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Abstract

The Schwinger oscillator operator representation of SU(3), studied in a previ-

ous paper from the representation theory point of view, is analysed to discuss

the intimate relationships between standard oscillator coherent state systems

and systems of SU(3) coherent states. Both SU(3) standard coherent states,

based on choice of highest weight vector as fiducial vector, and certain other

specific systems of generalised coherent states, are found to be relevant. A

complete analysis is presented, covering all the oscillator coherent states with-

out exception, and amounting to SU(3) harmonic analysis of these states.
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I. INTRODUCTION

In a previous paper [1] we have presented an analysis of the reducible unitary repre-

sentation(UR) of SU(3) that is obtained by a generalisation of the well-known Schwinger

oscillator operator construction in the case of SU(2) [2]. This construction, based on six

independent pairs of oscillator operators, is a minimal one in the sense that all unitary

irreducible representations (UIR) of SU(3) are obtained without exception. However in

contrast to the SU(2) case there is an unavoidable multiplicity in that each UIR occurs a

denumerably infinite number of times. A systematic way to handle this multiplicity, based

on the use of the non compact group Sp(2, R), has been developed; its salient features are

recapitulated in the next Section.

The aim of the present paper is to extend this study and discuss various properties of

coherent states in this framework. The use of oscillator operators automatically brings in the

Heisenberg-Weyl (H-W) group with a dimension appropriate to the number of independent

oscillators or degrees of freedom. And it is indeed in the context of this group that the

standard coherent states in quantum mechanics were originally defined and applied to a

very large number of problems [3]. On the other hand, the basic kinematic relations for any

system of independent oscillator operators have a well-defined covariance group associated

with them - a group of linear inhomogeneous transformations on the oscillator operators

which leave their commutation relations invariant. The homogeneous part of this covariance

group is the metaplectic group of appropriate dimension, containing a unitary group as its

maximal compact subgroup. Thus for n oscillators or n canonical pairs of degrees of freedom,

we encounter the groups Mp(2n), U(n) and SU(n), and certain of their UR’s, in a natural

way [4].

Now the original concept of coherent states has been generalised from the H-W case to

a general Lie group, and it consists of the orbit of a chosen fiducial vector under group

action in any UIR of the group [5]. The usual coherent states arise by the action of the

elements of the H-W group on the Fock vacuum. Given all this, it is natural and to be
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expected that via the Schwinger type construction we have an intricate interplay between

the familiar H-W coherent states, and certain systems of coherent states associated with the

groups Mp(2n), U(n) and SU(n).

In passing we may also mention that with this generalisation, even for the H-W group we

have not only the originally defined coherent states, which may be called Standard Coherent

States (SCS), but other systems of generalised coherent states (GCS) [6]. These are based

on choices of states other than the Fock vacuum as the fiducial state. Similarly, for the

unitary group SU(n), within any given UIR the SCS are obtained when the highest weight

state is used as the fiducial state, while for other choices we have systems of GCS [7]. It is

therefore of interest to see how these various systems of coherent states for different groups

get interconnected via the Schwinger construction. This is the main aim of the present work,

in the particular case of the H-W group for six oscillators, and SU(3).

A brief outline of this work is as follows. Our earlier work [1] has shown how in a natural

manner we can identify and isolate a subspace H0 carrying a complete and multiplicity-

free UR of SU(3) ( a ‘Generating Representation’ for SU(3)), within the full Schwinger

representation characterised by infinite multiplicity. As this decomposition, in which the

compact generator J0 of Sp(2, R) plays a crucial role, provides the starting point of the

present work, to set the notation and to make the paper reasonably self-contained, we

briefly recapitulate the relevant details of [1] in Section II. In Section III, we recall the largely

familiar interconnections between H-W and U(1) and SU(2) coherent states, to highlight

some special features of the Klauder resolution of the identity and its modifications. This

helps set the stage for a unified analysis of the relations between the appropriate H-W

SCS and SU(3) SCS and GCS carried out in detail in Sections IV, V, and VI. Section IV

contains a detailed classification of the orbits of H-W SCS under SU(3) action; we identify

both generic orbits of maximal dimension, and non generic lower order ones. The rest of

Section IV carries out the SU(3) harmonic analysis of generic orbits lying in the subspace

H0. In Section V we examine the remaining generic orbits, lying in subspaces Hκ which are

generalisations of H0 and are labelled by a complex parameter κ. Some calculational details
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pertaining to this Section are put together in an appendix. Section VI contains an analysis

of the SU(3) content of a family of H-W SCS belonging to a non generic orbit under SU(3)

action. Some concluding remarks are presented in Section VII.

II. REVIEW OF SCHWINGER CONSTRUCTION FOR SU(3)

This construction uses six independent sets of oscillator creation and annihilation oper-

ators â†j , b̂
†
j , âj, b̂j , j = 1, 2, 3, among which the only non vanishing commutators are

[âj, â
†
k] = [̂bj , b̂

†
k] = δjk, j, k = 1, 2, 3. (2.1)

The Hilbert space H carrying an irreducible representation of these operators is the

tensor product H = H(a) × H(b), where H(a) and H(b) are the individual Hilbert spaces

carrying irreducible representations of the independent sets âj , â
†
j and b̂j , b̂

†
j respectively.

The Schwinger UR of SU(3) acts on H, and its hermitian generators are [1]

Qα = Q(a)
α +Q(b)

α ,

Q(a)
α =

1

2
â†λαâ, Q

(b)
α = −1

2
b̂†λ∗α b̂, α = 1, 2, . . . , 8. (2.2)

Here 1
2
λα are the eight hermitian traceless 3 × 3 matrices generating the defining UIR

(1, 0) of SU(3) [8].(For ease in writing, the UIR’s of SU(3) will be denoted by (p, q) where

p, q = 0, 1, 2, . . . , independently, instead of the more elaborate notation D(p,q)).

The independent mutually commuting generators Q(a)
α , Q(b)

α lead to specific multiplicity-

free UR’s U (a)(A),U (b)(A) of SU(3) on H(a),H(b) respectively. Here A is a general matrix

in the UIR (1, 0). The UR U (a)(A) is a direct sum of the ‘triangular’ UIR’s (p, 0) of SU(3),

for p = 0, 1, 2, . . .; and similarly U (b)(A) is a direct sum of the conjugate ‘triangular’ UIR’s

(0, q). We indicate this by

U (a) =
∞
∑

p=0,1,...

⊕ (p, 0),

U (b) =
∞
∑

q=0,1,...

⊕ (0, q). (2.3)
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The total generators Qα defined in eqn(2.2) then generate the product UR U(A) = U (a)(A)×

U (b)(A) on H, and this is the Schwinger UR of SU(3). It does contain every UIR (p, q) of

SU(3), but each one occurs an infinite number of times. This can be seen from the Clebsch-

Gordan decomposition of the direct product (p, 0)× (0, q) of two triangular UIR’s [9]:

(p, 0)× (0, q) =
r
∑

ρ=0,1,...

⊕ (p− ρ, q − ρ), r = min (p, q), (2.4)

which is multiplicity-free. Applying this to each pair in the product U (a) × U (b) we easily

reach the stated conclusion.

An efficient way to handle this infinite multiplicity is based on the use of the semi-

simple non compact Lie group Sp(2, R), more specifically some of its UIR’s belonging to the

positive discrete class [10]. In the present context the hermitian Sp(2, R) generators and

their commutation relations are:

J0 =
1

2

(

â†j âj + b̂†j b̂j + 3
)

,

K1 =
1

2

(

â†j b̂
†
j + âj b̂j

)

,

K2 =
−i
2

(

â†j b̂
†
j − âj b̂j

)

; (2.5a)

[J0, K1] = i K2, [J0, K2] = −i K1, [K1, K2] = −i J0. (2.5b)

The crucial property is that the SU(3) and the Sp(2, R) generators mutually commute:

[J0 or K1 or K2, Qα] = 0. (2.6)

Thus the two UR’s commute as well, and Sp(2, R) is just large enough to be able to com-

pletely lift the degeneracy or multiplicity of SU(3) UIR’s. In other words, the UIR’s of

the product group SU(3) × Sp(2, R) that occur in H do so in a multiplicity-free manner.

This is reflected at the Hilbert space level in the following manner. We first decompose

the individual Hilbert spaces H(a),H(b) into mutually orthogonal subspaces reflecting the

decompositions (2.3):
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H(a) =
∞
∑

p=0,1,...

⊕ H(p,0),

H(b) =
∞
∑

q=0,1,...

⊕ H(0,q). (2.7)

The subspace H(p,0) ⊂ H(a) is of dimension d(p, 0) = 1
2
(p+1)(p+2); consists of all eigenvec-

tors in H(a) of the total a- type number operator â†jâj with eigenvalue p; and carries the UIR

(p, 0) of SU(3). Similarly the subspace H(0,q) ⊂ H(b) is of dimension d(0, q) = 1
2
(q+1)(q+2);

consists of all eigenvectors in H(b) of the total b-type number operator b̂†j b̂j with eigenvalue

q; and carries the UIR (0, q) of SU(3). After forming the direct product H(a) ×H(b), using

eqn.(2.7) and the Clebsch-Gordan decomposition (2.4), we arrive at an orthogonal subspace

decomposition for H = H(a) ×H(b):

H =
∞
∑

p,q=0,1,...

⊕ H(p,0) ×H(0,q)

=
∞
∑

p,q=0,1,...

∞
∑

ρ=0,1,...

⊕ H(p,q;ρ),

H(p,q;ρ) ⊂ H(p+ρ,0) ×H(0,q+ρ). (2.8)

For each ρ,H(p,q;ρ) is of dimension d(p, q) = 1
2
(p + 1)(q + 1)(p + q + 2) and carries the

ρth occurrence of the UIR (p, q) of SU(3). For ρ′ 6= ρ,H(p,q;ρ′) and H(p,q;ρ) are mutually

orthogonal subspaces; and if p′ 6= p and/or q′ 6= q, again H(p′,q′;ρ) and H(p,q;ρ) are mutually

orthogonal. An orthonormal basis for H consists of vectors labelled as follows:

|p, q ; I,M, Y ;m >:

p, q = 0, 1, 2, . . . ,

m = k, k + 1, k + 2, . . . ,

k =
1

2
(p+ q + 3) =

3

2
, 2,

5

2
, . . . . (2.9)

Here I,M, Y are ‘magnetic quantum numbers’ within the UIR (p, q) of SU(3), with well-

known ranges [11]; and m is the eigenvalue of the Sp(2, R) generator J0. The total numbers

of a-type quanta and of b-type quanta in the state displayed in eqn.(2.9) are:
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Na = eigenvalue of â†j âj = p+m− k,

Nb = eigenvalue of b̂†j b̂j = q +m− k. (2.10)

For fixed p, q and m, as I,M, Y vary within the UIR (p, q) of SU(3), we obtain an orthonor-

mal basis for H(p,q;m−k). Switching to ρ = m− k we can say:

H(p,q;ρ) = Sp{|p, q; I,M, Y ; k + ρ > |p, q, ρ fixed , I,M, Y varying} (2.11)

On the other hand, if we keep p, q, I,M, Y fixed and let m vary, we get an orthonormal

basis for a subspace of H carrying the infinite dimensional positive discrete class UIR D
(+)
k

of Sp(2, R) [10]. In other words, each of these UIR’s D
(+)
k of Sp(2, R) occurs d(2k − 3, 0) +

d(2k − 4, 1) + . . . + d(1, 2k − 4) + d(2k − 3) times, being the sum of the dimensions of the

SU(3) UIR’s (2k−3, 0), (2k−4, 1), . . . (1, 2k−4), (0, 2k−3). (The range of 2k is 3, 4, 5, . . .).

Since our main interest is in UR’s and UIR’s of SU(3), and we wish to use UIR’s of Sp(2, R)

mainly to keep track of the multiplicities of the former, we do not introduce special notations

for the subspaces of H carrying the various Sp(2, R) UIR’s. However we do note that, as

stated earlier, each of the UIR’s (p, q)×D(+)
1
2
(p+q+3)

of SU(3)× Sp(2, R) appears just once in

H, for p, q = 0, 1, 2, . . ..

At the generator level we can say that when the SU(3) generators Qα act on

|p, q; I,M, Y ;m >, they alter only the quantum numbers I,M, Y in a manner known from the

representation theory of SU(3) [12]; while the actions by the Sp(2, R) generators J0, K1, K2

lead only to changes in the quantum number m according to the UIR D
(+)
k [10].

It is in this manner that the Sp(2, R) structure helps us handle the multiplicity problem

of UIR’s of SU(3) which is an unavoidable feature of the Schwinger construction. One

can now look for a natural subspace of H,H0 say, such that it carries every UIR (p, q) of

SU(3) exactly once. This can be done if we restrict ourselves to the ‘ground state’ within

each Sp(2, R) UIR D
(+)
k , namely if we set m = k. This amounts to picking up the ‘first’

occurrence of each UIR (p, q) of SU(3) corresponding to ρ = 0, or to the ‘leading piece’ in

the reduction of each tensor product H(p,0) ×H(0,q):
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H0 =
∞
∑

p,q=0,1,...

⊕ H(p,q;0)

= Sp{|p, q; I,M, Y ; k > |p, q, I,M, Y varying}

= {|ψ >∈ H|(K1 − i K2)|ψ >= 0}. (2.12)

The UR of SU(3) carried by H0,D0 say, may be called a Generating Representation for this

group, in the sense that each UIR is present, and exactly once:

D0 =
∞
∑

p,q=0,1,...

⊕ (p, q). (2.13)

It now turns out that just this property is also present in the UR D(ind,0)
SU(2) of SU(3)

induced from the trivial one-dimensional UIR of the canonical SU(2) subgroup [13]. The

corresponding Hilbert space is denoted by H(ind,0)
SU(2) . (Hereafter, for simplicity, the superscript

zero and the subscript SU(2) will be omitted.) We can set up a one-to-one mapping between

H0 and H(ind) preserving scalar products and SU(3) actions, thus realising the equivalence

of D0 and D(ind). First we describe H0 and D0 more explicitly. Denote by |0, 0 > the Fock

vacuum in H annihilated by âj and b̂j , j = 1, 2, 3. Then a general vector in H0 is a collection

of symmetric traceless tensors with respect to SU(3), one for each UIR (p, q):

|ψ >∈ H0 :

|ψ > =
∞
∑

p,q=0,1,...

ψ
j1...jp

k1...kq
â†j1 . . . â

†
jp
b̂†k1

. . . b̂†kq
|0, 0 >; (2.14a)

ψ
jP (1)...jP (p)

kQ(1)...kQ(q)
= ψ

j1...jp

k1...kq
, P ∈ Sp, Q ∈ Sq; (2.14b)

ψ
j j2...jp

j k2...kq
= 0 (2.14c)

< ψ|ψ > = ‖ ψ ‖2=
∞
∑

p,q=0,1,...

p! q! ψ
j1...jp

k1...kq

∗ψ
j1...jp

k1...kq
; (2.14d)

D0(A)|ψ >= |ψ′ >,
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ψ
′ j1...jp

k1...kq
= Aj1

ℓ1 . . . A
jp

ℓp
Ak1 ∗

m1
. . . Akq ∗

mq
. . . ψℓ1...ℓp

m1...mq
. (2.14e)

Here Sp and Sq are the permutation groups on p and on q objects respectively. Turning to

H(ind) and D(ind), the former consists of complex square integrable functions on the coset

space SU(3)/SU(2), namely the unit sphere in C3 [14]:

H(ind) =







ψ(ξ) ∈ C, ξ ∈ C3| ‖ ψ ‖2=
∫ 3
∏

j=1

(

d2ξj
π

)

δ
(

ξ†ξ − 1
)

|ψ(ξ)|2






. (2.15)

The group action is by change of argument:

D(ind)(A)ψ = ψ′,

ψ′(ξ) = ψ(A−1ξ) (2.16)

.

Then the one-to-one mapping betweenH0 andH(ind) consistent with the two norm definitions

(2.14d, 2.15) and the two group actions (2.14e, 2.16) is:

|ψ > =
{

ψ
j1...jp

k1...kq

}

∈ H0 ←→

ψ(ξ) =
∞
∑

p,q=0,1,...

√

(p+ q + 2)! ψ
j1...jp

k1...kq
ξj1 . . . ξjp

ξ∗k1
. . . ξ∗kq

∈ H(ind) (2.17)

The fact that ψ(ξ) ∈ H(ind) is expressible in this way in terms of traceless symmetric tensors

is a consequence of the constraint ξ†ξ = 1.

In this way we see how the Schwinger UR U(A) of SU(3) contains within it a multiplicity-

free UR D0 including every UIR of SU(3), which is also accessible by the method of induced

representations. We will see later that in fact there is a continuously infinite family of

subspaces Hκ ⊂ H, labelled by a complex number κ, such that each Hκ is SU(3) invariant

and carries a UR Dκ of SU(3) which, like D0, is multiplicity free and contains each UIR

(p, q) without exception.
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III. INTERPLAY BETWEEN HEISENBERG-WEYL AND UNITARY GROUP

COHERENT STATES - ONE AND TWO DEGREES OF FREEDOM

We now turn to an examination of the interconnections between H-W coherent states

and unitary group coherent states. In each case there are both standard and generalised

coherent state systems. In this Section we look at the cases of n = 1 and n = 2 degrees of

freedom, the relevant unitary groups being U(1) and SU(2) and there being no multiplicity

problems. We review briefly some known material but highlighting some special aspects.

This material is then used as guidance when we take up in the next Section the case n = 6

and the Schwinger SU(3) construction.

One degree of freedom

It is convenient to be able to switch between the use of non hermitian creation and

annihilation operators â†, â and their hermitian position and momentum components q̂, p̂:

â =
1√
2
(q̂ + ip̂), â† =

1√
2
(q̂ − ip̂). (3.1)

For one degree of freedom, the canonical commutation relation

[â, â†] = 1,

[q̂, p̂] = i, (3.2)

is preserved under the linear inhomogeneous transformation

(

q̂

p̂

)

→
(

q̂′

p̂′

)

= S

(

q̂

p̂

)

+

(

q0
p0

)

;

S =





a b

c d



 , ad− bc = 1; q0, p0 ∈ R. (3.3)

Here S is an element of Sp(2, R) = SL(2, R), and these transformations constitute the

semi direct product of Sp(2, R) with the two-dimensional Abelian group of phase-space

translations. However, as is well known, these transformations are realised on the Hilbert

space H, on which â†, â or q̂, p̂ act irreducibly, by unitary transformations forming a faithful
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UIR of a group G(1) which is the semi-direct product of the metaplectic group Mp(2) with

the H-W group [15]:

G(1) = Mp(2)× {H-W group}. (3.4)

Each factor here is a three parameter Lie group, so G(1) is a six-parameter Lie group. The

H-W group is the invariant subgroup; it is non Abelian because of the nonzero right hand

sides in the commutators (3.2). Its generators are q̂, p̂ and the unit operator on H. The

homogeneous partMp(2) is a double cover of Sp(2, R); its generators are hermitian quadratic

expressions in â† and â, or in q̂ and p̂ [16]. In particular the U(1) generator is 1
2

(

â†â + 1
2

)

,

and this is the analogue of J0 in the Sp(2, R) Lie algebra (2.5).

As stated above, H carries a particular UIR of G(1). Upon restriction to the H-W

subgroup, this representation remains irreducible; it is the result of exponentiating the well-

known unique Stone-von Neumann representation of the commutation relations (3.2) [17].

On the other hand, upon restriction to the Mp(2) subgroup, we get a direct sum of two

UIR’s of the positive discrete class, namely D
(+)
1/4 and D

(+)
3/4 [18]. These act on the subspaces

H(±) ofH consisting of even/odd parity states or Schrodinger wave functions. The nontrivial

H-W generators q̂ and p̂ intertwine these two UIR’s of Mp(2).

With this background, we collect some remarks regarding various systems of coherent

states. As both G(1) and the H-W group are represented irreducibly on H, for any choice

of a (normalised) fiducial vector ψ0 ∈ H we can build up a family of G(1) - GCS or a

family of H-W GCS [5]. These are the orbits of ψ0 under G(1) action and under H-W action

respectively, and the latter orbit is a subset of the former. In the case of Mp(2), we can

construct systems of GCS separately in H(+) and in H(−), associated with any choices of

fiducial vectors in these subspaces. Examples are the single mode squeezed coherent states

and their variations [18].

Now let us limit ourselves to H-W coherent states, and to their behaviours under the

maximal compact U(1) subgroup of Mp(2). As mentioned earlier the generator of this U(1)

is 1
2

(

â†â + 1
2

)

. However for simplicity we shall work with

11



U(α) = e−iαâ†â , 0 ≤ α < 2π. (3.5)

Conjugation by U(α) has these effects on â, â†, and the unitary phase space displacement

operators D(z) which represent elements of the H-W group:

U(α) â U(α)−1 = eiαâ,

U(α) â† U(α)−1 = e−iαâ†;

D(z) = exp
(

zâ† − z∗â
)

,

U(α) D(z) U(α)−1 = D
(

e−iαz
)

. (3.6)

The H-W SCS correspond to the choice of the Fock vacuum |0 > as the fiducial vector [3]:

|z >= D(z)|0 > , z ∈ C. (3.7)

Invariance of |0 > under U(α) action then leads to the behaviour

U(α) |z >= | e−iαz > . (3.8)

These states enjoy the well-known Klauder formula for resolution of the identity operator:

∫

C

d2z

π
|z >< z| = 1 on H. (3.9)

This can be viewed as a consequence of the Schur lemma and the square integrability of the

Stone-von Neumann UIR of the H-W group [19], since the uniform integration measure on

the complex plane in (3.9) is essentially the invariant measure on the H-W group.

We now examine two variations of these familiar results. By eqn.(3.8), the left hand side

of eqn.(3.9) is explicitly U(1)-invariant. We can consider including some nontrivial function

f(z∗z) inside the integral, which would maintain U(1) invariance, and define the operator

A(f) =
∫

C

d2z

π
f(z∗z) |z >< z|. (3.10)

As long as f(z∗z) is not a constant, the integration measure here is no longer the invariant

measure on the H-W group, so the Schur lemma is not available. Formally,

12



f(z∗z) 6= constant ⇐⇒ D(z) A(f) 6= A(f) D(z), (3.11)

so there is no reason to expect A(f) to be a multiple of the identity. However, U(1) invari-

ance,

U(α) A(f) = A(f) U(α), (3.12)

implies that A(f) is a linear combination of projections on to the various Fock states, and

indeed we find:

A(f) =
∞
∑

n=0

∞
∫

0

dx f(x) xn e−x · |n >< n|
n!

. (3.13)

Clearly the only choice of f leading to the Klauder formula (3.9) is f = 1. On the other

hand, if we choose f(z∗z) = δ (z∗z − r2
0) for some real positive r0, we are limiting ourselves

to a subset of H-W SCS lying on a circle in the complex plane. This is essentially the U(1)

group manifold; and if r0 = 1 we have exactly the manifold S1, that is, we have a U(1)-worth

of H-W SCS. In this case we find:

f(x) = δ
(

x− r2
0

)

:

A(f) =
∫

d2z

π
δ
(

z∗z − r2
0

)

|z >< z|

=

2π
∫

0

dθ

2π
|r0 eiθ >< r0 e

iθ|

=
∞
∑

n=0

e−r2
0
r2n
0

n!
|n >< n|

= e−r2
0 · r2N̂

0 /N̂ !,

N̂ = â†â. (3.14)

This means that even though the subset of H-W SCS
{

|r0eiθ >, 0 ≤ θ < 2π
}

lying on a circle

in the complex plane is ‘total’ [20], and each Fock state |n > can be projected out of this

subset as

|n >= er2
0/2 ·
√
n! r−n

0 ·
2π
∫

0

dθ

2π
· e−inθ · |r0eiθ >, (3.15)
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we cannot obtain a Klauder-type resolution of the identity using them. Thus this U(1)-worth

of SCS does not form a system of GCS in the Klauder sense.

The next variation we consider is replacing the Fock vacuum |0 > by a generic unit

vector |ψ0 >∈ H as fiducial vector. We then get a family of H-W GCS [21]:

|z;ψ0 >= D(z) |ψ0 >, z ∈ C. (3.16)

Once again, Schur lemma leads to the Klauder resolution of the identity,

∫

d2z

π
|z;ψ0 >< z; ψ0| = c.1, (3.17)

for some constant c; and square integrability ensures that c is finite. If in the manner of

eqn.(3.10) we next define

A(f ;ψ0) =
∫

d2z

π
f(z∗z) |z;ψ0 >< z;ψ0|, (3.18)

then on the one hand we do not expect A(f ;ψ0) to be a multiple of the unit operator since we

lose Schur lemma; and on the other hand we do not even expect A(f ;ψ0) to commute with

U(α). That is, in general A(f ;ψ0) is not a linear combination of the projections |n >< n| on

to the Fock states. The exceptions are when |ψ0 > is an eigenstate of â†â, ie., a Fock state

|n0 > for some integer n0. This possibility arises because U(1) is Abelian, and its UIR’s are

all one-dimensional. In that case we find [22]:

|ψ0 > = |n0 >:

U(α)|z;n0 > = e−iαn0 |e−iαz;n0 >,

U(α)A(f ;n0) = A(f ;n0)U(α);

A(f ;n0) =
∞
∑

n=0

Cn,n0(f) |n >< n|,

Cn,n0(f) =
n<!

n>!

∞
∫

0

dx f(x) x|n−n0|e−x
(

L|n−n0|
n<

(x)
)2
,

n> = max (n, n0), n< = min (n, n0). (3.19)

When n0 = 0 we recover eqn.(3.13). If we next choose f(z∗z) = δ (z∗z − r2
0), thus limiting

ourselves to a U(1)-worth of H-W GCS, we find in place of eqn.(3.14)):
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f(x) = δ
(

x− r2
0

)

:

A(f ;n0) =
∫ d2z

π
δ
(

z∗z − r2
0

)

|z;n0 >< z;n0|

=

2π
∫

0

dθ

2π
|r0eiθ;n0 >< r0e

iθ;n0|

=
∞
∑

n=0

e−r2
0r2n

0

(

L|n−n0|
n<

(

r2
0

))2 n<!

n>!
|n >< n|. (3.20)

The main result of these considerations is that with SCS or GCS for the H-W group for

one degree of freedom, we can get a Klauder type resolution of the identity only if we use

the invariant measure on the group, but understandably not if we limit ourselves to a subset

amounting to a U(1)-worth of these states.

Two degrees of freedom

Here we are interested in the interplay between coherent state systems for the relevant

five-parameter H-W group, and the unitary groups U(2) and SU(2) which were the subject

of the original Schwinger construction.

The non vanishing commutators in non hermitian and hermitian forms are

[âr, â
†
s] = δrs,

[q̂r, p̂s] = i δrs, r, s = 1, 2. (3.21)

There is no cause for confusion if again we write H for the Hilbert space carrying the irre-

ducible Stone-von Neumann representation of these relations. The largest natural invariance

group now acts on the four q̂’s and p̂’s as follows:

(

q̂r
p̂r

)

−→
(

q̂′r
p̂′r

)

= S

(

q̂r
p̂r

)

+

(

qr,0
pr,0

)

. (3.22)

Here S ∈ Sp(4, R) is a four-dimensional real symplectic matrix, and qr,0, pr,0 denote an

Abelian phase space translation [23]. These fourteen parameter transformations preserve

(3.21). They make up the semi direct product of Sp(4, R), which is ten dimensional, with

the four dimensional Abelian translations. On the space H, however, these transformations

are realised as a faithful UIR of the fifteen-parameter semi direct product
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G(2) = Mp(4)× {H-W group}. (3.23)

Here the invariant subgroup is the five-parameter non Abelian H-W group appropriate for

two degrees of freedom, while the homogeneous part is the metaplectic group Mp(4), a

double cover of Sp(4, R). The generators of the former are q̂r, p̂r and the unit operator,

while those of the latter are hermitian symmetrised quadratics in q̂r, p̂r.

The Hilbert space H carries a UIR of G(2), which remains irreducible when restricted to

the H-W group. On the other hand, Mp(4) is represented by the direct sum of two UIR’s,

one each on the subspaces of even and odd parity states in H. The general statements that

can be made about GCS with respect to G(2),Mp(4) and the H-W group are similar to

those in the one degree of freedom case. Once again, our main interest is in the connections

between H-W and SU(2) coherent state systems.

The maximal compact subgroup of Mp(4) is U(2). The SU(2) part of U(2) has the

generators and commutation relations ( Schwinger construction)

Jj =
1

2
â†σj â,

[Jj, Jk] = i ǫjkℓJℓ, j, k = 1, 2, 3. (3.24)

The U(1) part of U(2) has as generator the total number operator

N̂ = N̂1 + N̂2,

N̂r = â†râr,

[Jj , N̂ ] = 0. (3.25)

For general u ∈ U(2), we write U(u) for the corresponding unitary operator on H, generated

by Jj , N̂ . Then in place of eqn.(3.6) we now have:

U(u)âU(u)−1 = u−1â,

U(u)â†U(u)−1 = â†u;

D(z) = exp
(

â†z − z†â
)

,

U(u)D(z)U(u)−1 = D(uz). (3.26)
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Here z = (z1, z2)
T is a complex two-component column vector, while â and â† are written

as column and row vectors respectively.

The reduction of U(u) into UIR’s is accomplished by the break-up of H into the mu-

tually orthogonal eigenspaces H(j) of N̂ with eigenvalues 2j, where j = 0, 1/2, 1, . . .. The

orthonormal Fock basis for H is made up of the simultaneous eigenvectors of N̂1 and N̂2:

|n1, n2 > =

(

â†1
)n1

(

â†2
)n2

√
n1!n2!

|0, 0 >,

N̂r |n1, n2 > = nr |n1, n2 >, r = 1, 2. (3.27)

For the purposes of reduction of U , with no danger of confusion we use vectors labelled

|j,m > and defined in terms of these Fock states by

|j,m > = |n1, n2 >,

n1 =
1

2
(j +m), n2 =

1

2
(j −m),

j = 0, 1/2, 1, . . . , m = j, j − 1, . . . ,−j. (3.28)

Then the subspaces H(j) are given by

H(j) = Sp{|j,m > |j fixed, m = j, j − 1, . . . ,−j}

j = 0, 1/2, 1, . . . . (3.29)

The operators U(u) leave each H(j), of dimension (2j + 1), invariant, and reduce thereon

to the spin j UIR of SU(2), along with the value 2j for the U(1) generator N̂ . This is the

known multiplicity- free reduction of the SU(2) Schwinger construction [2]. The projection

operator Pj onto the subspace H(j), which will be needed later, is

Pj =
+j
∑

m=−j

|j,m >< j,m| = δN̂,2j . (3.30)

The H-W SCS use the Fock vacuum |0, 0 > as the fiducial vector:

|z >= D(z) |0, 0 >, (3.31)
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and on account of eqn.(3.26) they have the U(2) behaviour

U(u)|z >= | u z > . (3.32)

This is because |0, 0 > is invariant under U(2) action; in fact it is the only such vector in

H. Therefore the general H-W SCS |z > is obtainable by suitable U(2) action from a SCS

for the first degree of freedom alone:

|z > = U(u) |z(0) >, suitable u ∈ U(2),

z(0) = r

(

1

0

)

,

r2 = z†z, 0 ≤ r <∞. (3.33)

To bring out the connection between these H-W SCS and SU(2) SCS (identified below)

in the clearest possible manner, we parametrise z and define elements A(θ, φ) ∈ SU(2) in a

coordinated manner:

z = eiαA(θ, φ)z(0),

A(θ, φ) = e
−i
2

φσ3e
−i
2

θσ2 ∈ SU(2),

0 ≤ θ ≤ π, 0 ≤ α, φ ≤ 2π;

z1 = r eiαe−iφ/2 cos θ/2, z2 = r eiαeiφ/2 sin θ/2. (3.34)

We view θ, φ as spherical polar angles on S2. Then eqn.(3.33) assumes the more detailed

form

|z > = eiαN̂U(A(θ, φ))|z(0) >,

|z(0) > = er(â†
1−â1)|0, 0 >

= e−
1
2

r2
∞
∑

j=0,1/2,1,...

r2j

√
2j!
|j, j > . (3.35)

The component of |z(0) > within H(j) is a multiple of |j, j >, the highest weight vector in

the spin j UIR of SU(2). By definition, the SU(2) SCS in any UIR are based on the choice

of highest weight vector (or any SU(2) transform of it) as fiducial vector [24]. This vector
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is the eigenvector of J3 with maximum eigenvalue j, so any SU(2) transform of it is an

eigenvector of a suitable combination of Jk with the same (maximum) eigenvalue. These

remarks lead to the following notations for SU(2) SCS:

U(A(θ, φ)) |j, j >≡ |j, n̂(θ, φ) >

=
j
∑

m=−j

√

2j!

(j +m)!(j −m)!
e−imφ(cos θ/2)j+m(sin θ/2)j−m|j,m >,

n̂(θ, φ) ·
→

J |j, n̂(θ, φ) > = j|j, n̂(θ, φ) >,

n̂(θ, φ) = (sin θ cosφ, sin θ sin φ, cos θ) =
1

r2
z†σ z ∈ S2. (3.36)

Thus the family of SU(2) SCS in the spin j UIR is {|j, n̂(θ, φ) >}, one for each point on S2

which is the coset space SU(2)/U(1). For these states we have the well-known properties

< j, n̂(θ′, φ′)|j, n̂(θ, φ) > =
(

cos θ′/2 cos θ/2 ei(φ′−φ)/2 + sin θ′/2 sin θ/2 ei(φ−φ′)/2
)2j

, (3.37a)

A ∈ SU(2) : U(A)|j, n̂ > = eiω(A;n̂)|j, R(A)n̂ >, (3.37b)

where R(A) ∈ SO(3) is the image of A ∈ SU(2) under the SU(2) → SO(3) homomor-

phism, and ω(A; n̂) is a (Wigner) phase angle [25]. Combining eqns.(3.35, 3.36) we get the

connection between H-W and SU(2) SCS:

|z >= e−
1
2

r2
∞
∑

j=0,1/2,1,...

(r eiα)2j

√
2j!

|j, n̂(θ, φ) > . (3.38)

We trace this direct connection to the simple U(2) action (3.32), and the expansion (3.35)

of |z(0) > in terms of SU(2) highest weight states.

We now look at the Klauder resolution of unity for the H-W SCS, highlighting the SU(2)

SCS structure. Using the parametrisation (3.34) for z we find:

∫ d2z1
π

d2z2
π
|z >< z| = 1

4π2

∞
∫

0

r3dr

2π
∫

0

dα
∫

S2

dΩ(θ, φ)| z >< z|
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=
1

4π2

∫

r3dr dα dΩ(θ, φ)
∞
∑

j,j′=0,1/2,1,...

e−r2

r2(j+j′)e2iα(j−j′) ×

|j, n̂(θ, φ) >< j′, n̂(θ, φ)|/
√

2j! 2j′!

=
1

2π

∞
∑

j=0,1/2,1,...

1

2j!

∞
∫

0

r3dr e−r2

r4j
∫

S2

dΩ(θ, φ) |j, n̂(θ, φ) >< j, n̂(θ, φ)|. (3.39)

Here dΩ(θ, φ) is the element of solid angle on S2. Using eqn.(3.37b) we see that the integral

over S2 results in an operator invariant under the spin j UIR of SU(2) appearing on H(j),

therefore by Schur lemma for this UIR we have:

∫

S2

dΩ(θ, φ) |j, n̂(θ, φ) >< j, n̂(θ, φ)| = 4π

2j + 1
Pj . (3.40)

Substituting this in eqn.(3.39) we get

∫ d2z1
π

d2z2
π
|z >< z| = 2

∞
∑

j=0,1/2,1,...

1

(2j + 1)!

∞
∫

0

r3dr e−r2 · r4j · Pj

=
∞
∑

j=0,1/2,1,...

Pj

= 1 on H. (3.41)

This is known and expected on account of the Schur lemma for the H-W UIR, since the

integration measure is the invariant one on the H-W group. At the same time we can

immediately trace the consequences of modifying the measure in a U(2)-invariant way, when

we lose the possibility of using the lemma for the H-W UIR:

A(f) =
∫

d2z1
π

d2z2
π

f(z†z) |z >< z|

=
∞
∑

j=0,1/2,1,...

∞
∫

0

dx f(x)x2j+1 e−x Pj

(2j + 1)!
,

f 6= constant⇐⇒ D(z) A(f) 6= A(f) D(z). (3.42)

With the particular choice f(x) = δ (x− r2
0) for real positive r0, we limit ourselves to an

“SU(2)-worth” of H-W SCS, and in that case we have:
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f(x) = δ
(

x− r2
0

)

:

A(f) =
∫

d2z1
π

d2z2
π

δ
(

z†z − r2
0

)

|z >< z|

= r2
0

2π
∫

0

dα

2π
·
∫

S2

dΩ(θ, φ)

4π
·
∣

∣

∣

∣

eiαA(θ, φ)

(

r0
0

)

〉〈eiαA(θ, φ)

(

r0
0

)

∣

∣

∣

∣

=
∞
∑

j=0,1/2,1,...

e−r2
0 · (r2

0)
2j+1

(2j + 1)!
Pj . (3.43)

The structure of these results (3.42, 3.43) is as expected since A(f) does commute with U(u).

Lastly we consider briefly some aspects of H-W GCS in the case of two degrees of freedom.

These arise by replacing the Fock vacuum |0, 0 > by some other (normalised) vector |ψ0 >∈

H as fiducial vector:

|z;ψ0 >= D(z) |ψ0 > . (3.44)

Schur lemma and square integrability of the H-W UIR ensure the Klauder formula

∫

d2z1
π

d2z2
π
|z;ψ0 >< z;ψ0| = c.1, (3.45)

for some finite constant c. However, if |ψ0 > 6= |0, 0 >, we never have any simple behaviour

for these GCS under U(2) action. This is in contrast to eqn.(3.19) in the case of one degree

of freedom. The reason is that the only one-dimensional UIR of SU(2) is the trivial UIR,

all others are of dimension two or greater. This can be traced to the non Abelian nature of

SU(2), in contrast to U(1). For this reason we are unable to obtain |z;ψ0 > for general z

from some specially chosen and simpler state |z(0);ψ0 > via U(2) action; so the possibility

of relating H-W GCS to some sequence of SU(2) GCS’s within each subspace H(j) is also

lost. Going one step further, if we consider a modified U(2)-invariant measure in place of

the translation invariant one in eqn.(3.45), but for a GCS system, and if we define

A(f ;ψ0) =
∫

d2z1
π

d2z2
π

f(z†z) |z;ψ0 >< z;ψ0|, (3.46)
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for |ψ0 > 6= |0, 0 >, this will not commute with U(u) and will not reduce to a linear combi-

nation of the projections Pj .

IV. RELATION BETWEEN H-W AND SU(3) SCS, RESTRICTION TO H0

Now that we have explored the relationships between H-W SCS and unitary group SCS

for one and two degrees of freedom, we proceed to the SU(3) Schwinger construction recalled

in Section 2, and the corresponding H-W SCS for six oscillators. Here we invert the order

of development as compared to the previous Section. We recall first the definition of SU(3)

SCS within each UIR, then proceed to the H-W system. The specific new feature is the

multiplicity problem, to be handled using Sp(2, R).

SU(3) Standard Coherent States

The familiar orthonormal basis states within the UIR (p, q) of SU(3), corresponding to

the canonical subgroup chain U(1) ⊂ U(2) ⊂ SU(3), consist of a set of isospin-hypercharge

multiplets (cf.eqns.(2.9, 2.11)) [26]:

|p, q ; IMY 〉,

I =
1

2
(r + s), Y =

2

3
(q − p) + r − s,

M = I, I − 1, . . . , −I + 1,−I,

0 ≤ r ≤ p, 0 ≤ s ≤ q. (4.1)

The highest weight state is the one with maximum possible value of M :

|p, q; 1

2
(p+ q),

1

2
(p+ q),

1

3
(p− q)〉. (4.2)

In terms of the realisation of the UIR (p, q) via irreducible tensors T =
{

T
j1...jp

k1...kq

}

, this state

corresponds to the component

T 11...1
22...2 . (4.3)

From this one can see that the stability group (upto phase factors) of the state (4.2) is a

subgroup H ⊂ SU(3) dependent on p and q. Disregarding the trivial UIR (0, 0), we have:
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p ≥ 1, q = 0 : H = U(2) on dimensions 2, 3; (4.4a)

p = 0, q ≥ 1 : H = U(2) on dimensions 1, 3; (4.4b)

p, q ≥ 1 : H = diagonal subgroup of SU(3) (4.4c)

(Here the dimensions 1,2,3 refer to the space of the defining UIR (1, 0)). In eqn.(4.4a)

(eqn.(4.4b)), a U(2) transformation on dimensions 2 and 3 (1 and 3) is to be accompanied

by a phase change in dimension 1(2) to preserve unimodularity of the SU(3) transformation.

The dimensionalities of these three stability groups are four, four and two respectively.

The SU(3) SCS within the UIR (p, q) are the states obtained by acting with all SU(3)

elements on the highest weight state (4.2). They may be written as |p, q;A >, A ∈ SU(3):

|p, q;A >= U(A)|p, q; 1

2
(p+ q),

1

2
(p+ q),

1

3
(p− q) > . (4.5)

Therefore in the UIR’s (p, 0) and (0, q), they form four- parameter continuous families of

normalised states; while in (p, q) with p, q ≥ 1 we have six-parameter continuous families.

Referring to eqn.(4.4) we have:

h ∈ H : |p, q;Ah >= eiϕ(h)|p, q;A >, (4.6)

for some phase ϕ(h).

These SU(3) SCS have been studied in detail in ref. [27] , individually within each UIR.

As we see below, the Schwinger construction helps us generate them collectively and explore

some of their properties in an efficient manner, just as in eqn.(3.38) we have a construction

of the SU(2) SCS in all its UIR’s at one stroke.

If within the UIR (p, q) we choose as fiducial vector some vector other than the highest

weight vector (4.2) or any SU(3) transform of it, then we obtain a family of SU(3) GCS.

For the present we consider only SCS’s, turning to particular GCS’s in subsequent Sections.

In the Hilbert space H of the SU(3) Schwinger construction the ‘first’ occurrence of the

UIR (p, q) is in the subspace H(p,q;0) ⊂ H0 which is annihilated by K−. The corresponding
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highest weight state (4.2), using the complete notation of eqn.(2.9) and recalling eqn.(4.3),

is:

|p, q; 1

2
(p + q),

1

2
(p + q),

1

3
(p− q); 1

2
(p + q + 3) >=

(

â†1
)p (

b̂†2
)q

√
p!q!

|0, 0 >∈ H(p,q;0) ⊂ H0. (4.7)

It follows that all these highest weight states, one for each UIR (p, q), are generated by the

special H-W SCS

|z1, 0, 0; 0, w2, 0 >= D(z1, 0, 0, 0, w2, 0)|0, 0 >∈ H0,

D(z, w) = exp
(

z · â† − z∗ · â+ w · b̂† − w∗ · b̂
)

= exp
(

−1

2
z†z − 1

2
w†w + z · â† + w · b̂†

)

. (4.8)

Here z and w are independent complex 3-vectors, andD(z, w) are the displacement operators

for the six-oscillator system of the Schwinger construction. Indeed we have:

|z1, 0, 0; 0, w2, 0 > = e−
1
2
|z1|2−

1
2
|w2|2

∞
∑

p,q=0

zp
1w

q
2√

p!q!
×

|p, q; 1

2
(p+ q),

1

2
(p+ q),

1

3
(p− q); 1

2
(p+ q + 3) >, (4.9)

which is analogous to the second of eqns.(3.35). We will use this below.

SU(3) analysis of the H-W SCS

For the six oscillator system used in the Schwinger SU(3) construction the H-W SCS are

labelled by two complex three-dimensional vectors z and w, thus the pair (z, w) is a point in

C6. They are obtained by applying the displacement operators D(z, w) to the Fock vacuum

|0, 0 > as fiducial vector:

|z, w >= D(z, w) |0, 0 > . (4.10)
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We see from eqn.(2.5) that they are eigenstates of the Sp(2, R) lowering operator K− =

K1 − iK2:

âj |z, w > = zj|z, w >,

b̂j |z, w > = wj|z, w >,

K−|z, w > = zTw|z, w > . (4.11)

Therefore only those SCS |z, w > for which zTw = 0 belong to H0. The complete set of SCS

obeys the Klauder resolution of the identity,

∫

C6

3
∏

j=1

(

d2zj

π

d2wj

π

)

|z, w〉〈z, w| = 1 on H, (4.12)

the integration measure being the invariant one on the H-W group.

We now explore the behaviour of these SCS under SU(3) action. From the manner in

which the generators Qα are constructed in eqn.(2.2) we have:

A ∈ SU(3) : U(A) D(z, w) U(A)−1 = D(Az,A∗w), (4.13)

from which it follows that

U(A)|z, w >= |Az,A∗w > . (4.14)

The independent invariants under this action are z†z, w†w and zTw, the last being the

eigenvalue of K−. We describe them using four real independent parameters u, v, x, y as

z†z = u2, w†w = v2 , zTw = uv(x+ iy),

u, v ≥ 0, 0 ≤ x2 + y2 ≤ 1. (4.15)

The upper bound on x2 +y2 is an expression of the Cauchy-Schwarz inequality. For each set

of values of (u, v, x, y), the SCS |z, w > form an orbit under SU(3) action. On each orbit we

can choose a convenient representative point
(

z(0), w(0)
)

, with any other point (z, w) on the

orbit arising from
(

z(0), w(0)
)

via suitable SU(3) action as
(

Az(0), A∗w(0)
)

. The complete
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list of orbits, representative points, stability subgroups H
(

z(0), w(0)
)

⊂ SU(3) and orbit

dimensions are as follows (with x, y omitted when irrelevant):

a) ϑ1 = {u, v|u = v = 0}, (z(0), w(0)) = (0, 0), H = SU(3), dimension 0;

b) ϑ2 = {u, v|u > 0, v = 0}, z(0) = u(1, 0, 0)T , w(0) = 0, H = SU(2), dimension 5;

c) ϑ3 = {u, v|u = 0, v > 0}, z(0) = 0, w(0) = v(0, 1, 0)T , H = SU(2), dimension 5;

d) ϑ4 = {u, v, x, y|u, v > 0, 0 ≤ x2 + y2 < 1},

z(0) = u(1, 0, 0)T , w(0) = v
(

x+ iy,
√

1− x2 − y2, 0
)T

, H = {e}, dimension 8;

e) ϑ5 = {u, v, x, y|u, v > 0, x2 + y2 = 1},

z(0) = u(0, 0, 1)T , w(0) = v(x+ iy)(0, 0, 1)T , H = SU(2), dimension 5. (4.16)

We add some comments: Class (a) comprises just the Fock vacuum |0, 0 >, invariant under

SU(3) and forming a trivial orbit by itself. Classes (b) and (c) form collections of orbits

with one of z and w vanishing identically, so these are simply SCS for systems of three

oscillators. Class (d) is a four parameter family consisting of generic orbits. Each orbit in

this Class is eight dimensional and is essentially the SU(3) group manifold. Class (e) is a

limiting form, as x2 + y2 → 1, of Class (d); in these orbits, w is a complex multiple of z∗.

However the limit is a singular one, as is evident from the rise in the dimension of H from

zero to three, and the drop in orbit dimension from eight to five. This is why we have listed

Class (e) separately. Moreover, the representative point (z(0), w(0)) in this class has been

chosen so that the stability group SU(2) acts on dimensions 1 and 2, thus coinciding with

the subgroup relevant for the canonical basis (4.21). Disregarding Class (a), and recalling

that C6 is of real dimension 12, we see that Classes (b), (c), (d), (e) are non overlapping

regions in C6 of real dimensions 6, 6, 12 and 8 respectively. Thus almost all of C6 is covered

by orbits of Class (d).

Based on this orbit structure, we now express the Klauder resolution of the identity,

eqn.(4.12), in a manner similar to eqn.(3.39), namely as an integration over the SU(3)

manifold followed by an integration over the invariants (4.15). (The difference compared to
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the case of two degrees of freedom is that here we integrate over the whole of SU(3), not

just over a coset space such as SU(2)/U(1) = S2 in eqn.(3.39)). In this process we can

limit ourselves to Class (d) orbits which are generic, as long as we do not at any later stage

alter the integrand of eqn.(4.12) by inserting a Dirac delta function with support in one

of the exceptional orbits in eqn.(4.16). To obtain a general pair (z, w) from
(

z(0), w(0)
)

in

eqn.(4.16) Class (d), we need to parametrise (almost all) elements of SU(3) in a convenient

manner. Here we use the fact that, except on a set of vanishing measure, each A ∈ SU(3)

is uniquely determined by a pair
(

η̂, ζ̂
)

, where η̂ is a complex three-component unit vector

and ζ̂ is a complex two- component unit vector [28]:

η̂ = (η̂1, η̂2, η̂3)
T , ζ̂ =

(

ζ̂2, ζ̂3
)T
,

η̂†η̂ = ζ̂
†
ζ̂ = 1. (4.17)

Then we have:

A ∈ SU(3)⇐⇒ A = A
(

η̂, ζ̂
)

= A3

(

η̂
)

A2

(

ζ̂
)

,

A3(η̂) =













η̂1 ρ1 0

η̂2 −η̂2η̂
∗
1/ρ1 η̂∗3/ρ1

η̂3 −η̂3η̂
∗
1/ρ1 −η̂∗2/ρ1













∈ SU(3),

ρ1 =
(

1− |η̂1|2
)1/2

;

A2

(

ζ̂
)

=













1 0 0

0 ζ̂2 −ζ̂∗3
0 ζ̂3 ζ̂∗2













∈ SU(2) ⊂ SU(3). (4.18)

For each η̂ (provided |η̂1| < 1), A3

(

η̂
)

is a particular SU(3) element completely determined

by its first column which is η̂; and for each ζ̂ , A2

(

ζ̂
)

is an element in the SU(2) subgroup

leaving z(0) invariant. We can picture η̂ and ζ̂ as representing points on S5 ⊂ R6 and S3 ⊂ R4

respectively. Then the normalised invariant volume element on SU(3) is a numerical factor

times the product of the solid angle elements on S5 and S3:

27



dA
(

η̂, ζ̂
)

= (2π5)−1 dΩ5

(

η̂
)

dΩ3

(

ζ̂
)

,
∫

SU(3)

dA = 1. (4.19)

The expressions for (z, w) in terms of A
(

η̂, ζ̂
)

and
(

z(0), w(0)
)

are:

z = A
(

η̂, ζ̂
)

z(0)(u) = u η̂,

w = A
(

η̂, ζ̂
)∗

w(0)(v, x, y) = v A3

(

η̂
)∗













x+ iy
√

1− x2 − y2 ζ̂∗2
√

1− x2 − y2 ζ̂∗3













. (4.20)

These are the generalisations of eqn.(3.34). Straight forward computations of the Jacobians

yield:

3
∏

j=1

(

d2zj d
2wj

)

= u5v5(1− x2 − y2)du dv dx dy dΩ5

(

η̂
)

dΩ3

(

ζ̂
)

. (4.21)

We can now rewrite the Klauder result (4.12) as:

2

π

∞
∫

0

u5du

∞
∫

0

v5 dv
∫

x2+y2≤1

(1− x2 − y2)dx dy
∫

SU(3)

dA U(A)|z(0)(u), w(0)(v, x, y)〉 ×

〈z(0)(u), w(0)(v, x, y)|U(A)−1 = 1 on H. (4.22)

This is the analogue of (the initial form of) eqn.(3.39).

In the spirit of eqns.(3.10, 3.42) we can now consider modifications of eqn.(4.22) by

including in the integrand a function of the SU(3) invariants. Thus we define

A(f) =
∫ 3

∏

j=1

(

d2zj

π

d2wj

π

)

f(u, v, x, y) |z, w >< z, w|

=
2

π

∞
∫

0

u5du

∞
∫

0

v5dv
∫

x2+y2≤1

(1− x2 − y2)dx dy f(u, v, x, y)
∫

SU(3)

dA ×

U(A)|z(0)(u), w(0)(v, x, y) >< z(0)(u), w(0)(v, x, y)|U(A)−1. (4.23)

Such an operator definitely obeys
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U(A) A(f) = A(f) U(A), all A ∈ SU(3). (4.24)

However, as long as f(u, v, x, y) is nontrivial, the measure in eqn.(4.23) is not the invariant

one on the H-W group, we do not have recourse to Schur lemma for the UIR of this group,

and A(f) is not proportional to the identity operator on H. The presence of (infinite!)

multiplicity in the reduction of U(A) on H into UIR’s of SU(3) means furthermore that we

do not immediately get for A(f) a simple combination of SU(3)-invariant projections as we

did in eqns.(3.42, 3.43) with SU(2).

The restriction to H0

Now we limit ourselves to the SCS |z, w > belonging to H0 ⊂ H, as in this subspace

the multiplicity problem is avoided. As noted following eqn. (4.11), the condition zTw = 0

ensures |z, w >∈ H0. This happens in Classes (a), (b), (c) of eqn.(4.16) in a trivial manner,

and in Class (d) when x = y = 0. The former can be disregarded as being sets of vanishing

measure.

We deal first with vector level relations in H0, then look at modifications of A(f) in

eqn.(4.23). We begin with eqn.(4.9). For the highest weight states of SU(3) UIR’s occurring

there, we introduce a simpler notation:

|p, q; 1

2
(p+ q),

1

2
(p+ q);

1

3
(p− q); 1

2
(p+ q + 3)〉 ≡ |p, q; 1

2
(p+ q),

1

2
(p+ q);

1

3
(p− q)〉0

∈ H(p,q;0) ⊂ H0. (4.25)

We have omitted the Sp(2, R) quantum number m as it is superfluous within H0. Then

eqn.(4.9) takes the form

z(0)(u) = u(1, 0, 0)T , w(0)(v, 0, 0) = v(0, 1, 0)T :

|z(0)(u), w(0)(v, 0, 0)〉 = e−
1
2
(u2+v2)

∞
∑

p,q=0

up vq

√
p!q!

|p, q; 1

2
(p+ q),

1

2
(p+ q),

1

3
(p− q)〉0 ∈ H0. (4.26)
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In place of eqn.(4.5), the SU(3) SCS within each UIR (p, q) contained in H0 can be written

as

A ∈ SU(3) : |p, q;A〉0 = U(A)|p, q; 1

2
(p+ q),

1

2
(p+ q),

1

3
(p− q)〉0 ∈ H(p,q;0) (4.27)

Applying U(A) for general A ∈ SU(3) to both sides of eqn.(4.26) we get a result linking

those H-W SCS that lie in H0, and the SU(3) SCS (4.27) within each UIR (p, q) in H0:

A ∈ SU(3), z = Az(0)(u), w = A∗w(0)(v, 0, 0) :

|z, w〉 = e−
1
2
(u2+v2)

∞
∑

p,q=0

up vq

√
p!q!
|p, q;A〉0 ∈ H0. (4.28)

This is the SU(3) analogue to the SU(2) relation (3.38).

Now we turn to the operator A(f) in eqn.(4.23) and make the choice

f(u, v, x, y) = f0(u, v) δ(x) δ(y). (4.29)

This leads to

A(f0) =
2

π

∞
∫

0

u5du

∞
∫

0

v5dv f0(u, v)
∫

SU(3)

dA U(A)

|z(0)(u), w(0)(v, 0, 0)〉〈z(0)(u), w(0)(v, 0, 0) |U(A)−1. (4.30)

Such an operator obeys the following:

ψ ∈ H⊥
0 : A(f0)ψ = 0;

ψ ∈ H0 : A(f0)ψ ∈ H0;

A ∈ SU(3) : U(A) A(f0) = A(f0) U(A). (4.31)

Therefore A(f0) must be a linear combination of the projection operators P (p,q;0) onto the

subspaces H(p,q;0) ⊂ H0; it is here that we exploit the multiplicity-free reduction of the

SU(3) UR D0 on H0. To get A(f0) explicitly, we use the following immediate consequences
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of Schur lemma applied to SU(3), the multiplicity-free nature of D0, and the orthogonality

of inequivalent UIR’s:

∫

SU(3)

dA |p, q;A〉0 0〈p′, q′;A| = δp′pδq′q P
(p,q;0)/d(p, q). (4.32)

Then a combination of eqns.(4.30, 4.26, 4.27, 4.32) immediately gives:

A(f0) =
∞
∑

p,q=0

C(f0; p, q) P
(p,q;0),

C(f0; p, q) = {p!q! d(p, q)}−1 · 2
π
·

∞
∫

0

u5du

∞
∫

0

v5dv f0(u, v)u
2pv2qe−(u2+v2). (4.33)

This is an SU(3) analogue of the SU(2) result (3.42), but it is valid only after the restriction

to H0. On account of the freedom still remaining in eqns.(4.30, 4.33) in the choice of the

function f0(u, v), we see that the H-W SCS occurring there are overcomplete in H0. If we

wish to limit ourselves to an exact “SU(3)- worth” of H-W SCS within H0, then we have

the analogue to eqn.(3.43):

f0(u, v) = δ(u− u0) δ(v − v0) :

A(f0) =
∫ 3

∏

j=1

(

d2zj

π

d2wj

π

)

δ(u− u0)δ(v − v0)δ(x)δ(y)|z, w〉〈z, w|

= e−(u2
0+v2

0) · 2
π

∞
∑

p,q=0

u2p+5
0 v2q+5

0 P (p,q;0)/p!q!d(p, q). (4.34)

The point to be emphasised is how far this result departs from being the identity operator

in H0, leave alone in H, but understandably so.

Description in H(ind)

As recalled in Section II, and established in detail in I, the multiplicity-free UR D0 of

SU(3) on H0 is equivalent to an induced UR D(ind) of SU(3), namely the one arising from

the trivial representation of an SU(2) subgroup of SU(3). The isomorphism between H0

and H(ind) carrying D(ind), consistent with the two group actions, is given in eqn.(2.17). It

is of interest to see what wave functions ψ(ξ) ∈ H(ind) one obtains for the various vectors

in H0 that have played a role earlier in this Section. We now give these wave functions and

comment briefly on them.
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For the highest weight state in the SU(3) UIR (p, q) on H(p,q;0), and the associated SU(3)

SCS, we find the following wavefunctions in H(ind):

|p, q; 1

2
(p + q),

1

2
(p+ q),

1

3
(p− q)〉0 −→

√

(p+ q + 2)!

p!q!
(ξ1)

p (ξ∗2)
q ;

|p, q;A〉0 = U(A)|p, q; 1

2
(p+ q),

1

2
(p+ q),

1

3
(p− q)〉0 −→

√

(p+ q + 2)!

p!q!

(

A∗
j1ξj

)p
(Ak2ξ

∗
k)

q . (4.35)

For the H-W SCS in H0 generating these states within each UIR we have:

|z(0)(u), w(0)(v, 0, 0)〉 −→ e−
1
2
(u2+v2)

∞
∑

p,q=0

√

(p+ q + 2)!
(uξ1)

p

p!

(vξ∗2)
q

q!
;

|z, w〉 = U(A)|z(0(u), w(0)(v, 0, 0)〉 −→

e−
1
2
(u2+v2)

∞
∑

p,q=0

√

(p + q + 2)!

(

uA∗
j1ξj

)p

p!

(vAk2ξ
∗
k)

q

q!
. (4.36)

The principal comment we may make is that these particular H-W SCS do not have wave

functions in H(ind) in the form of any simple expressions involving exponential functions.

The reason for this can be traced to the factorial in eqn.(2.17) as compared to eqn.(2.14a).

Another way of understanding this situation is to realise thatH0 (and soH(ind) as well) is too

small to carry a representation of the H-W system used in the Schwinger SU(3) construction;

in addition the argument ξ in ψ(ξ) is a complex unit vector in three dimensions rather than

a variable in all of C3.

V. GENERAL EIGENSPACES Hκ OF K−

The subspace H0 ⊂ H carrying the multiplicity-free UR D0 of SU(3), the focus of

analysis in the preceding Section, is spanned by those H-W SCS |z, w > for which zTw = 0,

and belonging to a particular collection of orbits under Class (d) of eqn.(4.16):
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H0 = Sp{|z, w > |z, w ∈ C3, zTw = 0}. (5.1)

As noted earlier, these SCS are actually over complete within H0. Since, by eqn.(4.11), zTw

is the eigenvalue of the SU(3) invariant Sp(2, R) lowering operator K−, this means that H0

is spanned by those H-W SCS that are eigenvectors of K− with eigenvalue zero. Moreover,

eqns.(4.26, 4.28) show that these H-W SCS are directly connected to the SU(3) SCS within

each SU(3) UIR (p, q), carried by H(p,q;0) ⊂ H0.

It now turns out that a somewhat similar situation exists involving eigenvectors of K−

corresponding to nonzero eigenvalues as well, but with one major difference: we encounter

certain specific SU(3) GCS systems. This also connects up with a certain class of coherent

states within the UIR’s D
(+)
k of Sp(2, R). We analyse these matters in this Section.It turns

out that H-W SCS of both Classes (d) and (e) are involved.

We begin by generalising eqn.(5.1) and defining a subspace Hκ ⊂ H, for any complex

number κ, as consisting of eigenvectors of K− with eigenvalue κ; equally well it is the span

of all those H-W SCS which obey this condition:

Hκ = {|ψ >∈ H|K−|ψ >= κ|ψ >}

= Sp{|z, w > |z, w ∈ C3, zTw = κ} ⊂ H. (5.2)

These H-W SCS comprise a particular subset of Class (d) orbits in eqn.(4.16); for κ = 0 we

get back H0. It is important to remark that even though κ varies over a continuum, each

Hκ consists of bona fide (ie., normalisable) vectors in H; and for κ′ 6= κ, Hκ′ and Hκ are

not mutually orthogonal. As in the case of the oscillator annihilation operator, these are

consequences of K− being non hermitian. Since K− is SU(3) invariant, each Hκ is SU(3)

invariant as well:

A ∈ SU(3), |ψ >∈ Hκ =⇒ U(A)|ψ >∈ Hκ. (5.3)

Therefore the UR U(A) of SU(3) on H, when restricted to Hκ leads to a UR Dκ acting on

Hκ. We will see that this UR contains each UIR (p, q) exactly once, just like D0 on H0.

Thus it is also multiplicity-free and complete.
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To exhibit these properties, we first recall the construction of eigenvectors of K− in any

discrete class UIR D
(+)
k of Sp(2, R) [29]. (Though the following results are valid for all

real k > 0, we require only the cases k = 3/2, 2, 5/2 . . .). As in eqn.(I.3.24,25), denote the

eigenvectors of J0 in D
(+)
k by |k,m >. Then we have the well-known results:

|k, κ > =
(

0F1(2k; |κ|2)
)−1/2

∞
∑

m=k

(Γ(2k)/(m− k)!Γ(m+ k))1/2 κm−k|k,m >,

K−|k, κ > = κ|k, κ >, κ ∈ C; (5.4a)

< k, κ′|k, κ > = 0F1(2k; κ
′∗κ)

/

{

0F1(2k; |κ′|2)0F1(2k; |κ|2)
}1/2

; (5.4b)

∫

C

d2κ

π
σ(|κ|2)|k, κ >< k, κ| = 1,

σ(|κ|2) =
2

Γ(2k)
0F1(2k; |κ|2)|κ|2k−1K 1

2
−k(2|κ|), (5.4c)

where Kν(z) denotes modified Bessel function of the third kind. (For simplicity the k-

dependence of the weight function σ is omitted). We note that even though these states

|k, κ > within D
(+)
k do not form an Sp(2, R) orbit, they do furnish a Klauder-type resolution

of the identity.

We now exploit this construction in the present context. We begin with two facts: (a) the

vectors |p, q; IMY ;m >, as all labels vary, form an orthonormal basis for the total Hilbert

space H; (b) if we keep p, q, IMY fixed and allow only m to vary, we get an orthonormal

basis for a subspace carrying just the UIR D
(+)
k of Sp(2, R). Therefore, in view of the

construction (5.4), within each such subspace we can define and have:

|p, q; IMY 〉κ =
{

0F1(2k; |κ|2)
}−1/2

∞
∑

m=k

((2k − 1)!/(m− k)!(m+ k − 1)!)1/2 ×

κm−k|p, q; IMY ;m〉,

K−|p, q; IMY 〉κ = κ|p, q; IMY 〉κ;

κ′〈p′, q′; I ′M ′Y ′|p, q; IMY 〉κ = δp′pδq′qδI′IδM ′MδY ′Y ×

0F1

(

2k; κ′
∗

κ
)

/

{

0F1(2k; |κ′|2)0F1(2k; |κ|2)
}1/2

. (5.5)

(For fixed p, q, IMY we also have a resolution of the appropriate identity in the form of

eqn.(5.4c), but we omit it). For κ = 0 we recover the orthonormal basis for H0. However for
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κ 6= 0, these vectors are not eigenvectors of the total a-type and b-type number operators

N̂ (a), N̂ (b). It is now evident that if we keep κ fixed, allow pqIMY to vary, and recall that

the range C of κ is k-independent, we get an orthonormal basis for Hκ:

Hκ = Sp{|p, q; IMY 〉κ|κ fixed, pqIMY varying},

κ〈p′, q′; I ′M ′Y ′|p, q; IMY 〉κ = δp′pδq′qδI′IδM ′MδY ′Y . (5.6)

It is also clear that each UIR (p, q) of SU(3), carried by the d(p, q) vectors |p, q; IMY 〉κ ∈ Hκ

as IMY alone vary, appears exactly once in Hκ. In other words, Dκ is multiplicity-free. In

eqns.(5.2, 5.6) we have three equally good ways of identifying the subspace Hκ ⊂ H.

We next relate the orthonormal basis vectors (5.6) for Hκ to the corresponding ones for

H0 in eqn.(2.12), in a compact manner. For this we use eqn. (I.3.25b) valid within each

UIR D
(+)
k of Sp(2, R), along with K+ = â† · b̂†:

|p, q; IMY ;m〉 = ((2k − 1)!/(m− k)!(m+ k − 1)!)1/2
(

â† · b̂†
)m−k

|p, q; IMY ; k〉;

|p, q; IMY 〉κ =
{

0F1(2k; |κ|2)
}−1/2

∞
∑

m=k

(2k − 1)!

(m− k)!(m+ k − 1)!
×

(

κâ† · b̂†
)m−k

|p, q; IMY ; k〉

= A†
k,κ|p, q; IMY 〉0,

A†
k,κ =

{

0F1(2k; |κ|2)
}−1/2

∞
∑

m=k

(2k − 1)!

(m− k)!(m+ k − 1)!

(

κâ† · b̂†
)m−k

= 0F1

(

2k; κâ† · b̂†
)/

{

0F1(2k; |κ|2)
}1/2

. (5.7)

It is important to notice that there is a dependence on k = 1
2
(p+ q+3) in the operator A†

k,κ;

so the basis vectors |p, q; IMY 〉κ for Hκ do not arise from the basis vectors |p, q; IMY 〉0 for
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H0 by application of a single operator dependent on κ alone. In spite of this, we will see

below the usefulness of the connection (5.7).

We now obtain an expansion of the H-W SCS |z, w > with zTw = κ, in the orthonormal

basis (5.6) forHκ. Thus we seek analogues to eqns.(4.26, 4.28), as well as to eqns.(4.27, 4.32),

in the case of H0. Given |z, w〉 ∈ Hκ, by a suitable SU(3) transformation we can relate it to

a standard state |z(0)(u), w(0)(v, x, y)〉 on its orbit. We parametrise the latter as in eqn.(4.16)

Class (d)( We are assuming here for definiteness that x2 +y2 < 1, the possibility x2 +y2 = 1

which is of vanishing measure being handled in the next Section):

z(0)(u) = u(1, 0, 0)T ,

w(0)(v, x, y) = v
(

x+ iy,
√

1− x2 − y2, 0
)T

,

uv(x+ iy) = κ. (5.8)

We develop first the replacement for eqn.(4.26). The point of interest is to see which vec-

tor within each UIR (p, q) in Dκ appears, in place of the higher weight vector present in

eqn.(4.26). Thanks to eqn.(5.7), the relevant overlap simplifies to a calculation in H0:

κ〈p, q; IMY |z(0)(u), w(0)(v, x, y)〉 =0 〈p, q; IMY |Ak,κ|z(0)(u), w(0)(v, x, y)〉

=
{

0F1(2k; |κ|2)
}1/2 〈p, q; IMY ; k|z(0)(u), w(0)(v, x, y)〉. (5.9)

Here the bra vector, in H0, is an eigenvector of N̂ (a), N̂ (b) with eigenvalues p, q respectively.

This leads to further simplification:

〈p, q; IMY ; k|z(0)(u), w(0)(v, x, y)〉 = e−
1
2
(u2+v2)u

p

p!

vq

q!
×

〈p, q; IMY ; k|
(

â†1
)p
(

(x+ iy) b̂†1 +
√

1− x2 − y2 b̂†2

)q

|0, 0〉. (5.10)

The ket vector here has hypercharge 1
3
(p− q), as does the highest weight state in (p, q), so

this overlap is nonzero only if Y = 1
3
(p− q). This then determines the possible values of I:
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I = I0, I0 − 1, . . . ,
1

2
|p− q|,

I0 =
1

2
(p+ q). (5.11)

Notice that I0 is the highest possible value of I in the UIR (p, q). For the bra vector in

eqn.(5.10) we have the explicit expression (eqn.(I.A.9)):

〈p, q; IMY ; k| = NpqIY ((I +M)!(I −M)!/2I!)1/2
(p−r,q−s)<
∑

n=0

I−M
∑

L=0

×

(−1)n+I−M−L

(r + s+ n+ 1)!
〈0, 0| (âαb̂α)n

n!

âr−L
1

(r − L)!

âL
2

L!
×

b̂I−M−L
1

(I −M − L)!

b̂s−I+M+L
2

(s− I +M + L)!

âp−r−n
3

(p− r − n)!

b̂q−s−n
3

(q − s− n)!
,

âα b̂α = â1 b̂1 + â2 b̂2 ,

NpqIY = {r!s!(r + s+ 1)!(p− r)!(q − s)!(p+ s + 1)!(q + r + 1)!/(p+ q + 1)!}1/2 ,

r = I +
Y

2
+

1

3
(p− q), S = I − Y

2
+

1

3
(q − p). (5.12)

Use of this in eqn.(5.10) leads to further simplifications. The condition Y = 1
3
(p− q) gives:

r = I + M0, s = I −M0,

p− r = q − s = I0 − I,

M0 =
1

2
(p− q). (5.13)

Then, in the sums over n and L in eqn.(5.12), only the terms n = p− r = q − s and L = 0

survive. Using all this, the scalar product in eqn.(5.9) can be explicitly computed:

κ〈p, q; IMY |z(0)(u), w(0)(v, x, y)〉 =
{

0F1(2k; |κ|2)
}1/2 · e− 1

2
(u2+v2) · up vq ×

δY, 1
3
(p−q)

(−1)I0−M

(M −M0)!
{(2I + 1)(I +M)!(I −M0)!/(2I0 + 1)!(I −M)!(I +M0)!}1/2 ×
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(x+ iy)I0−M(1− x2 − y2)
1
2
(M−M0),

u v(x+ i y) = κ. (5.14)

We see that, provided Y = 1
3
(p − q) and M ≥ M0, this overlap is nonzero for all values of

I in the range (5.11). This shows how far the projection of |z(0)(u), w(0)(v, x, y)〉 onto the

subspace of Hκ carrying the UIR (p, q) differs from the highest weight state.

We can now obtain the replacement for the previous eqn.(4.26). It is unavoidably some-

what more complicated. Using eqn.(5.14) and with κ = uv(x+ iy), we have:

|z(0)(u), w(0)(v, x, y)〉 = e−
1
2
(u2+v2)

∞
∑

p,q=0

up vq
{

0F1(2k; |κ|2)/(p+ q + 1)!
}1/2 ×

N ′(p, q; |κ|/uv) |p, q; κ/uv〉κ,

N ′(p, q; |κ|/uv) |p, q; κ/uv〉κ =
I0
∑

I=|M0|

I
∑

M=M0

(−1)I0−M

(M −M0)!
(κ/uv)I0−M ×

(

1− |κ|
2

u2v2

) 1
2
(M−M0)

{(2I + 1)(I −M0)!(I +M)!/(I +M0)!(I −M)!}1/2

|p, q; I,M,
1

3
(p− q)〉κ,

N ′(p, q; |κ|/uv) =







I0
∑

I=|M0|

I
∑

M=M0

(2I + 1)(I −M0)!(I +M)!

(I +M0)!(I −M)!(M −M0)!2

(|κ|/uv)2(I0−M)

(

1− |κ|
2

u2v2

)M−M0






1/2

, (5.15)

which, as shown in the Appendix, can be compactly written as

N ′(p, q; |κ|/uv) = {(I0 − |M0|+ 1)(I0 + |M0|+ 1)

2F1(−(I0 − |M0|),−(I0 + |M0|), 2, 1− |κ|2/(u2v2))
}1/2

(5.16)

The normalisation factor N ′(p, q; |κ|/uv) has been defined so as to make the vector

|p, q; κ/uv〉κ have unit norm; this vector lies in the subspace of Hκ carrying the (single
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occurrence of the) UIR (p, q) in Dκ. Now we apply U(A) to both sides of eqn.(5.15) and get

the replacements for eqns.(4.27, 4.28):

A ∈ SU(3), z = A z(0)(u), w = A∗w(0)(v, x, y), zTw = κ :

|z, w〉 = e−
1
2
(u2+v2)

∞
∑

p,q=0

up vq

{

0F1(2k; |κ|2)/(p+ q + 1)!
}1/2N ′(p, q; |κ|/uv)×

|p, q; κ/uv;A〉κ,

|p, q; κ/uv;A〉κ = U(A) |p, q; κ/uv〉κ. (5.17)

We see that for (z, w) ∈ C6 with given u, v, κ, corresponding to Class (d) in eqn.(4.16), the

H-W SCS |z, w > is expressible in terms of a sequence of SU(3) GCS, all contained in Hκ.

The SU(3) GCS within the UIR (p, q) use |p, q; κ/uv〉κ as the fiducial vector, and this is very

different from the highest weight vector. For this family of SU(3) GCS we have in place of

eqn.(4.32):

∫

SU(3)

dA |p, q; κ/uv;A〉κ κ〈p′, q′; κ/uv;A| = δp′pδq′q
P (p,q;κ)

d(p, q)
, (5.18)

where P (p,q;κ) is the projection operator onto the subspace of Hκ carrying the UIR (p, q).

This follows from Schur lemma for SU(3) UIR’s, and the fact that Dκ is multiplicity-free.

With these replacements for eqns.(4.26, 4.27, 4.28, 4.32) in hand, we can study the ana-

logue of the operator A(f0) in eqn.(4.30). We begin with the general definition (4.23) of

A(f) and choose

f(u, v, x, y) = f0(u, v)δ
(2)(x+ iy − κ/uv)

= f0(u, v)δ(x−Re κ/uv)δ/y − Im κ/uv). (5.19)

This achieves the restriction to Hκ. We then define

A(f0) =
∫ 3
∏

j=1

(

d2zj

π

d2wj

π

)

f0(u, v)δ
(2)(x+ iy − κ/uv)|z, w〉〈z, w|
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=
2

π

∞
∫

0

u5du

∞
∫

0

v5dvf0(u, v)θ(uv − |κ|)
(

1− |κ|
2

u2v2

)

×
∫

SU(3)

dA U(A)|z(0)(u), w(0)(v, x, y)〉〈z(0)(u), w(0)(v, x, y)|U(A)−1, (5.20)

it being understood in the last expression that x + iy = κ/uv. We can now use

eqns.(5.17, 5.18) here and get the final result replacing eqn.(4.33):

A(f0) =
∞
∑

p,q=0

C(f0; p, q; κ) P
(p,q;κ),

C(f0; p, q; κ) =
2

π

{

0F1(2k; |κ|2)/(p+ q + 1)!d(p, q)
}

∞
∫

0

u5du

∞
∫

0

v5dv f0(u, v)×

θ(uv − |κ|)
(

| − |κ|
2

u2v2

)

e−(u2+v2)u2pv2q{N ′(p, q; |κ|/uv)}2. (5.21)

The freedom remaining in the choice of f0(u, v) displays the overcompleteness, within Hκ, of

the H-W SCS belonging toHκ. To limit ourselves to an exact “SU(3)- worth” of these states,

we choose f0(u, v) to be the product of two delta functions. Then we get a generalisation of

eqn.(4.34):

f0(u, v) = δ(u− u0)δ(v − v0) , u0v0 > |κ| :

A(f0) =
∫ 3

∏

j=1

(

d2zj

π

d2wj

π

)

δ(u− u0)δ(v − v0)δ
(2)
(

x+ iy − κ

uv

)

|z, w〉〈z, w|

=
2

π
· e−(u2

0+v2
0)

∞
∑

p,q=0

{

0F1(2k; |κ|2)/(p+ q + 1)!d(p, q)
}

×

u2p+5
0 v2q+5

0

(

1− |κ|
2

u2
0v

2
0

)

{N ′(p, q; |κ|/u0v0)}2 P (p,q;κ). (5.22)

In this manner all the results found in the preceeding Section for the subspace H0 ⊂ H,

the null space of K−, generalise to a general eigenspace Hκ ⊂ H of K−. Here again, limiting

oneself to an exact “SU(3)-worth” of H-W SCS does give us a total set of vectors, but they

do not obey the Klauder resolution of the identity within Hκ
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VI. H-W SCS OF CLASS(E) AND THEIR SU(3) CONTENT

In the listing of SU(3) orbits of H-W SCS given in eqn.(4.16), it was pointed out that

only Classes (d) and (e) involve all six oscillators of the Schwinger SU(3) construction in

a nontrivial manner. Furthermore, of these, only the former are generic. As we have seen,

Class (d) orbits form a four-parameter continuous family, each orbit being of dimension eight.

In contrast, Class (e) orbits are a three parameter family, with each orbit of dimension five.

Another characteristic is that each H-W SCS |z, w > in Class (d) is such that the complex

three-vectors z∗ and w are linearly independent; on the other hand, if |z, w > is in Class (e),

then w is a (complex) multiple of z∗.

In Sections IV and V we have analysed in detail the SU(3) structure and representation

content of H-W SCS on all Class (d) orbits, for zTw = 0 and zTw = κ 6= 0 respectively.

Now we turn to a similar analysis of the Class (e) orbits [30]. There is however a difficulty

in handling this case by starting with the Klauder resolution of the identity, eqns.(4.12),

and then modifying the integrand by inserting some function of the SU(3) invariants with

the aim of restricting the integration to a chosen subset of orbits. We are unable to use

the methods of Sections IV and V here. The reason is that in terms of the SU(3) invariant

parameters u, v, x, y in eqn.(4.15), Class (e) corresponds to x2 + y2 = 1; while in the volume

element (4.21) on the H-W group there is an explicit factor (1− x2 − y2). For this reason,

we handle Class (e) orbits more directly, guided however by the results in Class (d).

A convenient representative point on a general Class (e) orbit is given by the pair of

complex three-vectors

z(0)(u) = u(0, 0, 1)T , u > 0,

w(0)(veiα) = veiα(0, 0, 1)T , v > 0, , 0 ≤ α < 2π,

z(0)(u)Tw(0)(veiα) = uveiα. (6.1)

(As mentioned earlier in Section IV, the reason for choosing this configuration is that the

corresponding stability group is the SU(2) subgroup acting on dimensions 1 and 2 in the
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defining representation (1, 0), and it is just this subgroup that is involved in the canonical

basis vectors |p, q; IMY 〉 in a general SU(3) UIR (p, q)). Acting with a general A ∈ SU(3),

we reach a general point (z, w) on the orbit given by

z = A z(0)(u),

w = A∗w(0)(veiα) =

(

veiα

u

)

z∗,

zTw = uveiα = eiα
(

z†z w†w
)1/2

. (6.2)

The H-W SCS |z(0)(u), w(0)(veiα)〉 is of course given by

|z(0)(u), w(0)(veiα)〉 = e−
1
2
(u2+v2)+uâ†

3+veiα b̂†3 |0, 0 > . (6.3)

We can expand this in the orthonormal basis |p, q; IMY ;m > for H, recognising that the

only states that appear have I = M = 0, Y = 2
3
(q−p) for various (p, q). We need the results

(I.A.6, I.A.7):

|p, q; 0, 0, 2
3
(q − p); k〉 = p!q!{(p+ 1)(q + 1)/(p+ q + 1)!}1/2 ×

(p,q)<
∑

n=0

(−1)n

(n + 1)!

(

â†αb̂
†
α

)n

n!

(

â†3
)p−n

(p− n)!

(

b̂†3
)q−n

(q − n)!
|0, 0〉,

â†αb̂
†
α = â†1b̂

†
1 + â†2b̂

†
2; (6.4a)

|p, q; 0, 0, 2
3
(q − p);m〉 = {(2k − 1)!/(m− k)!(m+ k − 1)!}1/2 ·

(

â† · b̂†
)m−k

×

|p, q; 0, 0, 2
3
(q − p); k〉. (6.4b)

We can now easily compute the desired overlap:

〈p, q; 0, 0, 2
3
(q − p);m|z(0)(u), w(0)(veiα)〉 = {(2k − 1)!/(m− k)!(m+ k − 1)!}1/2 ×

(uveiα)m−k〈p, q; 0, 0, 2
3
(q − p); k|z(0)(u), w(0)(veiα)〉

= {(2k − 1)!/(m− k)!(m+ k − 1)!}1/2(uveiα)m−k · p!q!{(p+ 1)(q + 1)/(p+ q + 1)!}1/2×
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〈0, 0| â3
p

p!

b̂3
q

q!
|z(0)(u), w(0)(veiα)〉

{(p+ 1)(q + 1)(2k − 1)!/(p+ q + 1)!(m− k)!(m+ k − 1)!}1/2 (uveiα)m−k×

e−
1
2
(u2+v2) up(veiα)q. (6.5)

In the second step here, when using the expansion (6.4a), only the term n = 0 contributes.

We therefore have the expansion of the representative Class (e) H-W SCS in the SU(3) ×

Sp(2, R) basis:

|z(0)(u), w(0)(veiα)〉 = e−
1
2
(u2+v2)

∞
∑

p,q=0

{(p+ 1)(q + 1)/(p+ q + 1)!}1/2 up(veiα)q ×

∞
∑

m=k

{(2k − 1)!/(m− k)!(m+ k − 1)!}1/2(uveiα)m−k|p, q; 0, 0, 2
3
(q − p);m〉

= e−
1
2
(u2+v2)

∞
∑

p,q=0

{(p+ 1)(q + 1/(p+ q + 1)!}1/2 up(veiα)q
{

0F1(2k; u
2v2)

}1/2 ×

|p, q; 0, 0, 2
3
(q − p)〉uveiα. (6.6)

As we would expect, this expansion involves just the K− eigenstate defined in eqn.(5.5),

namely the I = M = 0, Y = 2
3
(q − p) member of the orthonormal basis {|p, q; IMY 〉uveiα}

for Huveiα . As in the case of the SU(3) SCS, where the fiducial vector within the UIR (p, q)

is the single highest weight vector |p, q; 1
2
(p+ q), 1

2
(p+ q), 1

3
(p− q)〉, here too a single vector

of the canonical basis appears as fiducial vector, but it is of course not the highest weight

state.

Now within each UIR (p, q) contained in the UR Duveiα on Huveiα , we define the family

of SU(3) GCS:

A ∈ SU(3) : |p, q; 0, 0, 2
3
(q − p);A〉uveiα = U(A)|p, q; 0, 0, 2

3
(q − p)〉uveiα (6.7)
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Then applying U(A) to both sides of eqn.(6.6) we have the general connection between Class

(e) H-W SCS and the SU(3) GCS (6.7):

|Az(0)(u), A∗w(0)(veiα)〉 = e−
1
2
(u2+v2)

∞
∑

p,q=0

{(p+ 1)(q + 1)/(p+ q + 1)!}1/2 ×

up(veiα)q
{

0F1(2k; u
2v2)

}1/2 |p, q; 0, 0, 2
3
(q − p);A〉uveiα (6.8)

We recognise that eqns.(6.6, 6.7, 6.8) are replacements for eqns. (4.26, 4.27, 4.28) and

eqns.(5.15, 5.17) of Class (d).

Keeping uveiα fixed, the SU(3) GCS (6.7) all belong to Huveiα , and from Schur lemma

they obey the analogues to eqns.(4.32, 5.18):

∫

SU(3)

dA|p, q; 0, 0, 2
3
(q − p);A〉uveiα uveiα〈p′, q′; 0, 0, 2

3
(q′ − p′);A| = δp′pδq′q

P (p,q;uveiα)

d(p, q)
, (6.9)

Here of course we exploit the multiplicity-free reduction of Duveiα. It follows that for the

H-W SCS (6.8) we have:

∫

SU(3)

dA|Az(0)(u), A∗w(0)(veiα)〉〈Az(0)(u), A∗w(0)(veiα)| =

2e−(u2+v2)
∞
∑

p,q=0

u2pv2q
0F1(2k; u

2v2) P (p,q;uveiα)/(p+ q + 2)! (6.10)

The integration over SU(3) here is in effect only over the five-dimensional coset space

SU(3)/SU(2), in contrast to eqns.(4.32, 5.18) in Class (d).

If we write κ = uveiα and allow u and v to vary reciprocally, and also keep α fixed so that

κ stays fixed, we never leave the subspace Huveiα and the projection operators P (p,q;uveiα).

Therefore we can multiply both sides of eqn.(6.10) by any function

f(u, v) = f0(u) δ(uv − |κ|), (6.11)

and integrate over both u and v to get results similar to eqns.(4.33, 5.21). Here f0(u) is free.

This then shows that for each fixed κ, the Class (e) H-W SCS |z, w > with zTw = κ are

overcomplete in Hκ
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VII. CONCLUDING REMARKS

To conclude, we have given a unified analysis of the interconnections between the

Heisenberg-Weyl standard coherent states and the standard coherent states as well as certain

generalised coherent states of SU(3). The specific family of SU(3) coherent states to be used

is dependent on the type of orbit of the H-W SCS belong to. This situation is describable

in detail as follows. In terms of the SU(3) invariant parameters x and y, at x = y = 0 we

have those generic Class(d) orbits which lie entirely within the subspace H0. For these H-W

SCS, the SU(3) harmonic analysis involves precisely the SU(3) SCS within each UIR. For

0 < x2 + y2 < 1 we deal with the subspaces Hκ ⊂ H which generalise H0; the corresponding

orbits consist of H-W SCS whose SU(3) content brings in the SU(3) GCS studied in Section

V. The fiducial vectors here are rather complicated, at any rate in the canonical basis for

SU(3) UIR’s. In the limit x2 +y2 = 1, we have the Class (e) orbits. These H-W SCS involve

yet another family of SU(3) GCS, though now the fiducial vectors are the unique SU(2)

scalar states within each SU(3) UIR, and their properties are studied in Secion VI. In this

entire development the group Sp(2, R) plays a particularly helpful role and so does the Schur

lemma wherever it is available. Indeed we have used this lemma for UIR’s of the H-W group

wherever possible, and after modifications of the completeness identity used it for UIR’s

of SU(3). This systematic use of Schur lemma makes several computations much easier

than otherwise. It must be emphasised that all the Heisenberg standard coherent states

have been included in our study in the spirit of SU(3) harmonic analysis, so that there is

a satisfactory completeness in our analysis. The significant property of the discrete series

UIR’s of Sp(2, R), which we have exploited, is worth mention. It is that while the spectrum

of the compact generator J0 depends on k, hence on the UIR, the ‘spectrum’ of the non

hermitian lowering operator K− is the entire complex plane, thus being UIR independent.

The calculations in Section V clearly show the importance of these facts.
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Appendix

We outline here the steps involved in going from (5.15) to (5.16). Eqn. (5.15).

N ′(p, q; |κ|/uv) =







I0
∑

I=|M0|

I
∑

M=M0

(2I + 1)(I −M0)!(I +M)!

(I +M0)!(I −M)!(M −M0)!2

(|κ|/uv)2(I0−M)

(

1− |κ|
2

u2v2

)M−M0






1/2

, (A.1)

can be written in terms of the Jacobi polynomials

P (α,β)
n (x) ≡ Γ(α+ n + 1)

n!Γ(α + β + n + 1)

n
∑

m=0

(

n

m

)

Γ(α + β + n +m+ 1)

2mΓ(α +m+ 1)
(x− 1)m (A.2)

as

N ′(p, q; |κ|/uv) =







I0
∑

I=|M0|

(2I + 1)

(

|κ|
uv

)2(I0−M0)

P
(0,2M0)
I−M0

(

2u2v2

|κ|2 − 1

)







1/2

(A.3)

Using the fact that P (α,β)
n can also be written as

P (α,β)
n (x) =

1

2n

n
∑

m=0

(

n+ α

m

)(

n + β

n−m

)

(x− 1)n−m(x+ 1)m (A.4)

one can show that

xM0P
(0,2M0)
I−M0

(2x− 1) = x−M0P
(0,−2M0)
I+M0

(2x− 1) (A.5)

which implies that N ′ depends on M0 only through its magnitude |M0|. Replacing M0 in

the rhs of (A.1) by |M0| and rewriting it as a polynomial in (1− |κ|2/u2v2), we obtain

N ′(p, q; |κ|/uv) =







I0−|M0|
∑

k=0

ak

(

1− |κ|
2

u2v2

)k






1/2

, (A.6)

where

ak =
k
∑

M=0

I0−|M0|
∑

I=M

(2I + 2|M0|+ 1)

(

I + 2|M0|+M

M

)(

I

M

)(

I − |M0| −M
k −M

)

(−1)k−M . (A.7)

which, after some rearrangement, can be written as

ak =
k
∑

M=0

(−1)M

(

I0 − |M0|+M − k
M

)

·

I0−|M0|−k+M
∑

I=0

(2I + 2k + 2|M0| − 2M + 1)

(

I + k −M
I

)(

I + 2k + 2|M0| − 2M

k −M

)

. (A.8)
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Using the identities

I0−|M0|−k+M
∑

I=0

(2I + 2k + 2|M0| − 2M + 1)

(

I + k −M
I

)(

I + 2k + 2|M0| − 2M

k −M

)

= (I0 − |M0|+ 1)

(

I0 + |M0|+ k −M + 1

I0 + |M0|

)(

I0 − |M0|
k −M

)

(A.9)

and

k
∑

M=0

(−1)M

(

I0 − |M0|+M − k
M

)(

I0 + |M0|+ k −M + 1

I0 + |M0|

)(

I0 − |M0|
k −M

)

=

(

I0 + |M0|+ 1

k + 1

)(

I0 − |M0|
k

)

(A.10)

we obtain

ak = (k + 1)

(

I0 + |M0|+ 1

k + 1

)(

I0 − |M0|+ 1

k + 1

)

(A.11)

Substituting this in (A.6) we finally obtain the result (5.16).
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