation. We present
below a comparative analysis of multiproxy studies from
diverse terrestrial (speleothems—stalactites and stalagmites
from Indian and Oman caves) and marine (western, north-
ern and eastern Arabian Sea along with Bay of Bengal)
realms divided into different time periods, which would
help us to understand the spatiotemporal variability and
complexity of the south Asian monsoon. The focus of this
paper is the high-resolution records with accurate, absolute
chronology since Last Glacial Maximum (∼21,000 years
before present)—a period which covers extensive glaciation,
deglacial period witnessing rapid climatic fluctuations, and
finally the Holocene (past ∼11,700 years, [4]), which is a
period of relatively unvarying warmth.

2.1. Monsoon and Associated Oceanographic Effects from
Marine Proxies. During the summer and winter monsoons
the surface oceanic circulation in the Northern Indian Ocean
(Arabian Sea and Bay of Bengal) experiences changes in
direction in consonance with the changing wind patterns
[50, 51]. Intense upwelling occurs along the Somalian and
Oman coasts with a transport of 1.5–2 Sv in the upper 50 m
[52]. The typical temperature of the upwelled water is 19–
24◦C [53]. The reason attributed for such intense coastal
upwelling is the Ekman divergence due to the flow of strong
winds parallel to the coast. The central Arabian Sea exhibits
a bowl-shaped mixed layer deepening under the effect
of Findlater Jet wind-stress forcing and Ekman pumping
[54, 55]. The cold and dry Northeast monsoon winds
accompanied by the Ekman pumping cause subduction of
the high salinity surface waters in the northern Arabian Sea
[56, 57].

The upwelling zones along the Somalian and Oman
coasts cause intense biological and geochemical changes
in this region with SST falling by ∼4◦C as nutrient-rich
deeper water surfaces that enhance the sea surface biological
productivity considerably [9, 50, 58]. Weak upwelling also
occurs along coastal southwest India [50, 59]. During the
Northeast monsoon, minor upwelling is observed in the
northeastern Arabian Sea [50]. The cold and dry NE
monsoon winds cause the deepening of the mixed layer to a
depth of 100–125 m due to convective mixing in the northern
Arabian Sea, which leads to nutrient injection and hence high
productivity during winter monsoon in this region [60, 61].
The typical productivity values for the western Arabian
Sea are 2.0, 1.0, and 0.5 g C/m2/day for the SW monsoon,
NE monsoon, and the intermonsoon periods, respectively
[62, 63]. Similarly for the eastern Arabian Sea the typical
productivity values are 0.6, 0.3, and 0.2 g C/m2/day for the
SW monsoon, NE monsoon, and the intermonsoon periods,
respectively [64]. As the moisture laden SW monsoon winds
approach the Western Ghats they are forced to ascend
resulting in copious precipitation and runoff into the coastal
Arabian Sea, reducing the sea surface salinity considerably
[21]. Denitrification takes place due to the very low concen-
tration of oxygen in the entire Arabian Sea from 250 m to
1250 m water depths [65, 66]. This oxygen minimum zone
(OMZ) is due to the high-oxygen consumption below the
thermocline for the oxidation of organic matter supplied
by the high overhead surface productivity. Furthermore
the sluggish flow of the oxygen poor intermediate water
[66, 67] along with a strong tropical thermocline (due to
relatively high SST that prevents mixing of the oxygen-rich
surface waters with the deeper waters) maintains the OMZ
[68, 69]. Thus OMZ and denitrification are the interplay
of monsoon winds and the ensuing productivity along with
other climatically controlled factors such as ocean ventilation
rate [40, 70–73].

Such pronounced changes in the seawater characteris-
tics make the Arabian Sea ideal for deciphering the past
changes in monsoon intensity. The surface productivity that
manifests itself in many forms such as organic, calcareous,
and siliceous productivity, also affects the carbon isotopic
composition of the seawater, which is preserved in the calcitic
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Figure 1: Sample locations discussed in the text. Triangles represent
the marine-based records: 905 [78]; SS4018G [10]; 74KL [16];
RC27-23 [73]; 723A [19, 20]; 63KA [44]; 39KG/56KA [41]; 136KL
[40]; 3268G5 [21]; SK145-9 [23]; GC-5 [22]; SS3827G [24]; 126KL
[36]; 31/11 [37]. Circles represent terrestrial speleothem records:
Qunf [32]; Akalagavi [31]; Gupteswar, Dandak [30]; Sota [86];
Timta [87].

shells of various foraminifera. Similarly the SST and sea
surface salinity alter the oxygen isotopic composition of
these shells and they get recorded in the sea sediments.
The nitrogen isotopic composition of sedimentary organic
matter can indicate the denitrification intensity relatable to
productivity variations. Thus the downcore variations of
such proxies could help document the past variations in
monsoon intensity and the related climatic changes.

3. Discussion

Paleomonsoon studies in the Indian region were initiated
around 30 years ago by Prell et al. [74] and Bryson and
Swain [75]. Since then, a large number of workers ([2,
16–27, 29–32, 41–44, 76–78] and references therein) have
carried out high-resolution monsoon studies in archives
from various locations in and around the subcontinent that
are influenced by the monsoon winds/precipitation. The data
thus generated has helped document the fluctuations in the
past monsoon strength both in space and time. Different
proxies such as planktic/benthic foraminiferal abundances,
their stable oxygen and carbon isotope ratios [18, 19, 21,
23, 24, 76, 77], varved sediments [41, 42], speleothems
[2, 29–32], tree-rings [79], δ13C and δ15N of lacustrine and
marine organic matter [10, 73, 80–83], and pollen records
[84, 85] have been used to obtain paleomonsoon records
with different resolutions. A few of the important proxies and
their significance are shown in Table 2.

Recent marine studies have the advantage of accurate
AMS (Accelerator Mass Spectrometry) 14C dating, and in
some case, have provided time resolutions as low as∼50 years
(e.g., [23]) that can go up to subdecadal scale in extreme
cases such as varved sediments [41]. The past strength of
SWM was elucidated by using the above proxies from differ-
ent monsoon-sensitive geographical regime (Figure 1) such
as (i) the western Arabian Sea—experiences high productiv-
ity due to SWM wind induced upwelling [16–19, 76, 77]—
thus record strength of monsoon winds; (ii) the northern

(a) Tiwari et al., 2010 (WAS)

(b) Tiwari et al., 2006b
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Figure 2: Variability in monsoon strength as deciphered from
multiple proxies from various studies from different regions (EAS:
Eastern Arabian Sea, WAS: Western Arabian Sea, NAS: Northern
Arabian Sea); the arrows in each case depict increasing monsoon
direction.

Arabian Sea—affected by amount of Indus river discharge
[43, 44] and associated varve thickness [41, 42] relatable
to SWM precipitation intensity; (iii) India and Oman—
the growth rates and stable oxygen and carbon records of
speleothems were used to quantitatively reconstruct SWM
precipitation intensity [2, 29, 30, 32, 86]; (iv) the south-
eastern Arabian Sea sediment cores which are influenced
by the surface runoff due to SWM precipitation from the
western Ghats of India [21, 23, 25]—thus records strength
of SWM precipitation; (v) water discharge from the Ganga-
Brahmaputra (G-B) river system into the Bay of Bengal
(BOB) [35–37]. The major inferences drawn from these
regions have been presented in Table 1. For Indian populace,
the more important aspect of monsoon is precipitation
variability that may result in severe droughts or devastating
floods. Therefore it is more important to decipher this aspect
for which eastern Arabian Sea is better suited than other
regions of Indian Ocean. From the comparative analysis, as
represented in Figure 2, among different regions, it is clear
that at short-time scales, monsoon exhibits a high-spatial
variability—different regions experience different trends in
monsoon intensity. But when we look at multi-millennial
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Table 2: A few of the important proxies/archives used for monsoon reconstruction and their significance.

S. No.
Proxies/archives discussed in the

present work
Significances of each proxies

(1)
Oxygen isotopes of Speleothems

and Foraminifera

Oxygen isotopes of foraminifera reflect the isotopic composition of the seawater
that depends on salinity and temperature. Eastern Arabian Sea receives abundant
fresh water as either direct precipitation or runoff from the adjacent Western Ghats
during the Southwest monsoon. This reduces the sea surface salinity (SSS) that is
reflected in negative excursion in the oxygen isotopic composition of planktic
foraminifera.

(2)
Globigerina bulloides abundance in

tropical oceans

The spatial distribution of Globigerina bulloides in the world ocean shows that it is
dominant in temperate subpolar water mass and thus the only likely cause for high
abundance in low latitude areas (tropical oceans) has been upwelling induced
productivity. The initiation of upwelling in the western Arabian Sea and the
subsequent increase in Globigerina bulloides flux indicates that foraminiferal
population respond within a few weeks to changes in near surface hydrography,
which has been demonstrated in studies from Western Arabian Sea Sediment Trap
data. The enhanced upwelling in the Arabian Sea, especially western region, is
strongly correlated to Southwest monsoon.

(3) Carbon isotopes of foraminifera

Kinetic isotope effects during photosynthesis cause preferential uptake of 12C in the
organic matter, which enriches the ambient dissolved bicarbonate in heavier
isotopes (13C). The foraminifera secreting calcareous shells in equilibrium with the
ambient water will record these isotopic signatures. Thus a higher δ13C value
probably corresponds to an enhanced rate of photosynthesis in the euphotic layer
that indicates an increase in productivity relatable to stronger monsoon.

(4)
Nitrogen Isotopes of sedimentary

Organic matter

Due to lack of oxygen in Oxygen Minima Zone, the anaerobic bacteria utilize NO3
−

for the decomposition of organic matter. During this process they preferentially
consume NO3

− with lighter isotope (14N), thus enriching the residual nitrate in the
heavier isotope, which gets upwelled to the sea surface and is taken by the
organisms as a nutrient. This enriched nitrogen isotopic signature is preserved even
when the organic matter settles down and gets preserved in sea sediments. Thus a
high δ15N can be related to increased denitrification, which in turn is controlled by
the productivity increase relatable to monsoon strength.

(5)
Total Organic Carbon & Inorganic

Carbon

Total Organic Carbon (TOC) preserved in the sea sediments is derived from the
particulate organic carbon (POC, the carbon content of particulate organic matter)
and is a manifestation of the overhead primary productivity if there are no
alterations after the deposition. The overhead rain of calcitic shells is a major
constituent of the sea sediments. It has been observed that during the monsoon
season in the Arabian Sea, 50–60% of the total flux to the bottom is composed of
calcitic material. Thus calcium carbonate percentage in the sea sediments can
indicate the overhead productivity provided the core has been raised from depths
above the lysocline (∼3800 m in the Arabian Sea) and there is no contamination
from the terrigenous inputs

time scales then we find that monsoon records from varied
realms exhibit similar trends.

Fleitmann et al. [32] deciphered declining SWM pre-
cipitation during the Holocene based on speleothems from
Oman. But this region is near the edge of the monsoon
precipitation and receives very little rain as compared to the
Indian subcontinent. Moreover, such arid/semiarid regions
with dynamic karstic terrains have been reported to have
long residence time of water up to decades [88]. Also, the
strong evaporation in such regions could greatly alter the
δ18O of precipitation during infiltration and in the upper
portion of the vadose zone [89], making such reconstruc-
tions somewhat ambiguous. In the western Arabian Sea
during the Holocene, a few of the SWM wind intensity,
based proxies (e.g., content of G. bulloides—a calcareous

micro-organism flourishing in the cooler, upwelled waters
during SWM season) showed that monsoon winds have
been declining, following the reduction in insolation. On
the other hand, studies from the eastern Arabian Sea, which
record SWM precipitation, have indicated otherwise. The
eastern Arabian Sea receives abundant fresh water as either
direct precipitation or runoff from the adjacent Western
Ghats (Sahyadri Hills) that induces intense orographic
precipitation during the SW monsoon. This reduces the
sea surface salinity (SSS) that is reflected in the oxygen
isotopic composition (δ18O) of planktic foraminifera. Such
reconstructions have indicated increasing strength of SWM
precipitation during the Holocene [21, 22, 27]. Similarly,
Agnihotri et al. [28] have found increasing productivity
during the Holocene based on denitrification intensity
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(δ15N), which is relatable to SWM strength. To resolve this
apparent contradiction between the studies from the western
and the eastern margins of the Arabian Sea, Tiwari et al. [10]
studied productivity proxies from the western Arabian Sea.
They found out that the reason for declining trend observed
in the planktic carbonate production (relative abundance
(%) of G. bulloides—[19] and declining %CaCO3—[10])
is the preference to silicate productivity over calcareous
productivity during periods of enhanced monsoon winds.
During initial stages of SWM (weaker monsoon winds),
upwelling takes place from shallower regions bringing nitrate
and phosphate to the surface that supports calcareous
microorganisms. But as the monsoon progresses and the
winds became stronger, upwelling takes place from the
deeper waters, injecting silicate to the photic zone, which
enhances siliceous productivity [90, 91]. This has been
observed in sediment records of past climate as well [45,
92]. Other productivity indicators (organic carbon, δ15N,
δ13C of three species of foraminifera) analyzed by Tiwari
et al. [10] unambiguously indicate strengthening monsoon
during Holocene, unlike insolation that declines during
the same period. This multiproxy result indicates that, on
sub-Milankovitch, multi-millennial timescales, monsoon is
predominantly governed by internal feedback mechanisms
and lagged summer insolation maxima by several thousand
years, as noted earlier by Clemens et al. [49].

4. Conclusions

In essence, the above discussion shows that there exists a
large spatial variability in monsoon records, which becomes
more pronounced on shorter timescales. But on longer
time scales, a more coherent picture emerges. On glacial-
interglacial time scales, SWM was stronger (weaker) during
the warmer (colder) periods, with a minimum during the
Last Glacial Maximum. During deglaciation, monsoon fluc-
tuated widely with weaker monsoons during colder episodes
such as Younger Dryas and stronger monsoons during warm
episodes such as Bølling-Allerød. During the early Holocene,
a widely reported SWM maximum is followed by a decline.
Thereafter, during the Holocene, the SWM either stayed
uniform or showed decline only after the mid-Holocene,
which needs to be verified further with accurately dated
records from both the western and eastern Arabian Sea
margins. During the Holocene, monsoon did not decline
following the reducing insolation, which highlights the
importance of internal feedback mechanisms. On short time
scales (millennial to subcentennial), a period of widespread
aridity is reported at ∼2000 yr BP followed by arid periods
at ∼1500 yr BP, ∼1100 yr BP, ∼850 yr BP, and ∼500 yr BP
[23]. On such short time scales (centennial to subcentennial),
monsoon has been reported to follow insolation [93]. This
highlights complex dynamics of SWM at different timescales.
This intercomparison of monsoon records from different
regions show that despite the considerable spatial variability
in monsoon strength, it increases during warmer periods
in general. This indicates that monsoon may strengthen in
the future scenario of global warming that corroborates the
model results represented in IPCC AR4. An understanding

of this requires systematic studies covering various regions
under the SWM realm using multiple proxies at different
spatiotemporal scales.
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