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POWERS OF IDEALS GENERATED BY QUADRATIC SEQUENCES

K. N. RAGHAVAN

Abstract. Huneke's conjecture that weak ¿-sequences generate ideals of quad-

ratic type is proved. The proof suggests the definition of quadratic sequences,

which are more general than weak ¿-sequences yet simpler to define and han-

dle, in addition to being just as useful. We extend the theory of ¿-sequences

and weak ¿-sequences to quadratic sequences. Results of Costa on sequences

of linear type are generalized. An example of a two-dimensional local domain

in which every system of parameters is a ¿-sequence in some order but which

nevertheless fails to be Buchsbaum is given. A criterion is established for when

equality holds in Burch's inequality for an ideal generated by a quadratic se-

quence.

1. Introduction

In this paper, we simplify and extend the theory, due to Huneke (see [HI,

H2, H3]), of ¿/-sequences and weak ¿/-sequences. Brodmann [Brl] showed that

for an ideal J of a Noetherian ring R, the value of depth R/J" (with respect

to any ideal) is independent of n for large n . But calculating this asymptotic

value of depth for a given ideal is a difficult problem. Huneke [HI] introduced

the concept of ¿/-sequence in order to calculate this asymptotic value for specific

examples of ideals J . Since then, the centrality of the notion of ¿/-sequence

has been realised, thanks to the work of several authors.

An ordered sequence xx, ... , xn of a ring R (all rings are commutative with

identity) is said to be a 6/-sequence if either (both) of the following equivalent

conditions hold:

(1) ((xx, ... , Xi-i) : x¡xk) = ((xx, ... , Xi-X) : xk) for all  1 < i < n and

for all k > i.
(2) ((xx... , x,_i) : Xi)r\(xx, ... , x„) = (xx, ... , x,_i) for all I < i < n .

where (xx,... , x,_i) is interpreted as 0 when i - I. Regular sequences

clearly are 6/-sequences. One example of a ¿/-sequence that is not a regular

sequence is provided by the maximal minors (in any order) of a generic nx(n +

1) matrix (see Example 4.1 of §4). There are many natural contexts in which

6/-sequences appear: see §4. Huneke later developed the theory of weak d-

sequences and used it effectively to calculate the asymptotic value of depth R/J"

for an even larger class of examples of ideals J (see [H2]). As the terminology

Received by the editors August 29, 1991 and, in revised form, November 2, 1992.

1991 Mathematics Subject Classification. Primary 13C40, 13F50.
Key words and phrases, ¿-sequence, weak ¿-sequence, quadratic sequence, relation type, Ratliff-

Rush ideal, analytic deviation, Buchsbaum ring, Burch's inequality.

© 1994 American Mathematical Society

0002-9947/94 $1.00 + 5.25 per page

727



728 K. N. RAGHAVAN

suggests, d -sequences are weak ¿/-sequences. The maximal minors of a generic

m x n matrix form a weak ¿/-sequence. More generally, the elements of a

straightening-closed ideal of an ordinal Hodge algebra form a weak ¿/-sequence

(see §4).
Recall the following well-known definition.

Definition 1.1. A relation on an ordered sequence of elements Xi, ... , xn

of a ring R is a form of positive degree in the graded polynomial ring S =

R[U¡ 11 < i < n] (elements of R have degree 0 and each U¡ has degree 1 )

that yields 0 when evaluated at Xi, ... , xn . Let N, denote the ideal of S

generated by the relations on xx, ... , xn of degree at most j . We have an

ascending chain Ni ç N2 ç • • • of ideals of S. Let r be the least positive

integer (possibly infinity) such that Nr = \JJ>X N/. (If R is Noetherian, then

r must be finite by Hubert's basis theorem.) It can be shown, by elementary

means, that r is independent of the choice of a finite generating set of the

ideal X = (xx, ... , xn). The invariant r is called the relation type of the ideal

X = (xx, ... , xn). An ideal of relation type 1 is said to be of linear type. An

ideal of relation type at most 2 is said to be of quadratic type.

The following definition is of crucial importance in this paper.

Definition 1.2. Given a ring R, and a form / of positive degree of the poly-

nomial ring S = R[Ux, ... , Un] in n variables over R, the order of / is the

least integer w such that / belongs to the ideal (Ux, ... , Uw) of S (the only

form of order 0 is 0).

In [R], the author proved, using induction on the order of a certain poly-

nomial, a theorem about 6/-sequences, from which important results about d-

sequences can be deduced as corollaries (see also [Rl]). The notion of order of

an element of a polynomial ring has other useful applications. In §2, we obtain
generalizations of results of Costa [C], and in §3, we prove Huneke's conjecture

that weak ¿/-sequences generate ideals of quadratic type (see Definition 1.1).

(In the proof of Huneke's conjecture, the notion of order is replaced by the

more general notion of an ideal (of a poset) dividing a homogeneous element

of the polynomial ring.) The proof of the main Theorem 3.6 of §3 suggests

the definition of quadratic sequences. These are not only easier to define and

more general than weak ¿/-sequences, but also, as we show in §5, the whole the-

ory of weak ¿/-sequences can be extended to these sequences. The definition of

quadratic sequences is cleaner and more natural than that of weak ¿/-sequences.

It also suggests the definition of "tertiary sequences", etc. In §3, we also show

that in a domain, ideals generated by quadratic sequences are Ratliff-Rush (see

Definition 3.9).
In the Main Theorem 5.4 of §5, we show that cyclic modules defined by the

powers of an ideal generated by a quadratic sequence can be filtered by ideals

that are "related" to the quadratic sequence. Our proof is simpler than Huneke's

original proof of the same result for ¿/-sequences and weak ¿/-sequences.
Important special cases of our theorem that quadratic sequences generate

ideals of quadratic type have been known. That straightening-closed ideals

are of quadratic type follows from the graded ordinal Hodge algebra structure

on their Rees algebras (see [BST, Lemma 2.2.1]). In §4, which is devoted to

examples, we add to the list of weak ¿/-sequences. Namely, we show that ideals
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of small analytic deviation studied recently by Huckaba and Huneke [HuHl,

HuH2] are generated by weak ¿/-sequences, hence by quadratic sequences. It

follows that these ideals are of quadratic type. This recovers a result of [HuH 1 ]

for ideals of analytic deviation 1. For ideals of analytic deviation 2, this is a

new result. Morales and Simis [MS] and Schenzel [S] have shown that defining

ideals of monomial curves in P3 that lie on the quadric surface xy - zw = 0

are of quadratic type; these ideals are generated by weak ¿/-sequences (see, for

example, [MS]). Since these ideals have analytic deviation 1 and are special

cases of the ideals studied by Huckaba and Huneke, we recover also this result.

In §6 we give an example of a two-dimensional Noetherian local domain in •

which every system of parameters is a ¿/-sequence in some order, but which

nevertheless is not Buchsbaum. This is interesting because a Noetherian local

ring is Buchsbaum if and only if every system of parameters is a ¿/-sequence. In

§7 we establish a sufficient criterion for equality to hold in Burch's inequality for

an ideal generated by a quadratic sequence. This is an extension of a theorem

of Huneke for ¿/-sequences. Our proof is simpler than Huneke's proof and even

enables us to weaken his hypothesis.

2. Sequences that effectively bind relation type

In this section, we generalize results of §1 of Costa's paper [C]. We also give

counterexamples to two questions raised in [C]. Fix notation as below.

Notation. Given an ordered sequence xx, ... , x„ of elements of a ring R, we

denote the ideal (xx, ... , x„) by X, and the partial ideal (xx, ... , x,) by X¡.

It is convenient to let X0 = 0. The graded polynomial ring R[U¡• 11 < i < n] in

n indeterminates over R is denoted by S ; elements of R have degree 0 and

each Ui has degree 1. For an element / of S, we denote by f(x) the image

of / in R under the evaluation map from S to R defined by U¡ >-> x,.

Consider the following conditions on the sequence xx, ... , x„ (p denotes

a positive integer) :

(*) (Xi-XXp-x : Xi) nXp = X,_xXp-x   VI < i < n,

(t) (Xi-XXp : Xi) n Xp = X¡_xXp-x   VI < i < n.

Costa proves the following in § 1 of [C] :

(1) If (*) holds for p = 1 , then it holds for all p > 1 .
(2) If (*) holds for all p > 1, then X is of linear type.
(3) If (f) holds for all p > 1, then X is of linear type.

Recall that xx, ... , x„ is called a ¿/-sequence (by definition) if (*) holds for

p = 1. Thus it follows from (1) and (2) that if xx, ... , xn is a ¿/-sequence,

then X is of linear type. Since, for a fixed p , (\) is weaker than (*), it follows

that (3) => (2). It is easy to deduce (1) from the fact [HI, Theorem 2.1] that,
if xi, ... , x„ is a ¿/-sequence, then X¡-\ n Xp ç Xi^xXp~'i VI < i < n : just
note that (X^XXP~X : x¡) n X" ç (X,-X : x,) n Xp = [(X,-_, : x,) nI]nP =

Xi-i n Xp = Xi-\Xp~l ; the other containment holds in general.
Here we prove, from first principles, the following generalizations ( m de-

notes a fixed positive integer) :

(1')   If (*) holds for p = m , then it holds for all p > m .
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(2')   If (*) holds for p = m , then the relation type of X is at most m .

(3')   If (f) holds forp = m, then every relation (see Definition 1.1) of degree

(m + 1) on xi, ... ,xn belongs to the ideal generated by relations of

degree m .

The following example shows that the hypothesis of (3) above may be satisfied

even though the hypothesis of (2') may not be satisfied for any value of m .

Example 2.1. Let R be the subring k[x, xy, y3, y4] of the polynomial ring

k[x, y] over a field k . Consider the sequence x, y4 in R. (The sequence

y4, x is a ¿/-sequence.) We claim that for this sequence (f) holds Vp > 1

but (*) does not hold for any value of p. We first show the latter half of

the claim. Since y5x e ((x) : y4) n (x, y4) \ (x), it is clear that (*) does

not hold for p = 1. Let p > 2. Notice that if (*) holds, then {Xi^Xp~x :
xi) n (x,+i, ... , x„)p ç Xi-\Xp~x, which in turn would imply that Xi-\XP~2 n
(x,+i, ... , x„)p ç Xi-xXP-1. But it is easy to see that y4p+xx e (x(x, y4)p~2 n

(y4)p)\(x(x, y4)p~x), as follows : notice that y4p+xx = xy4<-p-V-y9 = (y4)p-yx,

which shows that y4p+xx e x(x, y4)p~2 n (y4)p ; since y5 £ R, we see that
y4p+xx$x(x,y4)p-x.

To see the first half of the claim, notice first that for i = 1 both sides

are equal to 0 so we need only show it for i = 2. Using the modular law

A n (B + C) = (A D B) + C (where A, B , C are submodules with C ç A ), we
see that it is enough to show that (x(x, y4)p : y4) n (y4p) ç x(x, y4)p~x. For

this it is enough to show that (x(x, y4p) : y4) n (y4p) ç (xy4^-1)). Let a be

an element belonging to the left side. Then a = by4p and ay4 = ex2 + dxy4p ,

where b, c, d e R. Substituting the first equation into the second, we see

that x\b in the polynomial ring S = k[x,y]. Writing b — bxx, we get

a = (bxy4)(xy4{p~X)). Thus it is enough to show that bxy4 e R. Substituting

the last expression for a into the expression for ay4 and cancelling x, we get
¿jy'Hp+i) _ cx _|_ ¿yip gut) since y5 g r , this is possible only if the coefficient

of y is 0 in the expression of bx as a sum of monomials in S. This shows

that y4bx eR.   o

Proposition 2.2. Let m be a fixed positive integer, and let Xi,... , x„ be an

ordered sequence of elements of a ring R such that (*) holds with p = m. Let i

be an integer such that I < i < n . Then, for any form f of degree p > m in the
polynomial ring S = R[U¡ \l < i < n] such that f(x) belongs to X¿-XXm~x,

there exists a form g in S of degree p and order less than i such that f = g

modulo Nm where Nm denotes the ideal of S generated by the relations of

degree at most m on the elements xx, ... , xn.

Proof. The proof is by a double induction, the first on p, the second on the

order of /. First suppose that p = m. Since f(x) belongs to Xi_xXm~x,

there exists a polynomial g of degree m and order less than i such that

f(x) = g(x). Note that f - g is a relation of degree m on Xi, ... , x„ .
Now let p > m. Let w denote the order of / and proceed by induction

on w . If w < i, then the statement is clear (take g = /). Assume that

w > i. Write / = Uwfx + h, where fx is a form of degree p - 1 and h

is a form of degree p and order less than w . Note that h(x) belongs to

Xw-XXm~x . By hypothesis, f(x) belongs to X¡-XXm~x . But, since w > i,

we have X,_xXm-x ç Xw-.xXm~x .  Thus xwfx(x) = f(x) - h(x) belongs to
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Xw-XXm~x. It follows that fx(x) belongs to (Xw-XXm~x : xw) n Xp~x and

hence also to (Xw_xXm~x : xw)r\Xm , which by hypothesis equals Xw_xXm~x.

By the induction hypothesis on p, there exists a form gx in S of degree p - 1

and order less than w such that fx = gx mod Nm .

Note that / (= Uwfx + h) is congruent to Uwgx + h modulo Nm . Since

fi (x) = gi (x), it follows that (Uwgx +h)(x) is equal to f(x) and hence belongs

to Xi_xXm~x. Now, since Uwgx + h has degree p and order less than w , it

follows from the induction hypothesis on w that there exists a form g of

degree p and order less than / which is congruent modulo Nm to Uwgx + h

(and hence also to /).   D

Corollary 2.3. Let m be a positive integer. If (*) holds with p = m. Then

(1) (*) holds for every p > m, and
(2) the relation type of X is at most m .

Proof. (1) Clearly (X^XXP~X : x¡) n Xp 2 X^XXP~X. To see the other con-
tainment, notice first that, for an element a of Ip, there exists a form in

S of degree p such that a = f(x). If such an element a also belongs to

(Xi-xXP-1 : Xi), then, for p > m, f(x) = ae (Z,_iXM-1 : x¡) n Xm , which
by hypothesis equals Xi-XXm~x . Now, by the proposition, there exists a form

g is S of degree p and order less than i that is congruent modulo Nm to /.

In particular f(x) = g(x) e X¡_xXp-x .

(2) Let / be a relation of degree p > m on xi, ... , xn . The proposition,

applied with i = 1, guarantees the existence of a form g of degree p and

order less than 1 that is congruent modulo Nm to /. But then g = 0, since

0 is the only form of order 0.   D

Proposition 2.4. Let xx, ... , xn bean ordered sequence of elements of a ring R,

and let m be a fixed positive integer. If (\) holds with p = m, then Nm+X = Nm ,

that is, every relation of degree m + 1 on X\,... ,xn is in the ideal generated

by the relations of degree m .

Proof. Let / be a relation of degree m + 1. We use induction on the order of
/ to show that / belongs to Nm . Let w denote the order of /. If w = 0,

then / = 0, and so the conclusion holds.

Now assume that w > 1 and write / = Uwfx + h where fx is a form of

degree m and h is a form of degree m + 1 and order less than w . Note that

Xwfi(x) = (Uwfx)(x) = f(x) - h(x) = -h(x) e Xw_xXm . Thus fx(x) belongs

to (Xw-XXm : xw) n Xm , which by hypothesis equals Xw-XXm~x . This means

that there exists a form g in S of degree m and order less than w such that

fi(x) = g(x). Thus fx - g is a relation, and since it has degree m , it belongs

to Nm . Now f - Uw(fx - g) = Uwg + h is also a relation of degree m + 1.

Since Uwg + h has order less than w , it follows from the induction hypothesis

that it (and hence also / ) belongs to Nm .   □

We now answer, in the negative, two questions of Costa [C] concerning what

he has termed "sequences of linear type".

Definition 2.5 ([C]). An ordered sequence xx, ... , xn of elements of a ring

is called a sequence of linear type if X, is an ideal of linear type for every i,
1 < i <n.
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Notice that ¿-sequences are sequences of linear type. But not every sequence

of linear type is a ¿/-sequence (see, for example, §6). Costa asks whether ev-

ery ideal generated by a sequence of linear type is actually generated by a d-

sequence. The following example shows that this is not true.

Example 2.6. Let R = k[Xij]i<ij<$, where A: is a field and Xy are inde-
terminates. It can be checked, using "MACAULAY" for example, that the

2x2 minors of the 3x3 matrix (X¡j) form a sequence of linear type in the

following order:   -XX2X2X + XXXX22 , XX2X3X - XXXX32 ,  -^22^31 + ^21^32 ,

-M3-Ï21 - ^11^23 ,   -^13^31 + ^Tl-^33 '   ^23^31 ~ ^21^33 ,   -^13^22 + ^12^23 >

XXt,Xt,2 - ^12^33> -^23^32 + ^22^33 • (Do they form a sequence of linear type

in any order?) The ideal generated by the 2x2 minors cannot, however, be

generated by a ¿/-sequence (see [Vas, Example 5.10]). Huneke [H4] has shown

that the ideal generated by the t x t minors of a (t+l)x(t+l) generic matrix

(over a domain) is of linear type.   G

The second question arises out of the following result in [C] : If Xi, X2 is a

sequence of linear type then so is xx, xf for any positive integer 5. Costa asks

whether the same is true for sequences of linear type of arbitrary length. The

2x2 minors of a generic 2x3 matrix over a field provide a counterexample

to this question even for 5 = 2 (see Example 4.1); this also was checked using
"MACAULAY".

3. Weak ¿/-sequences generate ideals of quadratic type

As the title of this section suggests, its purpose is to settle the following

conjecture of Huneke in the affirmative : Ideals generated by weak ¿/-sequences

are of quadratic type (see Corollary 3.6). The proof of the Main Theorem 3.6

of this section suggests the definition of quadratic sequences, which are not only
simpler to define and more general than weak ¿/-sequences, but also, as we show

in §5, the whole theory of weak ¿/-sequences extends to these sequences. We

begin by establishing notation.

By a poset, we mean a partially ordered set. Let A be a finite poset. A subset

I of A is said to be an ideal if it satisfies the following property :

if o e X, X e A, and X < o , then Ael.

Throughout this section, small Greek letters will be used exclusively to denote

elements of a finite poset. Let {x¿ | X e A} be a set of elements of a ring R

indexed by A. Given an ideal X of A, we denote the ideal (xa \ o e X) of R

by Xz and call it the A-ideal (of R ) defined by X. An ideal of R is called a
A-ideal if it equals Xz for some ideal I of A. The empty subset of A is an

ideal and the A-ideal defined by it is the ideal 0. We write X instead of XA ;
in other words, X denotes the ideal (x¿ | X e A) of R.

Given an ideal X and an element X of A, we say that X lies just above X if

X g X but every element a of A such that a < X belongs to X. We say that

X lies inside or just above X if it either belongs to X or is just above X.

Definition 3.1 ([H2, Definition 1.1]). We say that {xx \ X e A} ç R is a weak d-
sequence (indexed by A ) if, for every pair (X, X) where X is an ideal of A and

X is an element of A that lies just above (equivalently, lies inside or just above)
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X, the following conditions hold ( 6 denotes the subset {6 e A | xex¿ e Xj,} of

A):

( 1 ) 6 is an ideal of A ;

(2) (X1:xx)nX = Xe;
(3) xxXeçXTX;  and
(4) either X e 6 or (XT : xx) = (Xy_ : x2).

Definition 3.2 ([H2, Definition 2.1]; see remark below). Let / be an ideal of

R. Suppose that {xx | X e A} ç R is such that {xx \ X e A} ç R/I is a
weak ¿/-sequence, where xx denotes the image of xx in R/I. Let X be an

ideal of A and X be an element of A that lies (inside or) just above X. Let

O = {6 e A\xgxx e Xz}. By axiom (3), we have xxXe C X^X + I. If,
in addition to {xx\X e A} c R/I being a weak ¿/-sequence, the following

stronger version of axiom (3) holds, then we say that {xx\X e A} ç R is a

weak d-sequence with respect to I :

(3a) xxXe C (Xi + I)X .

Remark. Huneke's terminology for what we have called "weak ¿-sequence with

respect to the ideal / " is "weak ¿/-sequence modulo / ".

Let X denote the ideal generated by elements of a weak ¿/-sequence with

respect to an ideal I. Theorem 2.1 of [H2] says that InXd C IXd~x+I2Xd-2

for every integer ¿/ > 2. It is immediate from the following theorem (see

Corollary 3.7 below) that this can be improved to I <~) Xd ç IXd~x. This im-

provement enables us to use "Transitivity of Depth" and obtain Corollary 5.5,

a result which for ¿/-sequences is due to Huneke [HI, Corollary 4.1]. Another

immediate corollary of the following theorem is that weak ¿/-sequences gener-

ate ideals of quadratic type (see Corollary 3.8 below). While the theorem is

applicable to weak ¿/-sequences, the proof does not use the full strength of all

axioms; it works with the less stringent condition of the following definition.

Definition 3.3. Let / be an ideal of R , and use " - " to denote images in R/I.

We say that {xx\X e A} c R is a quadratic sequence with respect to the ideal I

if, for every pair (X, X) where X is an ideal of A and X is an element of A
that lies (inside or) just above X, there exists an ideal G of A such that

(1) (I^xjnîçle.and
(2) XiXec(Xz + I)X.

A quadratic sequence with respect to the ideal 0 is called, simply, a quadratic

sequence. Note that, in view of (2), we would get an equivalent definition

if the containment relation in (1) were replaced by an equality. Motivation

for the nomenclature "quadratic sequence" is provided by Corollary 3.8 below.

Condition ( 1 ) can be rewritten as follows:

(1')   (Xz + I:xx)nxcxe + I.

For an example of a quadratic sequence that is not a weak ¿/-sequence, let

k[X,Y,Z,W]

(XY,xw-Yzy

where A: is a field. The images of X and Y in R form a quadratic sequence

on the discrete poset of two elements. But they are not a weak ¿/-sequence since

the image W of W belongs to (0 : X2) \ (0 : X).
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The basic facts about quadratic sequences contained in the following remark

are used at various points in the sequel. The proofs are routine verifications.

Remark 3.4. A weak ¿/-sequence with respect to an ideal is clearly a quadratic

sequence with respect to that ideal. A quadratic sequence with respect to an

ideal / is also a quadratic sequence with respect to I + X% for any ideal X

of the indexing poset. In particular, a quadratic sequence indexed by A is

a quadratic sequence with respect to any A-ideal. If {xx\X e A} ç R is a

quadratic sequence and X is an ideal of A, then {xx | X e A \ X} ç R/X% is a

quadratic sequence, where " - " is used to denote images modulo X% .

In what follows, 5 denotes the graded polynomial ring R[UX \ X e A] over

R in as many indeterminates as there are elements of A. Elements of R have

degree 0 and each Ux has degree 1 . For / e S, let f(x) denote the image

of / under the evaluation map from S to R defined by Ux i-» xx .

Definition 3.5. If / is a form in S and X is an ideal of A, we say that X

divides f and write X|/ if every (monomial) term of / is divisible by one

of the indeterminates Ua , o e X ; it is not required that a fixed indeterminate

Ua divide every term. Note that X | / if and only if / belongs to the ideal

(Ua\oel) of S.

If X | /, and g is any form in S, then X | fg. If X | / and X | g, then
X | / + g. The form 0 is divisible by every ideal of A. The empty subset of

A divides only the form 0.

Theorem 3.6. Let A be a finite poset, let R be a ring, and let I be an ideal of

R. Let {xx | X e A} ç R be a quadratic sequence with respect to I. Let N3/2 be

the ideal of the polynomial ring S — R[UX \ X e R] generated by quadratic forms

q suchthat q(x) belongs to IX. (The following remark explains the choice of

the subscript 3/2.) Let X bean ideal of A and f be a form of degree d > 2 in

S such that f(x) belongs to Xx, where " ~ " is used to denote images in R/I.

Then there exists a form g in S of degree d such that f = g mod N3/2 and

X divides g.

Remark. Given a positive integer d, it is natural to denote by Nd the ideal

generated by forms of degree d that yield an element of / when evaluated at

x. Notice that N[ ç N3/2 ç N2, which provides the rationale for the notation

" N3/2 ". It follows from the theorem (see Corollary 3.7 below) that, for an

element / of Nd , we have f(x) e IXd~x . In particular, N3/2 = N2 .

Proof of the theorem. We use a double induction, the first on d, next on the

number of elements of A \ X. If X = A, then the conclusion is obvious (take

g = f). Assume that X C A. Let X be an element of A that is just above X.

Note that f(x) belongs to Xj,u{).} ■ Since the number of elements in A\(Xu{/l})

is strictly less than that of A \ X, it follows from the induction hypothesis that

there exists a form g' in S of degree d suchthat f = g' modN3/2 and Xu{A}

divides g'. Thus, we may, after a change of notation (writing / instead of

g' ), assume that / = Uxf + h , where /' and h are forms of degrees d - 1

and d respectively and X | h. Further, we may subtract h from / without

affecting the hypothesis or the conclusion and assume that / = Uxf .

Let 8 be an ideal of A such that conditions (1) and (2) of Definition 3.3 are

satisfied. Note that f'(x) belongs to (X^. : xx) n X and hence also to Xe . By
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the induction hypothesis on the degree, there exists a form g' in S of degree

d - 1 such that /' = g' mod N3/2 and 61 g'. (In the base case ¿/ = 2, /' is

linear; so there exists a linear form g' suchthat &\g' and (f'-g')(x) belongs

to /.) Thus Uxf = Uxg' mod N3/2 (even in the base case d = 2). Subtracting

Ux(f - g') from /, we may assume that / = Uxg'.

Write g' = Y^e^B^eSe- F°r each ö e 8, there exists, by condition (2)
of Definition 3.3, a quadratic form qe such that X|#0 and (UxUe - qe)(x)

belongs to IX. Let g = 2^eee QeS'e ■ Since X divides each qe , it also divides
g. Since each UxUq - qe is (by definition) a generator of N3/2, it follows that

f-8 = EeeeitWe - 4e)g'ä belongs to N3/2.   D

Huneke proved a slightly weaker version of the following corollary for weak

¿/-sequences [H2, Theorem 2.1] (see discussion preceding Definition 3.3).

Corollary 3.7. If {xx \ X e A} ç R is a quadratic sequence with respect to an

ideal I, then I n Xa ç IXd~ ' for every integer d > 1. In particular, if {xx \ X e

A} ç R is a quadratic sequence, then Xi n Xa = X^Xd~x for any ideal X of
A.

Proof. To prove the first statement, notice first that it is obvious for ¿/ = 1.

Now let d > 2. For a e I n Xd, there exists a form / in S of degree d

such that f(x) = a . Let X be the empty subset of A and apply the theorem.

Conclude that / belongs to N3/2 ■ Write / = £, Qifi, where each q¡ is a

quadratic form such that q¡(x) e IX, and each f is a form of degree d - 2.

For each /, (q¡fi)(x) = q¡(x)fi(x) belongs to IX • Xd~2 = IXd~x. Hence so

does f(x) = a .
To prove the second statement, it suffices to show that X^ n Xd ç XiXd~x

because the other containment is clear. A routine verification shows that every

quadratic sequence indexed by A is a quadratic sequence with respect to any

A-ideal (see Remark 3.4). Now set I — Xj, in the first statement.   D

Remark. In fact, we have / n Xd = (IX n X2)Xd~2 for d > 2 in the above
corollary.

Proof. In the proof above, notice that q¡(x) e IX n X2 and that f(x) e
Xd~2.    D

Corollary 3.8. If {xx\X e A} C R isa quadratic sequence, then X is of quadratic
type.

Proof. Let / be a form of degree ¿/ > 2 such that f(x) = 0.   Apply the
theorem with 1 = 0 and X equal to the empty subset of A to conclude that /

belongs to N3/2 • But, since / = 0, it follows from the definition of N3/2 that
it is the ideal generated by quadratic forms ¿7 such that ¿7(x) = 0.   D

Corollary 3.7 gives examples of Ratliff-Rush ideals, as follows. Recall the
following definition.

Definition 3.9 [HLS]. A regular ideal / (that is, one which contains a nonzero-

divisor) of a ring R is called Ratliff-Rush if I = \J„(I"+X : I").

Proposition 3.10. // a is a nonzero divisor of a ring R and X is an ideal of R

such that (a)r\Xd = aXd~x for all d > 1, then theideal (a)+X is Ratliff-Rush.

Proof. Let / denote the ideal (a) + X. We claim that (Jd+X : ad) = J, which

shows in particular that (Jd+X : Jd) - J . We prove the claim by induction on
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d. For d = 0, the claim is clear. Let z e (Jd+X : ad). Write zad = ay + b,

where y e Jd and b e Xd+X. Now, b e (a) n X¿+1 = a^d. Write b = ab',

where b' e Xd . Substituting this into zarf = ay + ¿>, and cancelling a, we get
zad~x = y + V e 3d . Thus z belongs to (Jd : ad~x), which equals J by the

induction hypothesis.   D

Corollary 3.11. (1) In a domain, quadratic sequences generate Ratliff-Rush ide-

als.
(2) Let a be a nonzero divisor of a ring R. Let X be an ideal of R such

that the ideal X of the ring R/(a) is of linear type. Then the ideal (a) + X is

Ratliff-Rush.

Proof. (1) Let R be a domain and {xx \X e A} ç R be a quadratic sequence.

Choose a minimal element a of the indexing poset A. Notice that {xx\X e

A, X t¿ a} is a quadratic sequence with respect to the ideal (xa). The result

now follows from the above proposition and the first statement of Corollary 3.7.

(2) A routine verification shows that since X is an ideal of linear type,

(a) n Xd+X = aXd.   u

4. Examples

In this section, we give examples of quadratic sequences. Other than recalling

examples of ¿/-sequences and weak ¿/-sequences from the literature, we show

that ideals of small analytic deviation studied recently by Huckaba and Huneke

[HuHl, HuH2] are generated by weak ¿/-sequences. The desire to prove that

these ideals were of quadratic type was the starting point of the work of this

paper. We first recall some examples of ¿/-sequences. The following list is by no

means exhaustive. For more examples of ¿/-sequences, see [Fi; HI; H3; HSV1,

§5; SV; SV1].

Example 4.1 (The maximal minors of a generic n x (n + 1) matrix). Let n be

a positive integer, and let R = k[X¡j | 1 < i < n, 1 < j < n + 1], where k is

a field and X¡j are indeterminates. The maximal minors of the n x (n + 1)

matrix (Xjj) form a ¿/-sequence in any order.

Example 4.2 ([HU, Proposition 6.1]). If / is a licci ideal of a formal power

series ring R over a field, and if R/I is rigid, then / is generated by a d-

sequence.

Example 4.3 ([H6, Theorem 2.4]). Let R be a Cohen-Macaulay local ring. Let

/ be a strongly Cohen-Macaulay ideal of R such that p(Iv) < ht(p) Vp e
Spec(i?), V-I ■ Then / is generated by a Cohen-Macaulay ¿/-sequence (a d-

sequence is said to be Cohen-Macaulay if all its related ideals (see Definition 5.3)

are Cohen-Macaulay.)

Next we give examples of weak ¿/-sequences. It is easy to see that d-

sequences are weak ¿/-sequences. Straightening-closed ideals of graded ordinal

Hodge algebras are the other major class of weak ¿/-sequences. The theory of

Hodge algebras was developed by DeConcini, Eisenbud, and Procesi in [DEP].

Ordinal hodge algebras are also called algebras with straightening law. For the

definition of a straightening-closed ideal we refer the reader to [BST]. For ex-

amples and more information, see [BST; BV, Chapters 4 and 5; DEP; H2; H5].
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Proposition 4.4 [H2]. Elements of an ordinal Hodge algebra indexed by a

straightening-closed ideal of the underlying poset form a weak d-sequence (and

therefore also a quadratic sequence).

We now show that certain ideals of small analytic deviation are generated by

weak ¿/-sequences. Let / be an ideal of a Noetherian local ring R. The analytic

deviation of I is ad(V) := /(/) - ht(/), where /(/) is the analytic spread of /

(see Definition 7.1 ) and ht(/) is the height of /. Huckaba and Huneke have

recently studied ideals of small analytic deviation [HuHl, HuH2]. Recall that

an ideal J ç I is called a reduction of I if JI" = I"+x for some non-negative

integer n (see [NR]). A reduction is called a minimal reduction if there does

not exist a reduction strictly contained in J. A basic fact is that the number

of generators of any minimal reduction equals the analytic spread of / (see

[NR]). Given a reduction J of I, the reduction number of I with respect to J

is defined by rj(I) = min{« e Z+ U {0} | JIn = /"+'} . The reduction number

of I is defined by r(I) = min{rj(I) \ J is a minimal reduction of / } . The

hypothesis in Theorem 4.5 below (respectively Theorem 4.9) are the same as in

Theorem 2.2 of [HuHl] (respectively Theorem 3.1 of [HuHl]). For examples

of ideals to which these theorems can be applied, see §4 of [HuHl]; see also

Corollary 4.10.

Theorem 4.5. Let R be a Cohen-Macaulay local ring and I an ideal of R of

analytic deviation 1 and height ¿/ > 1. Assume that the minimal primes of I

all have the same height and associated primes of I have height at most d + 1.

Assume also that I is generically a complete intersection (i.e., Ip is generated

by a regular sequence in Rp for every minimal prime p over I) and that there

exists a minimal reduction J of I such that rj(IQ) < 1 for every prime ideal

Qd I with ht(Q/I) = 1. Then I is generated by a weak d-sequence.

Before proving the theorem we introduce the following definition.

Definition 4.6. An ordered sequence xx, ... , xn of elements of a ring R is

said to be a ¿/-sequence with respect to an ideal I D(xi,... , x„), if

{Xi-i:xi)nI = Xt-i   VI </'<«.

Compare this with condition (2) of the definition of a ¿/-sequence in the

second paragraph of § 1.

Proposition 4.7. Let xx, ... , x„ be a d-sequence with respect to a finitely gener-

ated ideal I of an arbitrary commutative ring R. Assume that (xx, ... , x„)I =

I2 and that x¡ & (xx, ... , x¡, ... , x„) VI < / < n. Then I is generated by a
weak d-sequence (and therefore also a quadratic sequence).

Proof. Choose elements yx, ... , ym in I such that they form an unshortenable

generating set for the ideal / modulo X = (xx, ... , x„). Let A be a poset

with n + m elements ax, ... , an, ßx, ... , ßm in the following order : ax <

... < an; olí < ßj VI < i < n, 1 < j < m. Let x, be indexed by a, and

y i by ßj. We claim that xx, ... , x„, yx, ... , ym form a weak ¿/-sequence in

this order.

To prove the claim, we adopt the notation of Definition 3.1. The following

two situations have to be checked :

(1)   X = {ax , ... , a,} where 1 < / < n - 1  and X = ai+x .
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(2)   X = {ai, ... , a„} U Q where Q, is some subset of {ßx, ... , ßm} and

X = ßj such that ßj• £ Q.

In the first case we claim that 8 = X = {ai,...,a,}. This follows from the

assumption that (Xj. : xx) n / = Xi and our minimality hypotheses which force

yj & Xi VI < j < m and x¡ £ Xi if i < j < n. The first three axioms of

Definition 3.1 are clearly satisfied. For the last, suppose that ax2+x e Xi =

(xx,... , Xi). Then ax,+i e (Xi :xx)nl = Xi, which implies a e (Xi : xx).
In the second case 8 = A, and all axioms are easily checked. To verify the

third axiom, note (xx, ... , xn)I = I2.   G

Proof of Theorem 4.5. By Theorem 2.2 of [HuHl], rj(I) < 1 . Since / is
generically a complete intersection and /(/) = ht(7) + 1, we may assume (using

a general position argument; see [HuHl]) that J = (xx, ... , xd,c) where

xx,... ,xd is a regular sequence that generates / generically. We claim that
xi, ... , xd,c is a ¿/-sequence with respect to /. Once the claim is proved, we

are done by using the above proposition.

To prove the claim, we need only check that ((xi,... ,xd) : c) f) I =

(xi, ... , xd), since xx, ... , xd is a regular sequence. It is enough to check

this locally at every associated prime of (xi, ... , xd). The associated primes of
(xi, ... , xd) are its minimal primes. If Q is a minimal prime of (xi, ... , xd)

that does not contain c, then ((xi, ... , xd) : c)q = (xx, ... , xd)Q so equal-
ity holds. If Q contains c, then (xi, ... , xd)Q = Iq because Xi, ... , xd
generate / generically, so equality holds again.   D

Corollary 4.8 [HuHl, Theorem 4.5; MS, Theorem 4.1]. Let I be as in the
theorem. Then I is of quadratic type.

Proof. Combine the above theorem with Corollary 3.8.   D

Theorem 4.9. Let I be a Cohen-Macaulay ideal of analytic deviation 2 of a

Gorenstein local ring. Assume that I has height d > 2, Iq is a complete

intersection for all primes QD I such that ht(Q/I) = 1, and there exists a

minimal reduction K of I such that rK(IQ) < 1 for every prime ideal QD I

with ht(Q/I) = 2. Then I is generated by a weak d-sequence. In particular, I

is of quadratic type.

Proof. By [HuHl, Theorem 3.1], rK(I) < 1, that is, KI = I2. By [HuH2,
Lemma 3.5], there exists a minimal generating set {ax, ... , ad, x, y} of K

satisfying

(1) ax, ... , ad is a regular sequence;

(2) ((ax,... ,ad):x)r\I = (ax,... , ad) ; and

(3) ((ax,... ,ad,x):y)r\I = (ax,... ,ad,x).

In other words, K is generated by a ^-sequence with respect to the ideal /.

Apply Proposition 4.7.   D

Corollary 4.10 (See Corollary 3.34 of [HuH2]). Let R be a regular local ring
and P be a Cohen-Macaulay prime ideal of R of dimension 3. If powers of P
coincide with its symbolic powers, then P is of quadratic type.

Proof. From Burch's inequality (see §7), P" = P^n) for n > 1 implies that

ad(P) < 2. If Q is a prime containing P such that ht(Q/P) = 1, then PQ
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is a complete intersection, since powers are symbolic powers. If ad(P) = 0,

then P is a complete intersection by [CN], hence of linear type. If ad(P) = 1,

then the hypothesis of Theorem 4.5 are satisfied, hence P is of quadratic type.

Suppose that ad(P) = 2. For Q a prime containing P such that ht(Q/P) < 2,
Burch's inequality implies that ad(Po) < 1. Applying Theorem 2.2 of [HuHl]
to the ring Rq , we see that there exists a minimal reduction K of P such that

rK(Pç>) < 1 • Apply Theorem 4.9 to finish.   G

5. Powers of ideals generated by quadratic sequences

In this section we extend the theory of 6/-sequences and weak ¿/-sequences to

quadratic sequences. The main result of this section is Theorem 5.4, which for

weak ¿/-sequences was proved by Huneke [H2, Theorem 2.2]. Our proof is more

general yet simpler than Huneke's original proof. The result says that we can

filter R/X" , where X is an ideal generated by elements of a quadratic sequence,

such that the quotients are cyclic modules whose annihilators are "related ideals"

of the quadratic sequence. Once this is established, the corollaries follow easily.

Corollary 5.5 was proved by Huneke for ¿/-sequences [HI, Corollary 4.1], but

it was not known for weak ¿/-sequences. Corollary 3.7 enables us to prove it

for quadratic sequences.

Lemma 5.1. If {xx\X e A} is a quadratic sequence with respect to an ideal I,

and J is an ideal such that J n X ç I ç J, then {xx \ X e A} is a quadratic
sequence with respect to J as well.

Proof. For an ideal X of A and an element X of A that is inside or just

above X, there exists (by Definition 3.3 of a quadratic sequence with respect

to an ideal) an ideal 8 of A such that

(1) (Xi:xx)nXCXe,and
(2) xxXec(Xi + I)X,

where " - " denotes images modulo /. Pulling ( 1 ) back to R, we get

((Xi + I) : xx) n(X + I)CXB + I.

It suffices to show that 8 satisfies the conditions

(i)   (X^ : x'k) n X' ç X'B , and

(h) xxXeC(Xi + J)X,

where " ' " is used to denote images modulo J . Clearly (2) => (ii), since J D I

by our hypothesis. Condition (i), when pulled back to R, yields the equivalent

condition ((Xi + J) : xx) n (X + J) ç Xe + J. This equivalent form of (i)

is an easy consequence of ( 1 ) and the hypothesis that /nlç/ç/,aswe

now show. Let a e X and b e J such that (a + b)xx = c + d with c e Xi
and d e J. Then d = (a + b)xx - c belongs to J nX and hence also to /.

Note also that bxx belongs to JX ç J n X ç I. Thus axx = c + (d - bxx)
belongs to Xi +1. This means that a e ((Xi + I) : xx). Since a e X to begin

with, it follows from ( 1 ) that a e Xe +1, which implies that a + b belongs to

Xe + I + J = Xe + J.   G

Corollary 5.2. If {xx \ X e A} is a quadratic sequence and a is a minimal element

of A, then {xx \ X e A} is a quadratic sequence with respect to (0 : xa).
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Proof. Let Q. be an ideal of A such that (0 : xa) nX ç Xq and xaXa = 0 (to

see that such an ideal exists, set X equal to the empty subset of A and X = a

in Definition 3.3 of a quadratic sequence). Note that, since xuXq = 0, we

actually have the equality (0 : xa) f) X = Xçi. As a routine check shows, every

quadratic sequence indexed by A is a quadratic sequence with respect to any

A-ideal (see Remark 3.4). In particular, {xx\X e A} is a quadratic sequence

with respect to Xq . Apply the lemma with I = Xçi and / = (0 : xa).   G

Definition 5.3. Given a quadratic sequence {xx | X e A} , consider the ideals

(Xi :xx) + X obtained by letting X vary over the set of all ideals of A and X
over all elements of A that are inside or just above X. An ideal of R is said

to be related to the quadratic sequence if it is equal either to X or to one of

these ideals.

Theorem 5.4. Let A be a finite poset, R be a ring, and {xx\X e A} be a

quadratic sequence. Let X denote the ideal (xx\X e A). For every integer

n > I, there exists a filtration R/Xn = M0 D Mx D ■ ■ ■ D Mk = 0 of the R-
module R/X" such that for every integer i, 0 < i < k - 1, there exists an ideal

Y¡ related to the quadratic sequence satisfying Mi/Mi+X = R/Y¡.

Proof. The proof proceeds by two inductions, the first on the number of ele-

ments of A, and the second on n . The base case n = 1 of the second induction

is clear since X itself is a related ideal. The following proof of the induction

step includes the proof of the base case of the first induction, namely, the case

when A is a singleton.

Fix a minimal element a of A and write x instead of xa . From the filtra-
tion R/Xn D (x, Xn)/Xn D 0, and the claim (proved below) that (x, Xn)/Xn

= R/((0 : x),^""1), it clearly suffices to show that R/(x,Xn) and

R/((0 : x), X"~x) have nitrations of the desired form. To see the claim, con-

sider the following display (clarifications follow):

(x) + X" (x) (x) R R

X" X"il(x)     xX"-1      (xX"-x:x)     (0:x) + X"~x'

The first isomorphism follows from the general isomorphism (A + B)/B

= A/(A n B) of submodules. The second isomorphism is also clear, since

(xX"~x : x) is the kernel of the mapping from R onto (x)/xXn~x defined by

1 h-> x . The last equality is a consequence of the general identity (xA : x) =

(0 : x) + A for an ideal A and an element x of a ring. To see the first equality,

set X = {a} (so that Xi = (x)) in the second statement of Corollary 3.7 to

obtain (x) nl" = xX"~x. This finishes the proof of the claim.

To see that R/(x, X") has a filtration of the desired form, let A' = A\ {a} .

A routine verification shows that [xx | X e A'} ç R/(x) is a quadratic sequence,
where "-" is used to denote images modulo (x) (see Remark 3.4). Let X'

denote the ideal (xx\X e A'). Since A' has fewer elements than A, it follows

from our second induction that R/X'" has a filtration in which the quotients

are R modulo related ideals of [xx\X e A'}. But R/X7" £ R/(x,X'n) =
R/(x, Xn), and the preimage in R of a related ideal of {x^ | X e A'} is, as can

be easily checked, a related ideal of {xx\X e A} . This proves that R/(x, X")

has a filtration of the required form.
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To see that R/((0 : x), Xn~x) has a filtration of the desired form, let "-"

denote images in R/(0 : x). By Corollary 5.2, {xx\X e A} ç R/(0 : x) is a
quadratic sequence. By the induction hypothesis on n , there exists a filtration

of R/X in which the quotients are cyclic i?-modules whose annihilators are

related ideals of the quadratic sequence {xx | X e A} . But the preimage in R

of an ideal in R related to [xx \ X e A} is related to {xx\X e A} , as we now

show. Clearly, every such preimage is of the form ((Xi + (0 : x)) : xx) + X

where X is an ideal of A and X is an element of A that is just above X. Let

Q be an ideal of A such that (0 : x) n X ç Xq and xXq = 0 ; to see that
such an ideal Q exists, let X be the empty subset and X = a in the conditions

of Definition 3.3 of a quadratic sequence. It suffices to prove the claim that

((Xi + (0 : x)) : xx) = (XZurj : xx), for then the preimage under consideration

will equal (X2uii : xx) + X which is clearly related to {xx\X e A} since X is

inside or just above X U Q.. We now prove the claim. It is a consequence of

the general identity (A : B) = (A n B : B) for ideals A and B of a ring that

((Xi + (0 : x)) : Xi) = (((Xi + (0 : x))r\(xx)) : xx). But, since (Xs + (0 :x))C)X
is contained in Xi + (0 : x) and contains ((Xi + (0 : x)) n (xx), this forces

((Xi + (0 : x)) : Xi) = (((Xi + (0 : x)) n X) : xx). It is therefore enough to

show that (Xi + (0 : x)) n X = Xiuq . It follows from the general identity

(A + B) n C = A + (B n C) for submodules of a module satisfying A ç C, we

get (Xi + (0 : x)) n X = Xz + ((0 : x) n X). But, since (0:x)fllç Xa and
xXa = 0, we have (0: x)f)X = Xn. Thus (Xi + (0 : x)) n X = Xi + Xa , and
the latter clearly equals X^q . This finishes the proof of the claim and also
that of the theorem.   G

Corollary 5.5. Let I be an ideal of a Noetherian ring R, and {xx\Xe A} be a

set of elements indexed by a finite poset A. Let X denote the ideal (Xi | X e A).

If {Xi | X e A} c R is a quadratic sequence with respect to the ideal I, and if

Ik~x/Ik is a free R/1-module for every positive integer k, then, for any positive

integer n and any ideal p of R,

depth (p' (7w) - ^depth (p> (d, Xi)Rxx) + x) '

where the minimum is taken over all pairs (X, X) such that X is an ideal of A

and X is an element of A that is (inside or) just above X.

To prove this corollary, we use Transitivity of Depth, which was proved by

Huneke in [HI]. Actually, we use the following slightly improved version of

transitivity of depth proved in [R].

Theorem 5.6 (Transitivity of Depth). Let I and X be ideals of a Noetherian

ring R and n be a positive integer. If Ik~x/Ik are free R/I-modules and

I n X1 ç IX'~X whenever 1 < k, I < n, then, for any ideal p of R,

depth (p< WTxr) * ,&n„depth (p' JTxï) •

We also use the following two elementary results.

Lemma 5.7 [HI, Lemma 3.4]. Let I and X be ideals of a ring R and let n and
k be positive integers. If Ik~x ¡Ik is a free R/I-module and I n X" C IX"~X,
then Ikr\Ik~xXn çlkX"-x.
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Proposition 5.8 [Hl, Lemma 3.2]. If M = M0 D Mx D ■■■ D Mn = 0 is a
filtration of a finitely generated module M over a Noetherian ring, then, for any

ideal p,

depth(p, M) >    min   depth ( p,

Proof of Corollary 5.5. Applying Corollary 3.7, we conclude that lP\Xd ç IXd~x
for all ¿/ > 1. Lemma 5.7 enables us to apply Transitivity of Depth. We get

depth (p' VTxy) * ,^depth (p' T^p) •

But, from the theorem we just proved, R/(I + Xk) has a filtration in which

the quotients are related ideals of the quadratic sequence {x^ | X e A} ç R/I.
From Proposition 5.8, we conclude that, for each k,

depth (p, j^s) > min depth (p, ((/> ̂ + x) •   □

Corollary 5.9. Let R be a Noetherian ring, {xx \ X e A} ç R be a quadratic

sequence indexed by a finite poset A, and let X be the ideal (xx\X e A).

Assume that there exists a minimal element 6 of A such that xq is not a

zero-divisor. Let p be any ideal of R, and let s be the integer defined by

i.f Rs = min depth   p,
(S,A) V   (Xz:xi) + X,

where the minimum is taken over all pairs (X, X) such that X is an ideal

of A and X is an element of A that is (inside or) just above X. Then, if

depth(p, R/X") = s for some positive integer n, then depth(p, R/Xm) = 5 for

every integer m> n .

Proof. Clearly we may assume m = N + 1. Write x instead of x# . Let J =

(xx |X G A, X t¿ 8). Then, since {xx \X e A\{6}} is a quadratic sequence with

respect to the ideal (x) (see Remark 3.4), the second statement of Corollary 3.7

gives (x) n Xn+X = (x)X" . Thus we have

(x, ■/"+') (x) (x) R

X"+x (x)r\(X"+x)     (x)X"     X»'

where the first isomorphism is a special case of the general isomorphism

(A + B)/B = A/(A n B) of submodules, and the last isomorphism follows

from our hypothesis that x in not a zero-divisor. This gives us the short exact

sequence

X"      X"+x       (x,J"+x)

It follows from the previous Corollary 5.5 that depth(p, R/(x, Jn+X)) > s : let

I = (x) and notice that the right side of the inequality in the conclusion of the

previous corollary is at least s . By our hypothesis we have depth(p, R/X") > s .

It is now clear from the long exact sequence on Ext^(.R/p, •) induced by the

above exact sequence that depth(p, R/X"+x) = s .    G

Corollary 5.10. Let R,   A,   X, and 6  be as in the above corollary.    Then

Ass(R/X) ç Ass(R/X2) ç • • • .

Proof. As in the previous corollary, 0 —► R/X" —> R/X"+x is exact.   G
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6. A Noetherian local ring need not be Buchsbaum even if

EVERY PARAMETER IDEAL IS GENERATED BY A ¿/-SEQUENCE

Motivation for the following example comes from Huneke's characterization

of local Buchsbaum rings (see [HI, Theorem 1.7; SV1, Chapter I, Proposi-

tion 1.17]: a Noetherian local ring is Buchsbaum if and only if every system of

parameters is a ¿/-sequence. (There is a minor error in the proof of [HI, Theo-

rem 1.7] which is corrected in [R].) Let R denote the subring k[x, xy, y2, y5]

of the polynomial ring k[x, y] in two indeterminates over a field k. Let M

denote the homogeneous maximal ideal (x, xy, y2, y5) of R. We prove that

the two dimensional Noetherian local domain Rm obtained by localizing R at

M is not Buchsbaum but every ideal of Rm generated by a system of parame-

ters is even generated by a 6/-sequence.

Elements a, b of a domain form a ¿/-sequence if and only if ((a) : b) =

((a) : b2) (by definition). To show that RM is not Buchsbaum, we show that

the system of parameters x, y2 is not a ¿/-sequence. This will suffice, for every

system of parameters of a local Buchsbaum ring must be a ¿/-sequence. In R,

the sequence x, y2 is not a ¿/-sequence, since xy belongs to the ideal ((x) : y4)

but not to ((x) : y2). After passing to Rm , the element xy still belongs to

((x) : y4), since this ideal is obtained by extending the same colon ideal from

R. To see that xy3 does not belong to (x) even after localization, notice that,

if it did, then there would exist an element a of R not belonging to M (that

is, a has nonzero constant term) such that, back in the ring R, axy3 belongs

to (x). But that would be absurd, since no element of the ideal (x) of R can

have a nonzero coefficient for xy3.

To show that every parameter ideal of Rm is generated by a ¿-sequence, we
first prove a proposition.

Proposition 6.1. Let a, b be elements of R = k[x, xy, y2, y5] that do not

form a d-sequence and such that the ideal they generate has height 2 Then ay

belongs to R and, in fact, to ((a) : b2) but not to ((a) : b), and the element b

after modification by multiplication by a nonzero element of the field k has the
form y2 + b', where V is an element of R. In particular, the elements b, a

form a d-sequence.

Proof. To see that the second assertion follows from the first, suppose that a, b

is not a ¿-sequence. Then, by the first assertion, b has the form y2 + b', which
implies that by cannot belong to R. Hence, by the first assertion, b, a must

be a ¿-sequence.

To prove the first statement, let c be an element of ((a) : b2) that does not

belong to ((a) : b). Since an ideal of height 2 of R still has height 2 after
extension to S = k[x, y], the elements a, b generate an ideal of height 2 in

S. Since 5 is Cohen-Macaulay, they form a regular sequence in S. Since cb2

belongs to ¿zjR (and hence also to aS ) and b2 <£ aS, it follows that c belongs

to aS. Write

c = (ay + ßy3 + c')-a,

where a and ß are elements of the field k and c' belongs to R. Since y3

multiplies the maximal ideal M of R into R, it follows that (ßy3 + c')a

belongs to R. Moreover, it belongs to ((a) : b), since (ßy3 + c')b is in R.
Since c was chosen not to belong to ((a) : b), this forces a to be nonzero.
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Note that modifying c by subtracting an element of ((a) : b) from it does not

change its status as an element of ((a) : b2) \ ((a) : b). Subtracting (ßy3 + c')a

from c and multiplying by the inverse of a, we get ay .

Now write b = yy2 + b', where y is an element of the field k and b' is an

element of M having coefficient of y2 equal to zero. Since y multiplies b'

into R, it follows that b'ay belongs to aR . If y were equal to zero, this would

force ay e ((a) : b), a contradiction. Thus y is nonzero, and multiplying b

by the inverse of y, we see that b has the desired form,   a

Let / denote the contraction to R of an arbitrarily fixed parameter ideal

of Rm ■ Our goal is to show that the parameter ideal, which is nothing but the

extension Im of / to Rm , is generated by a ¿-sequence. There exist elements

a, b in / whose images in Rm generate Im ■ We claim that these elements

may be chosen such that they generate an ideal of height 2. Given this claim,

we conclude, using the above proposition, that either a, b or b, a is a ¿-

sequence. Since a ¿-sequence stays a ¿-sequence in any localization, it follows

that Im is generated by a ¿-sequence. To prove the claim, suppose that the

elements a, b generate an ideal of height one. Modify b by adding to it an

element c that belongs to MI and to every minimal prime over (a) that does

not contain b but not to any minimal prime over (a) that also contains b ;

such an element c exists by prime avoidance, since MI is primary to M and

therefore not contained in any prime of height 1. The new a, b generate an

ideal of height 2, and their images in Rm generate Im by Nakayama since,

by virtue of c e MI, the Rm/MRm vector subspace of Im/MIm generated

by the images of a, b remains unaltered.

7. A CRITERION FOR EQUALITY IN BURCH'S INEQUALITY

In this section, we extend to the case of quadratic sequences a theorem of
Huneke [HI, Theorem 4.1], which gives a sufficient criterion for equality to

hold in Burch's inequality for an ideal generated by a ¿-sequence. Our proof is

simpler than Huneke's proof for ¿-sequences. It also shows that the hypothesis

of Huneke's theorem can be weakened. Herzog, Simis, and Vasconcelos have

improved this theorem in another direction (see [HSV1, Theorem 5.12]).

Definition 7.1. The analytic spread of an ideal / of a Noetherian local ring R

with maximal idea M—the standard notation for which is /(/)—is the Krull

dimension of the fiber over M in the Rees ring of /. Symbolically, we have

/(/) -dim {mi)=dim {m®mi®mt2(b ■)■

The analytic spread of an ideal of a local ring is bounded above by the number

of generators of the ideal; this is immediate from the definition since the Rees
ring (respectively, the fiber ring) is a homomorphic image of the polynomial ring

over R (respectively, over the residue field) in as many indeterminates as there

are generators for the ideal. If an ideal is generated by analytically independent

elements, then its analytic spread equals their number, since (by definition of

analytic independence) the map from the polynomial ring over the residue field

onto the fiber ring defined using these elements as generators for the ideal is an

isomorphism.
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Let / be an ideal of a local ring R. Burch [Bu] showed that

/(/) < dim(Ä) - inf devth(R/Im).
m>l

Brodmann [Br] improved this to

/(/) < dim(Ä) - limdepth(Ä//m).
m>l

Note that if equality holds in Burch's inequality, then equality holds also in

Brodmann's inequality, and infm>xdevth(R/Im) - limm>) depth(R/Im). We

recall some notation from § 1 : given elements xx, ... , x„ of a ring, we denote

the ideal (xx, ... , x„) by X, the partial ideal (xi, ... , x,) by X,, and we

let X0 = 0.

Theorem 7.2. Let {xx | X e A} ç R be a quadratic sequence of a Noetherian

local ring R. Assume that depth(R/X) > dim(R) - l(X), that depth(R/Xi) >
dim(R) - l(X) + 1 for every proper ideal X C A, and that depth(R/X) >
dim(i?) - l(X) + 1 if there exists an ideal I. of A and an element X e A just

above X such that (Xi : xx) D X. Then, for the ideal X, equality holds in
Burch's inequality, that is,

l(X) = dim(R) - inf depth(R/Xm).
m>l

Proof. In view of Burch's inequality, it suffices to show that dim(i?) - l(X) <

depth(R/Xm) for every positive integer m . But by Theorem 5.4, there exists

a filtration of the i?-module R/Xm (for every m ) in which the quotients are

cyclic modules whose annihilators are related ideals of the quadratic sequence.

Recall that the depth of a finitely generated module M over a local ring R is

equal to the least integer j such that ExtJR(R/M, M) ^ 0, where M denotes

the maximal ideal of R. It follows from the elementary Proposition 5.8 that

depth ( —- ) > inf depth
KXmJ-p,k) \(Xi:xi) + X,

where (X, X) run over all pairs such that X is an ideal of A and X is an

element just above X. Therefore it suffices to show that

depth ( ————- ) > dim(ü) - l(X)    V such pairs (X, X).
\(Xi : xx) + X )

Fix such a pair (X, X). Let 8 be an ideal of A such that (Xi : xx)C\X = Xe.
Consider the long exact sequence on Ext induced by the short exact sequence

(Xi :xx) + X      R R

X ^ X "* (Xi : xk) + X ""*    "

From this, it is enough to show that

Notice that

depth (*z : X'] + X > dim(R) - l(X) + 1.

(Xi : x,) + X „     (Xi : xx) (Xz : xx)

X Xn(Xi:xx) Xe    '

Consider the long exact sequence on Ext induced by the short exact sequence

0 ^ (Xi : xx) _^R_^      R      ^ 0

^e -^e      (Xi : xx)
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Since depth(i?/Xe) > dim(i?) - l(X) + 1 by hypothesis, it is enough to show

that

depth tvR    , > dim(R) - l(X).
(Xi : xx)

But this follows from our hypothesis and long exact sequence on Ext induced

by the short exact sequence

0^_-_-£U — ^—_>o-
(Xi:xi)        Xi      (Xi,xx)

note that X U {X} is an ideal of A.   G

For examples of ¿-sequences to which the above theorem can be applied, see

§4 of [HI]. The hypothesis of Theorem 4.2 of [HI] seem to be much stronger

than that of the theorem above; I am not, however, aware of an example of a

¿-sequence that illustrates this. In the case of general quadratic sequences, it is

typically easier to verify directly that

deI"h((Xx:^+^)adimW-,W'

for all pairs (X, X) such that X lies just above X ; for example, see Proposi-

tion 2.3 of [MS].
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