AN EMBRYOLOGICAL APPROACH TO THE TAXONOMIC
STATUS OF VACCINIACEAE

BY J. VENKATESWARLU, F.A.Sc. AND H. MAHESWARI DEVI

(Department of Botany, Andhra University, Waltair)

Received November 21, 1972

ABSTRACT

The structure and development of male and female gametophytes,
endosperm and embryo are described for *Vaccinium nummularia*
Hook., *V. retusum* Hook. and *V. serratum* Weight. A comparison of
embryological information presented here with that of other species
given by previous workers shows general agreement in all the vacciniums.
In view of the similarities between the vacciniums and the subfamilies
of Ericaceae, the grouping of Vaccinioideae as a subfamily with the
rest of Ericaceae, as against the erection of the family Vacciniaceae, is
supported.

INTRODUCTION

BENTHAM AND HOOKER (1862–83) treated the vacciniums and allied genera
as belonging to a separate family Vacciniaceae under Ericales. Following
them Hutchinson (1959) also recognised the family Vacciniaceae as distinct
from the Ericaceae. However, according to Drude’s (1889) classification
(in Engler and Prantl, 1887–99) the Vacciniaceae are given a lower taxonomic
status as a subfamily under Ericaceae along with Rhododendroidae, Arbu-
utoideae and Ericoidae. Rendle (1938) and Gundersen (1950) agreed with
Engler and Diels (1936).

Embryological information of this group is fragmentary if not incom-
plete (Schnarf, 1931; Davis, 1966) with the exception of *Vaccinium*. Stushnoff
and Palser (1969) who studied five taxa of this genus—three species and two
cultivars of hybrid origin at different ploidy levels—observed embryological
conformity among them. Since their materials are from North America
and Europe, embryological studies were extended to three more species
(viz., *Vaccinium nummularia* Hook., *V. retusum* Hook., and *V. serratum*
Weight) growing in India (of uncertain provenance) and the results reported
briefly earlier (Venkateswarlu and Maheswari Devi, 1960) are now presented
in detail.

282
Material and Methods

Material of *V. nummularia*, *V. serratum* and also some material of *V. retusum* were kindly collected from Darjeeling area and fixed in formalin-acetic-alcohol by Dr. R. Seshagiri Rao, Botanical Survey of India, to whom we are thankful. Customary methods of dehydration, embedding and microtoming were followed. The sections were stained in Delafeld's haematoxylin.

Observations

Floral morphology.—The flowers are bisexual, pentacyclic, sympetalous, actinomorphic and epigynous. The stamens are introrse, spurless and dehisc by pores at the tips of the awas. The gynoecium is pentacarpellary, syncarpous and the ovary is inferior, five locular with two rows of ovules in each on axile placentae. The floral whorls develop in an acropetal succession.

Microsporangium, microsporogenesis and male gametophyte.—The anther is tetrasporangiate. Its wall consists of the epidermis, two middle layers and tapetum (Figs. 2, 3). An endothecium is not differentiated. The tapetum is parietal in origin and is of the secretory type. Its cells become binucleate by the time the pollen mother cells are in meiotic prophase. It remains uniseriate except on the connective side where it becomes multiseriate (Figs. 3, 4). The middle layers become crushed by the time the pollen tetrads are formed. However, the walls of the epidermal cells become thickened and project out giving a wavy appearance (Figs. 1, 5).

The primary sporogenous cells undergo repeated divisions and produce a large number of pollen mother cells which undergo meiosis with simultaneous cytokinesis and produce both bilateral and tetrahedral tetrads. Divisions in all the four locules within an anther are not synchronous. The pollen grains remain united in tetrads at the time of liberation (Fig. 6). The pollen grains are 2-nucleate, with three germinal furrows at the time of shedding. The four pollen grains of a tetrad do not germinate at the same time (Figs. 7, 8).

Megasporangium, megasporogenesis and female gametophyte.—The ovule is anatropous, unitegmic and tenuinucellate with a narrow micropyly. The innermost layer of the integumentary primordium is differentiated as the endothelium by the time meiosis takes place in the megaspore mother cell. It remains uniseriate in *V. nummularia* but becomes biserial in
Figs. 1–8. *Vaccinium serratum*. Fig. 1. L.s. flower. Fig. 2. L.s. part of anther lobe showing middle layers, secretory tapetum and pollen mother cells. Fig. 3. T.s. anther lobe showing middle layers, binucleate tapetal cells and pollen mother cells in meiotic prophase-I. Fig. 4. Part of multiseriate anther tapetum. Fig. 5. Thick-walled epidermal cells of anther. Fig. 6. Pollen tetrad. Figs. 7, 8. Germinating pollen tetrads. e., epidermis; t., tapetum.
V. serratum and V. retusum (Fig. 10). The nucellar epidermis becomes completely disorganised at about the two or four-nucleate stage of embryo sac.

The archesporium is hypodermal (Fig. 9). It functions directly as the megaspore mother cell without formation of any parietal layers. Meiosis occurs normally and a linear tetrad of megaspores is formed, of which the chalazal one develops into an eight-nucleate embryo sac of the Polygonum type (Figs. 11–13). The synergids are hooked and are organised earlier than the egg cell. The two polar nuclei fuse in the vicinity of the egg apparatus. In V. retusum three uninucleate antipodal cells are formed (Fig. 13). However, in the other two species their number seems to vary. A single three-nucleate condition is noted in V. serratum (Fig. 15). In V. nummularia there are 2 antipodal cells, of which one is binucleate (Fig. 14). The antipodal cells persist until the endosperm haustorium develops in the chalazal region of the embryo sac.

Occasionally ovules with two archesporial cells and two megaspore tetrads are met with (Fig. 16). Apparently only one of them is functional as occurrence of two embryo sacs in an ovule has not been observed.

Fertilisation and endosperm.—Fertilisation is porogamous (Fig. 17) with syngamy and triple fusion taking place normally.

The endosperm is of the Nuclear type. The primary endosperm nucleus divides earlier than the zygote. After the first division the two nuclei move apart and divide twice successively. The eight free nuclei so formed are arranged in four groups of two each (Fig. 18). At this stage wall formation commences and divides the embryo sac into three cells—two 2-nucleate cells one at each pole and a large central cell which is 4-nucleate. The cells at either end undergo one more vertical division (Fig. 19) and eventually develop into chalazal and micropylar endosperm haustoria which enlarge, crush and absorb all but one or two layers of cells of the integument. In the meanwhile, the four nuclei of the middle cell undergo further divisions followed by cell wall formation and give rise to the endosperm proper (Figs. 18–20).

Embryo.—The first division of the zygote is transverse and each of the two cells ca and cb undergo one more transverse division; the cells of the linear proembryo are termed l, l', m and c1 (Figs. 21–23). Two superposed cells l1 and l2 are then derived from l (Figs. 24–27). In each of these cells, quadrants are formed by two vertical divisions (Figs. 28–32). The derivatives of the tier l1 contribute to the formation of cotyledons and stem tip.
Figs. 9–20. Figs. 9–13. *Vaccinium retusum*. Fig. 14. *V. nummularia*. Figs. 15–20. *V. serratum*. Fig. 9. L.s. ovule showing megasporangiate mother cell. Fig. 10. Part of monosiphonate endothelium. Fig. 11. Megasporangiate tetrad. Figs. 12 and 13. Four- and organized eight-nucleate embryo sacs respectively. Figs. 14, 15. Antipodal cells. Fig. 16. Twin megasporangiate tetrads. Fig. 17. Upper part of embryo sac showing egg apparatus, pollen tube with two male nuclei and secondary nucleus. Fig. 18. Embryo sac showing nuclear endosperm, zygote and degenerating antipodal cells. Figs. 19, 20. Embryo sac showing embryo, cellular endosperm micropylar and chalazal endosperm haustoria.

cc., Cellular endosperm; ch., chalazal endosperm haustorium; da., degenerating antipodal cells; dm., degenerating megasporangiate; emb., embryo; mh., micropylar endosperm haustorium; pt., pollen tube; mn., male nucleus; z., zygote.
and that of \(l_3 \) to the hypocotyledonary region (Figs. 31-35). The cell \(l' \)
divides transversely resulting in two cells \(l'_1 \) and \(l'_2 \). The cell \(l'_1 \) undergoes
further divisions in all directions and contributes to the formation of all

Figs. 21-35. *Vaccinium serratum*. Embryogeny.
parts of root. The cells of \(l_2', m \) and \(c_i \) undergo several transverse divisions and produce an elongated uniseriate suspensor (Figs. 27–35).

The four-celled proembryo is linear and the embryo proper is derived from a large part of the cell \(ca \) of the two-celled proembryo, whereas the suspensor is formed from the basal cell \(cb \) and a few cells contributed by its sister cell \(ca \). Thus the embryo development in the three *Vaccinium* species follows the Solanad type.

DISCUSSION AND CONCLUSIONS

The salient embryological features of the three *Vaccinium* species studied are: The microsporangium has two middle layers, endothecium is not differentiated, the tapetum is secretory with binucleate cells; the pollen are liberated through apical pores and they remain united as tetrads and pollen grains are two-celled. The ovule is anatropous, unitegmic and tenuinucellate; an integumentary tapetum is present; the embryo sac is of the Polygonum type; antipodals are one, two or three nucleate depending upon their number varying from one to three in each embryo sac. The endosperm is free nuclear and develops both micropylar and chalazal haustoria. The embryo development is of the Solanad type.

Vaccinium species of different ploidy levels, including some cultivars of hybrid origin, have been embryologically studied by Gilbert (1952), Bell and Burchill (1955), Bell (1957), Batygina *et al.* (1963), Rousi (1967) and Stushnoff and Palser (1969). Although the chromosome numbers or the ploidy levels of the material investigated here are not known, it was interesting to observe greater embryological agreement between the North American-European taxa and the Indian species. However, some species show differences in certain embryological details. Thus the tapetum is believed to be sporogenous in origin in the three *Vaccinium* taxa studied by Batygina *et al.* (1963) whereas it is parietal in origin in the rest of the species. In *V. serratum* and *V. retusum* the endothelium is biseriate while it is uniseriate in *V. nummularia* (present work) as has also been reported in the five taxa of the genus investigated by Stushnoff and Palser (1969). A greater variability seems to exist in the endosperm development. In our study it conforms to the Nuclear type as in *Rhododendron japonicum* and *R. mucronatum* (Creech, 1955), *Vaccinium augustifolium* (Bell, 1957), *V. corymbosum* (Merril, 1936) and *V. leschenaultii* (Reddy and Narayana, 1965). In contrast Stevens (1919) observed both Nuclear and Cellular types
Table I

A comparison of morphological and embryological features in different subfamilies of the Ericaceae

<table>
<thead>
<tr>
<th></th>
<th>Rhododendroideae</th>
<th>Arbutoideae</th>
<th>Vaccinoideae</th>
<th>Ericoideae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anther</td>
<td>Appendages absent</td>
<td>Appendaged</td>
<td>Awned anthers; appendages absent</td>
<td>Appendaged</td>
</tr>
<tr>
<td>Fibrous endotheceum</td>
<td>Present in some members and absent in others</td>
<td>Present in some members and absent in others</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Tapetum</td>
<td>Secretory with binucleate cells</td>
<td>Secretory</td>
<td>Secretory with binucleate cells</td>
<td>Secretory</td>
</tr>
<tr>
<td>Pollen at liberation</td>
<td>Both tetrads and free pollen grains present</td>
<td>Both tetrads and free pollen grains present</td>
<td>Remain united as tetrads</td>
<td>Both tetrads and free pollen grains present</td>
</tr>
<tr>
<td>Pollen grains</td>
<td>Two-celled</td>
<td>Two-celled</td>
<td>Two-celled</td>
<td>Two-celled</td>
</tr>
<tr>
<td>Ovary</td>
<td>Superior</td>
<td>Superior</td>
<td>Inferior</td>
<td>Superior</td>
</tr>
<tr>
<td>Ovule</td>
<td>Anatropous, unitegmic and tenuinucellate</td>
<td>Anatropous, unitegmic and tenuinucellate</td>
<td>Anatropous, unitegmic and tenuinucellate</td>
<td>Anatropous, unitegmic and tenuinucellate</td>
</tr>
<tr>
<td>Embryo sac</td>
<td>Polygonum type</td>
<td>Both Polygonum and Bisporic types</td>
<td>Polygonum type</td>
<td>Polygonum type</td>
</tr>
<tr>
<td>Antipodals</td>
<td>Variable</td>
<td>Variable</td>
<td>Variable</td>
<td>Variable</td>
</tr>
<tr>
<td>Endosperm</td>
<td>Nuclear</td>
<td>Cellular</td>
<td>Both nuclear and cellular</td>
<td>...</td>
</tr>
<tr>
<td>Embryo</td>
<td>Solanad type</td>
<td>Solanad type</td>
<td>Solanad type (only V. corymbosum shows Caryophyllad type)</td>
<td>Solanad type</td>
</tr>
<tr>
<td>Fruit</td>
<td>Septicidal capsule</td>
<td>Loculicidal capsule or berry</td>
<td>Berry or drupe</td>
<td>Loculicidal capsule</td>
</tr>
<tr>
<td>Seed</td>
<td>Winged</td>
<td>Not winged</td>
<td>Not winged</td>
<td>Not winged</td>
</tr>
</tbody>
</table>
of development in *V. corymbosum* and more recently Gilbert (1952) and Stushnoff and Palser (1969) have described cellular type in the materials studied by them. In embryo development Solanad type seems to be the most common (Veillet Bartoszewaska, 1958; Stushnoff and Palser, 1969 and present report) with the exception of *V. corymbosum* which shows the Caryophyllad type (Gilbert, 1952).

The embryological features of *Vaccinium* and those of the other subfamilies of Ericaceae, together with their morphological features, are tabulated in Table I. An analysis of the data shows that there is greater uniformity in the embryological features of these diverse groups which support the retention of Vaccinioideae as a subfamily rather than its elevation to the rank of a distinct family, Vacciniaceae. In fact, Watson (1965) while supporting a similar status for this group on the basis of anatomical features is severely critical of Hutchinson’s (1959) treatment who promoted the Vaccinioideae into the taxonomic hierarchy of a full family.

REFERENCES

Batygina, T. B. and Teriokhin

Bell, H. P.

—— and Burchill, J.

Bentham, G. and Hooker, J. D.

Genera Plantarum, 1862-83.

Creech, J. L.

Davis, G. L.

Drude, O.

Engler, A. and Diels, L.

Syllabus der Pflanzenfamilien Aufl—II, Berlin, 1936.

Gilbert, F. A.

Gunderson, A.

Hutchinson, J.

Embryological Approach to Taxonomic Status of Vacciniaceae

Rendle, A. B. .. Classification of Flowering Plants, VCL. II. Dicotyledons. Cambridge, 1938.

* Originals not seen.
Supplement to the "Proceedings of the Indian Academy of Sciences"

INDEX TO VOL. LXXVIII (B)

AUTHORS' INDEX

Acharyulu, K. V. S. and Rao, C. Borreswara
Studies on the pyrrhotite from the ingaladha sulphide lode, Chitradurga District, Mysore State, 22.

Borkar, V. D.
.. Fossil fishes from the inter-trappean beds of Surendranagar District, Saurashtra, 181.

Chanda, S. K.
.. See Pillai and Chanda.

Chinnayya, B.
Digestive enzymes in a decapod crustacean Caridina weberi de Man, 119.

Chondar, S. L.
.. A possible separation of races of Gudusia chapra (Hamilton) by means of length-weight correlation, 73.

Govindarajulu, E.
.. Studies in cyperaceae, IX, 45.

Iyengar, M. O. P.
.. Contribution to our knowledge of South Indian algae, V. 257.

Janak, A. T. Sainath
.. See Ramamurthy and Janak.

Kanakambika, P. and Muthukkaruppan, V. R.
Lymphoid differentiation and organization of the spleen in the lizard, Calotes versicolor, 37.

Krishnamurthy, R. V.
.. See Vijaya Brahmanandam and Krishnamoorthy

Lakshmanan, M
.. See Padmanabhan and others.

Maheswari Devi. H.
.. See Venkateswarlu and Maheswari Devi.

Mira Madan
.. See Thind and Mira Madan.

Muthukkaruppan, V. R.
.. See Kanakambika and Muthukkaruppan.

Nair, N. C.
.. See Subramanyam and Nair.

Oke, J. G.
Biotype differentiation in some species of Dichanthium Willemet, Ischaemum Linn., Chrysopogon Trin., Sehima Forsk., Iseilema Hack., and Heteropogon Pers., found in parts of Western India, 10.

293
Oke, J. G. Karyotypic variations, meiotic behaviour and phylogenetic interrelationships in some species of *Ischaemum* Linn. and *Sehima* Forsk. in parts of Western India, 80.

Padmanabhan, D., Lakshmanan, M. and Veerasamy, S. Morphological and anatomical studies on little leaf in some flowering plants, 130.

Patel, H. K. See Patel and Patel.

Pillai, R. S. and Chanda, S. K. *Philautus shillongensis*, a new frog (Ranidae) from Meghalaya, India, 30.

Ramakrishnan, P. S. Individual behaviour of some legumes in monocultures related to growth rate, 212.

Rao, C. Borreswara See Acharyulu and Rao

Rao, V. S. The floral anatomy of the rare appostasias: *Apostasia* species, 17.

Srinivasan, V. V. Biometrical studies on the length-height relationship in two species of wood-boring pholads of East Coast of India, 203.

Subramanyam, K. and Nair, N. C. Dichotomous venation and anastomosis in the corolla of an Orchid—*Habenaria dentata* (SW.) Schltr., 195.

Thind, K. S. and Mira Madan Effect of various carbon and nitrogen sources on the growth and sporulation of *Microxyphiella hibiscifolia*, 143.

Effect of various trace elements on the growth and sporulation of *Claviceps microcephala* and *Microxyphiella hibiscifolia*, 222. Effect of various carbon and nitrogen sources on the growth and sporulation of *Claviceps microcephala*, 241.
Tikader, B. K.

Studies on some ant-like spiders from India (Family: Salticidae), 59.

Studies on some jumping spiders from India (Family: Salticidae), 68.

Some biophysical considerations of insect respiration, 159.

See Verma and Upadhyay.

See Venkatachari and Vasantha.

See Padmanabhan and others.

Tonapi, G. T.

Upadhyay, A. R.

Vasantha, N.

Veerasamy, S.

Venkatachhari, S. A. T. and Vasantha, N.

Tissue protein levels as a function of salinity adaptation in the freshwater crab, Barytelphusa guerini H. Milne Edwards, 89.

Venkateswarlu, J. and Maheswari Devi, H.

An embryological approach to the taxonomic status of vacciniaceae, 282.

Verma, M. L. and Upadhyaya, A. R.

Studies on incidence of anthracnose of soybean in a fertility inoculum varietal trial, 234.

Protein degradation and 14C amino-acid incorporation rates into the foot muscle proteins of pond snail Pila globosa during aestivation, 103.

Vijaya Brahmanandam and R. V. Krishnamoorthy
TITLE INDEX

Algae, south Indian, contributions to our knowledge of, V (Iyengar), 257.

Anthracnose of soybean, studies on incidence of, in a fertility inoculum Varietal trial (Verma and Upadhyay), 234.

Apostasia species, the floral anatomy of the rare apostasias (Rao), 17.

Barytelphusa guerini H. Milne Edwards, freshwater crab, tissue protein levels as a function of salinity adaptation in the (Venkatachari and Vasantha), 89.

Calotes versicolor lizard, lymphoid differentiation and organization of the spleen in the (Kanakambica and Muthukkaruppan), 37.

Caridina weberi de Man, a decapod crustacean, digestive enzymes in (Chinnayya), 119.

Claviceps microcephala and *Microxyphiella hibiscifolia*, growth and sporulation of, effect of various trace elements on the (Thind and Mira Madan), 222.

Claviceps microcephala, the growth and sporulation of, effect of various carbon and nitrogen sources on (Thind and Mira Madan), 241.

Cyperaceae, studies in, IX, (Govindarajulu), 45.

Fossil fishes from the inter-trappens beds of Surendranagar District, Saurashtra (Borkar), 181.

Gudusia chapra (Hamilton), a Possible separation of races of, by means of length-weight correlation (Chondar), 73.

Insect respiration, some biophysical considerations of (Tonapi), 159.

Ischaemum Linn. and *Sehima* Forsk. in parts of Western India, Karyotypic variations, meiotic behaviour and phylogenetic interrelationships in some species of (Oke), 80.

Habenaria dentata (SW.) Schltr., an orchid, dichotomous Venation and anastomosis in the corolla of (Subramanyam and Nair), 195.

Legumes in monocultures, some, individual behaviour of, related to growth rate (Ramakrishnan), 212.

Little leaf in some flowering plants, morphological and anatomical studies on (Padmanabhan and others), 130.

296
Microxyphiella hibiscifolia, growth and sporulation of, effect of various carbon and nitrogen sources on the (Thind and Mira Madan), 143.

Paratelphusa hydrodromous (Herbst) metabolism of fresh water crab, in relation to size, sex, season and diurnal rhythm (Ramarurthi and Janak), 275.

Philautus shillongensis, a new frog (Ranidae) from Meghalaya, India (Pillai and Chanda), 30.

Pholads of East Coast of India, wood boring, two species of biometrical studies on the length-height relationship in (Srinivasan), 203.

Pila globosa Pond snail, protein degradation and ^14C amino-acid incorporation rates into the foot muscle proteins of, during aetivation (Vijaya Brahmanandam and Krishnamoorthy), 103.

Pyrrhotite from the Ingadhal sulphide lode, Chitradurga District, Mysore State, studies on the (Acharyulu and Raa), 22.

Spiders of family clubionidae (araneae: arachnida), on some new Species of with a record of genus Castianeria Keyserling from Gujarat, India, (Patel and Patel), 1.

Spiders, some ant-like, form India (Family: Salticidae), studies on (Tikader), 59.

Spiders, some jumping, from India (Family: Salticidae), studies on (Tikader), 68.

Vacciniaceae, taxonomic status of, an embryological approach to (Venkateswarlu and Maheshwari Devi), 282.