

Home Search Collections Journals About Contact us My IOPscience

Identities involving elementary symmetric functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 L251

(http://iopscience.iop.org/0305-4470/33/29/101)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 122.172.61.114

The article was downloaded on 30/08/2010 at 11:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Identities involving elementary symmetric functions

S Chaturvedi† and V Gupta‡

- † School of Physics, University of Hyderabad, Hyderabad 500 046, India
- ‡ Departamento de Física Aplicado, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, AP 73, Cordemex 97310, Mérida, Yucatan, Mexico

E-mail: scsp@uohyd.ernet.in and virendra@aruna.cieamer.conacyt.mx

Received 17 April 2000

Abstract. A systematic procedure for generating certain identities involving elementary symmetric functions is proposed. These identities, as particular cases, lead to a hierarchy of identities for q-binomial coefficients.

Ever since the advent of Calogero-Sutherland models [1-4] there has been a considerable interest in finding homogeneous symmetric polynomials $P_k(x)$; $x \equiv (x_1, x_2, \dots, x_N)$ of degree k which satisfy the generalized Laplace equation

$$\left[\sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} + \frac{2}{\alpha} \sum_{i \le j} \frac{1}{(x_i - x_j)} \left(\frac{\partial}{\partial x_i} - \frac{\partial}{\partial x_j}\right)\right] P_k(x) = 0.$$
 (1)

Since one is seeking solutions to (1) which are symmetric functions of (x_1, x_2, \dots, x_N) it appears natural to change variables from $(x_1, x_2, ...)$ to a set of variables which are symmetric functions of $(x_1, x_2, ...)$ and rewrite the generalized Laplace equation in terms of these variables. Two sets of such variables that have been considered in the literature [5,6] are

• power sums:

$$p_r(x) = \sum_i x_i^r \qquad r = 1, \dots, N$$
 (2)

• elementary symmetric functions:

$$e_r(x) = \sum_{i_1 < i_2 \cdots < i_r} x_{i_1} x_{i_2} \dots x_{i_r} \qquad i_1, \dots, i_r = 1, \dots, N \qquad r = 1, \dots, N.$$
(3)

(Here, for symmetric functions, we follow the nomenclature and notation of [7].) Explicit expressions for the generalized Laplace equation in terms of these variables may be found in [5] and [6] respectively. The next step consists in finding polynomial solutions of the equation thus obtained. (It may be noted here that a more efficient way of constructing the symmetric polynomial solutions of (1) based on expanding $P_k(x)$ in terms of Jack polynomials [8] may be found in [9].)

In changing variables from (x_1, \ldots, x_N) to $(e_1(x), \ldots, e_N(x))$ in the generalized Laplace equation, in the intermediate stages, one needs to express the symmetric function

$$\sum_{i} e_{p-1}^{(i)}(x)e_{q-1}^{(i)}(x) \tag{4}$$

in terms of $e_r(x)$. Here $e_p^{(i)}(x)$ denotes the pth elementary symmetric function formed from (x_1, \ldots, x_N) omitting x_i . The purpose of this letter is to provide a derivation of the expression of the symmetric function in (4) in terms of the elementary symmetric functions in the full set of variables (x_1, \ldots, x_N) . The procedure adopted for deriving this result permits easy extension to symmetric functions such as

$$\sum_{i=1}^{N} e_{p-1}^{(i)}(x)e_{q-1}^{(i)}(x)e_{r-1}^{(i)}(x) \tag{5}$$

and so on. Further, on setting $x_1 = 1, x_2 = q, \dots, x_N = q^{N-1}$, one is led to a series of interesting identities for q-binomial coefficients.

To obtain the desired results, it proves convenient to work with the generating function for the elementary symmetric functions

$$E(x,t) = \sum_{r=0}^{N} t^{r} e_{r}(x)$$
 (6)

$$= \prod_{i=1}^{N} (1 + x_i t). \tag{7}$$

From the product structure of E(x, t) it follows that

$$e_p(x_1, x_2, \dots, x_N) = \sum_{l=0}^{p} e_l(x_1, x_2, \dots, x_l) e_{p-l}(x_{i+1}, \dots, x_N).$$
 (8)

Differentiating $\log E(x, t)$ with respect to t gives

$$\frac{\partial}{\partial t} \log E(x, t) = \sum_{i=1}^{N} \frac{x_i}{(1 + x_i t)}.$$
 (9)

Further, differentiating $\log E(x, t)$ with respect to x_i one obtains

$$\frac{\partial}{\partial x_i} \log E(x, t) = \frac{t}{(1 + x_i t)} \tag{10}$$

and hence

$$\prod_{\alpha=1}^{M} \left[\frac{\partial}{\partial x_i} \log E(x, t_\alpha) \right] = \left(\prod_{\alpha=1}^{M} t_\alpha \right) \left(\prod_{\alpha=1}^{M} \frac{1}{1 + x_i t_\alpha} \right).$$
 (11)

Our aim now is to express the rhs of (11) in terms of derivatives of $\log E(x, t)$ with respect to t. To this end, we notice that the second product on the rhs of (11) can be expressed as follows:

$$\left(\prod_{\alpha=1}^{M} \frac{1}{1 + x_i t_\alpha}\right) = 1 + \sum_{\alpha}^{M} f_\alpha(t) \frac{x_i}{1 + x_i t_\alpha} \tag{12}$$

where $f_{\alpha}(t)$ satisfy the following set of linear equations:

$$\sum_{\alpha} f_{\alpha} = -e_{1}(t)$$

$$\sum_{\alpha} f_{\alpha} e_{1}^{(\alpha)}(t) = -e_{2}(t)$$

$$\sum_{\alpha} f_{\alpha} e_{2}^{(\alpha)}(t) = -e_{3}(t)$$

$$\vdots$$

$$\sum_{\alpha} f_{\alpha} e_{M-1}^{(\alpha)} = -e_{M}(t).$$
(13)

Letter to the Editor L253

The solution of this set of linear equations turns out to be remarkably simple:

$$f_{\alpha}(t) = (-t_{\alpha})^{M} \prod_{\beta \neq \alpha} \frac{1}{(t_{\beta} - t_{\alpha})}.$$
 (14)

Using (12) in (11), summing over i, and using (9) we obtain

$$\sum_{i} \prod_{\alpha=1}^{M} \left[\frac{\partial}{\partial x_{i}} \log E(x, t_{\alpha}) \right] = \left(\prod_{\alpha=1}^{M} t_{\alpha} \right) \left[N + \sum_{\alpha=1}^{M} f_{\alpha} \frac{\partial}{\partial t_{\alpha}} \log E(x, t_{\alpha}) \right]$$
(15)

i.e.

$$\sum_{i} \prod_{\alpha=1}^{M} \left[\frac{\partial}{\partial x_{i}} E(x, t_{\alpha}) \right] = N \prod_{\alpha=1}^{M} t_{\alpha} E(x, t_{\alpha}) + \left(\prod_{\alpha=1}^{M} t_{\alpha} \right) \sum_{\alpha=1}^{M} f_{\alpha} \frac{\partial}{\partial t_{\alpha}} \prod_{\beta=1}^{M} E(x, t_{\beta})$$
(16)

where the f are given by (14). This relation is a rich source of a hierarchy of identities involving elementary symmetric functions and hence that for q-binomial and binomial coefficients as can be seen from the following illustrative examples.

Consider first the simplest of the hierarchy of identities implied by (16) obtained by setting $\alpha = 1$. In this case, (16) yields

$$\sum_{i=1}^{N} \frac{\partial}{\partial x_i} E(x, t) = Nt E(x, t) - t^2 \frac{\partial}{\partial t} E(x, t).$$
 (17)

On substituting for E(x, t) from (6) and equating like powers of t on both sides one obtains

$$\sum_{i=1}^{N} e_{p-1}^{(i)}(x) = (N-p+1)e_{p-1}(x). \tag{18}$$

Now, from (8) it follows that

$$e_{p-1}^{(i)}(x) = \sum_{l=1}^{p} e_{l-1}(x_1, x_2, \dots, x_{i-1}) e_{p-l}(x_{i+1}, \dots, x_N)$$
(19)

and hence

$$\sum_{i=1}^{N} e_{p-1}^{(i)}(x) = \sum_{l=1}^{p} \sum_{i=1}^{N} e_{l-1}(x_1, x_2, \dots, x_{l-1}) e_{p-l}(x_{l+1}, \dots, x_N).$$
 (20)

Using the fact that $e_l(x_1, ..., x_i)$ is nonzero only if $i \ge l$, we can rewrite (20), after some rearrangement, as

$$\sum_{i=1}^{N} e_{p-1}^{(i)}(x) = \sum_{i=1}^{N-p+1} \sum_{l=0}^{p-1} e_l(x_1, x_2, \dots, x_{i+l-1}) e_{p-l-1}(x_{i+l+1}, \dots, x_N).$$
 (21)

On using this result in (18) we obtain

$$\sum_{i=1}^{N-p+1} \sum_{l=0}^{p-1} e_l(x_1, x_2, \dots, x_{i+l-1}) e_{p-l-1}(x_{i+l+1}, \dots, x_N) = (N-p+1) e_{p-1}(x).$$
(22)

Setting $x_1 = 1, x_2 = q, \dots, x_N = q^{N-1}$ and using

$$e_p(1, q, \dots, q^{N-1}) = q^{p(p-1)/2} \begin{bmatrix} N \\ p \end{bmatrix}$$
 (23)

where

$$\begin{bmatrix} N \\ p \end{bmatrix} \equiv \frac{(1 - q^N)(1 - q^{N-1}) \cdots (1 - q^{N-p+1})}{(1 - q)(1 - q^2) \cdots (1 - q^p)}$$
(24)

denotes the q-binomial coefficient [7, 10], we obtain, on changing p-1 to p, the following q-binomial identity:

$$\sum_{i=1}^{N-p} \sum_{l=0}^{p} q^{il} \begin{bmatrix} N-p-i+l \\ l \end{bmatrix} \begin{bmatrix} i-1+p-l \\ p-l \end{bmatrix} = (N-p) \begin{bmatrix} N \\ p \end{bmatrix}. \tag{25}$$

This identity has a totally different structure as compared with that obtained from (8). For $N - p \ge i \ge 1$ (8) yields

$$\sum_{l=0}^{i} q^{(i-l)(p-l)} \begin{bmatrix} N-i \\ p-l \end{bmatrix} \begin{bmatrix} i \\ l \end{bmatrix} = \begin{bmatrix} N \\ p \end{bmatrix}$$
 (26)

which on summing over i from 1 to N-p gives

$$\sum_{i=1}^{N-p} \sum_{l=0}^{i} q^{(i-l)(p-l)} \begin{bmatrix} N-i \\ p-l \end{bmatrix} \begin{bmatrix} i \\ l \end{bmatrix} = (N-p) \begin{bmatrix} N \\ p \end{bmatrix}.$$
 (27)

Notice that (22) can be rewritten as

$$\sum_{i=1}^{N-p+1} \left[\sum_{l=0}^{p-1} e_l(x_1, x_2, \dots, x_{i+l-1}) e_{p-l-1}(x_{i+l+1}, \dots, x_N) - e_{p-1}(x) \right] = 0$$
 (28)

suggesting the following identitity:

$$e_p(x) = \sum_{l=0}^{p} e_l(x_1, x_2, \dots, x_{i+l-1}) e_{p-l}(x_{i+l+1}, \dots, x_N)$$
(29)

valid for $N - p \ge i \ge 1$. This gives rise to the following *q*-binomial identity:

$$\sum_{l=0}^{i} q^{(i-l)(p-l)} \begin{bmatrix} N-i \\ p-l \end{bmatrix} \begin{bmatrix} i \\ l \end{bmatrix} = \begin{bmatrix} N \\ p \end{bmatrix} \qquad N-p \geqslant i \geqslant 1.$$
 (30)

From (18) we can derive more identities by differentiating with respect to x_j , summing over j and using (18) on the rhs of the relation thus obtained. Repeating this procedure one is led to

$$\sum_{\substack{i,j=1:i,\dots>i\\p-r}}^{N} e_{p-r}^{(i_1,\dots,i_r)}(x) = \binom{N-p+r}{r} e_{p-r}(x). \tag{31}$$

Setting $x_1 = 1, x_2 = q, \dots, x_N = q^{N-1}$, as before, one obtains a whole series of q-binomial identities

The next in the hiearchy of identities corresponds to $\alpha = 2$. In this case (16) reads

$$\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} E(x, t_{1}) \frac{\partial}{\partial x_{i}} E(x, t_{2}) = Nt_{1}t_{2}E(x, t_{1})E(x, t_{2}) + t_{1}t_{2} \left[\frac{t_{1}^{2}}{t_{2} - t_{1}} \frac{\partial}{\partial t_{1}} + \frac{t_{2}^{2}}{t_{1} - t_{2}} \frac{\partial}{\partial t_{2}} \right] \times E(x, t_{1})E(x, t_{2}).$$
(32)

On substituting from (6) and equating like powers of t_1 and t_2 on both sides one obtains

$$\sum_{i=1}^{N} e_{p-1}^{(i)}(x)e_{q-1}^{(i)}(x) = (N-p+1)e_{p-1}(x)e_{q-1}(x) - \sum_{l=0}^{q-2} (p+q-2-2l)e_{p+q-2-l}(x)e_{l}(x)$$
(33)

which is the desired result valid for $p \ge q \ge 2$.

Letter to the Editor L255

For the case $\alpha = 3$, (16) gives

$$\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} E(x, t_{1}) \frac{\partial}{\partial x_{i}} E(x, t_{2}) \frac{\partial}{\partial x_{i}} E(x, t_{3}) = Nt_{1}t_{2}t_{3}E(x, t_{1})E(x, t_{2})E(x, t_{3}) - t_{1}t_{2}t_{3}$$

$$\times \left[\frac{t_{1}^{3}}{(t_{3} - t_{1})(t_{2} - t_{1})} \frac{\partial}{\partial t_{1}} + \frac{t_{2}^{3}}{(t_{3} - t_{2})(t_{1} - t_{2})} \frac{\partial}{\partial t_{2}} + \frac{t_{3}^{3}}{(t_{1} - t_{3})(t_{2} - t_{3})} \frac{\partial}{\partial t_{3}} \right] E(x, t_{1})E(x, t_{2})E(x, t_{3})$$
(34)

which, in turn, yields

$$\sum_{i=1}^{N} e_{p-1}^{(i)}(x) e_{q-1}^{(i)}(x) e_{r-1}^{(i)}(x) = \sum_{m=1}^{r-3} \sum_{l=1}^{m} le_{l} e_{m+q-l} e_{p+r-m-3} - \sum_{m=0}^{r-1} \sum_{l=1}^{q-3} le_{l} e_{m+p+q-l-2} e_{r-m-1}$$

$$- \sum_{m=0}^{r-1} \sum_{l=0}^{m} (m+q-l-2) e_{l} e_{m+q-l-2} e_{p+r-m-1}$$

$$+ \sum_{m=0}^{r-1} \sum_{l=0}^{q-1} (m+p+q-l-2) e_{l} e_{m+p+q-l-2} e_{r-m-1}$$
(35)

valid for $p \ge q \ge r$. Again, as before, we can derive identities for q-binomial coefficients by setting $x_i = q^{i-1}$ in (33) and (35).

To conclude, we have developed a systematic procedure for expressing sums of products of elementary symmetric functions of the form

$$\sum_{i}^{N} e_{p-1}^{(i)}(x) e_{q-1}^{(i)}(x) \cdots e_{w-1}^{(i)}(x)$$
(36)

in terms of elementary symmetric functions in the full set of variables x_1, \ldots, x_N . All such relations are derivable from (16), which constitutes the central result of this letter. These relations, in turn, are shown to lead to a hierarchy of identities involving q-binomial coefficients.

SC wishes to thank Professor A I Solomon and Professor K Penson for discussions and is particularly grateful to Professor J Katriel for many valuable suggestions.

References

- [1] Calogero F 1969 J. Math. Phys. 10 2191
- [2] Calogero F 1969 J. Math. Phys. 10 2197
- [3] Sutherland B 1971 J. Math. Phys. 12 246 Sutherland B 1971 J. Math. Phys. 12 251
- [4] Sutherland B 1971 Phys. Rev. A 4 2019 Sutherland B 1972 Phys. Rev. A 5 1372
- [5] Perelomov A M 1971 Theor. Math. Phys. 6 263
- [6] Rühl W and Turbiner A 1995 Mod. Phys. Lett. A 10 2213
- [7] Macdonald I G 1995 Symmetric Functions and Hall Polynomials 2nd edn (Oxford: Clarendon)
- [8] Jack H 1970 Proc. R. Soc. Edinburgh B 69 1
- [9] Chaturvedi S 1998 Mod. Phys. Lett. A 13 715
- [10] See for instance Cigler J 1979 Monatsh. Math. 88 87