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The Wigner—-Weyl isomorphism for quantum mechanics on a compact simple Lie
groupG is developed in detail. Several features are shown to arise which have no
counterparts in the familiar Cartesian case. Notable among these is the notion of a
semiquantized phase space, a structure on which the Weyl symbols of operators
turn out to be naturally defined and, figuratively speaking, located midway between
the classical phase spaté G and the Hilbert space of square integrable functions
on G. General expressions for the star product for Weyl symbols are presented and
explicitly worked out for the angle-angular momentum case.

I. INTRODUCTION

It is well known that the method of Wigner distributiohsyhich describes every state of a
quantum mechanical system by a corresponding real quasiprobability density on the classical
phase space, is dual to the Weyl mapﬁiogclassical dynamical variables to quantum mechanical
operators. Together they provide the Wigner—Weyl isomorphism, whereby both states and opera-
tors in quantum mechanics can be givenumber descriptions on the classical phase space. The
trace of the product of two operators is then calculable as the integral of the product of the two
corresponding Weyl symbols or phase space functions. Combined with the work of fwm'mih
shows how products and commutators of operators are expressed in phase space language, this
entire development may be called the Wigner—-Weyl-Moyal or WWM method in quantum me-
chanics and has been instrumental in giving rise to the fertile subject of deformation quanfization.
An important feature of the Wigner distribution is that while it is not by itself a phase space
probability density, its marginals obtained by, respectively, integrating over momenta or over
coordinates do reproduce the quantum mechanical expressions for probability densities in coordi-
nate and in momentum space, respectively.

The WWM method has been studied most extensively in the case of Cartesian systems in
guantum mechanics. By this we mean those systems whose configuratiorQsizaéé for some
integern=1. The classical phase space is tierQ=R?". While Schrédinger wave functions are
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square integrable functions dtf', both Wigner distributions and Weyl symbols are functions on

R?". Quantum kinematics can be expressed via the Heisenberg canonical commutation relations
for Cartesian coordinates and their conjugate momenta, or via the exponentiated Weyl form using
families of unitary operators. An important feature in this case is that as far as their eigenvalue
spectra are concerned, the momenta do not experience any quantization on their own; they account
for the second factor iT* Q=R?"=R"X R". Furthermore we have in this case the Stone—von
Neumann theorem on the uniqueness of the irreducible representation of the Heisenberg commu-
tation relations, and the important roles of the group$28@R) and M2n) corresponding to

linear canonical transformations on coordinates and momenta.

There has been for some time considerable interest in developing the Wigner—Weyl isomor-
phism for other kinds of quantum systems, that is, for non-Cartesian syStéhs these cases,
typically the underlying quantum kinematics cannot be expressed by Heisenberg-type commuta-
tion relations. The situations studied include the quantum mechanics of an angle-angular momen-
tum pair, where the configuration spaceQ'sSl,”'lsand finite state quantum systems correspond-
ing to a finite dimensional Hilbert spat&?® More recently, the method of Wigner distributions
has been developed for quantum systems whose configuration space is a compact simple Lie
group; and in the discrete case when it is a finite group of odd 8tdéin all these departures
from the Cartesian situation, an important aspect is the occurrence of new features which do not
show up at all with Cartesian variables.

The aim of the present work is to develop in detail the Wigner—-Weyl isomorphism for quan-
tum mechanics on a compact simple Lie group. Here the configuration §pé&e (compact
simple) Lie groupG, so the corresponding classical phase spade* =G X G*, where G* is
the dual to the Lie algebr& of G. In the quantum situation, Schrédinger wave functions are
complex square integrable functions @) and observables or dynamical variables are linear
Hermitian operators acting on such functions. The replacements for the canonical Heisenberg
commutation relations are best formulated using (t@mmutative algebra of suitable smooth
functions onG, and (say) the left regular representation & acting on functions on itself. The
natural question that arises in trying to set up a Wigner—Weyl isomorphism in this case is whether
gquantum states and operators are to be described using suitable functions on the classical phase
spaceT* G. In Ref. 21 an overcomplete Wigner distribution formalism for quantum states, which
transforms in a reasonable way under left and right group actions and also reproduces the natural
marginal probability distributions, has been developed. The methods developed there are here
exploited to set up a Wigner—Weyl isomorphism in full detail, disclosing many interesting differ-
ences compared to the Cartesian case. In particular we find that this isomorphism does not directly
utilize c-number functions ofT* G at all, but instead uses a combination of functionsGand
operators on a simpler Hilbert space, standing in a sense midway betwégmand the Hilbert
space of the quantum system. This feature is traceable to the non-Abelian na@jrsaohething
which is absent in the Cartesian case wiagis the Abelian grou@®".

The material of this paper is organized as follows. In Sec. Il we briefly recapitulate key
features of the Wigner—Weyl isomorphism for the Cartesian and angle-angular momentum cases.
This sets the stage for Sec. Ill where we develop the quantum kinematics for situations where the
configuration space is a compact Lie group and thus go beyond the Abelian cases discussed in Sec.
I. This analysis leads to a proper identification of the analogues of the momenta of the Cartesian
case and helps set up the Wigner distribution for such situations possessing properties expected of
a Wigner distribution. The Wigner distributions so defined have a certain degree of overcomplete-
ness about them, a circumstance forced by the non-Abelian nature of the underlyingsgraup
key ingredient in this construction is the notion of the midpoint of two group elements introduced
in an earlier work In Sec. IV a more compact description in terms of Weyl symbols devoid of
any redundances is developed and correspondences facilitating transition from the Cartesian case
to more general situations are established. The results of Sec. IV are exploited in Sec. V towards
defining a star product between Weyl symbols for operators and the general expression for the star
product is explicitly worked out for the non-Cartesian, albeit Abelian case of angle-angular mo-
mentum. Section VI is devoted to analyzing the minimal structure on which the Weyl symbols for



operators find their natural definition. This leads to the concept of a noncommutative cotangent
space or a semiquantized phase space the ramifications of which are examined further towards
highlighting the structural similarity between classical phase space functions and the Weyl sym-
bols. A short appendix contains some technical details concerning results used in Sec. V.

II. THE WIGNER-WEYL ISOMORPHISM: CARTESIAN AND ANGLE-ANGULAR
MOMENTUM CASES

In this section we recall briefly the relevant structures needed to set up the Wigner—Weyl
isomorphism for Cartesian quantum mechanics. This is to facilitate comparison with the Lie group
case later on. For simplicity we choose one degree of freedom only, as the exten@am tds
straightforward. We also recall the angle-angular momentum sé?, where we already see
significant differences from the Cartesian case; these increase when weQga3o

One-dimensional Cartesian quantum mechanidse canonical Heisenberg commutation re-
lation between Hermitian coordinate and momentum operdtansd p, fixing the kinematics, is

[q,p]=1. (2.7)
In the unitary Weyl form this is expressed as follows:

U(p) = explipd), V(a) =exp-igp),

U(pIV(@) =V()U(p)e®, qpER. (2.2

In the Cartesian case the exponentials can be combined to define a phase space displacement
operator

D(q,p) = U(p)V(g)e P2 = V(q)U(p)€9P2 = explipd - igp). (2.3

However this cannot be done even in the single angle-angular momentum pair case, and also
when we treat the Lie group case. We therefore use expressions in which the exponentials are kept
separate.

The standard form of the unique irreducible representation of &g%. and (2.2) uses the
Hilbert space of square integrable functiop&y) on R. Introducing as usual an ideal basis of
eigenvectors ofj we have

H=L%R) :{tﬂ(q)l lff? = L daf (@) < m},

p(@)=(aly), Goy=qa), (2.9

(q'lgy= 48" - a).
On suchy(q) (subject to relevant domain conditiorthe actions ofy, p, U(p), V(q) are

d
@@ =ay(a), (ph(a)=- id—ql,b(Q),

(UE)P(Q) =P %), (V@) =wa-a). (2.5)

The momentum space description|@§ uses the Fourier transform @f(q); in terms of the
ideal eigenstatelp) for p,

~ d )
) = pl ) = Tﬂ exp(- ipQ) (),

R Ve



iR = fdelTMp)lz. 2.6

The displacement operato(®.2) form a complete trace orthonormal q@t the continuum
sensgin the space of operators @,

Tr((U(p")V(@) U(p)V(9) = 278(q’ = a)8(p’ = p). (2.7

The completeness property will be used later.
The definitions of the Wigner distribution for a normalized pure stége= , or more gen-
erally for a mixed state with density operatarare

1 1 1\
W(aq,p) = ZJR dq’ w(q— Eq’)w<q + Eq’) exp(ipq’),

1 1,1, .
W(q,p)=;f dq’<q—5q’lplq+§q >exp(lpq)- (2.8
R

(The dependences dw), p are left implicity While W(q,p) is real though not always non-
negative, the recovery of the marginal position and momentum space probability densities is
assured by

L dp W(a,p) = (q|p|ap), L dg W(q,p) = (p|p|p)- (2.9

It is possible to expresd/(q,p) in a more compact form by introducing a family of Hermitian

operatorsW(q,p) on H with interesting algebraic properties. They are essentially the double
Fourier transforms of the displacement operat@rg),

W(g,p) = Tr(pW(q,p)),

1
(2m)?

W(g,p) =W(q,p) = f f dq’ dp’ U(p")V(q')gPd' P’ (@ (1120, (2.10
RJR

It has been shown in Ref. 17 that, apart from sharing the trace orthonormality prepé&jty
which is preserved by the Fourier transformation,

- - 1
Tr(W(g',p")W(a,p)) = Eé(q’ -q)ép' -p), (2.11

we have the following behaviors under anticommutation jthnd p:

Ha,W(a,p)}=qWa,p), 3{p,W(G,p)} = pWMa,p). (2.12

Thus we may regarl\fV(q,p) as operator analogues of Dirac delta functions concentrated at
individual phase space points. In Ref. 19 they have been called phase point operators.
Turning to the Weyl map, it takes a general classical dynamical varialgejuare integrabje

functiona(qg, p) on the classical phase space, to a correspongtiigert—Schmidf operatorA on
H:



a(qyp)—@(p’,q’):f J dq dp a(g,p)e/ Y9
R JR

~ 1 i~ Al
HA=—f f dg’ dp’ a(p’,q)U(p")V(q")e P72, (2.13
2w )y R

The important property of this map is that traces of operatorg{ogo into integrals over
phase space,

THA'B) = f f dq dp a(g,p) * b(q,p). (2.14
RJYR

One can immediately see that the relation betwa@np) andA is given by

A=2m J J dq dp a(q,p)W(g,p), (2.15
RJR

thus establishing that the Wigner and Weyl maps are inverses of one another. Indeed extending the
definition of the Wigner distributioni2.10) to a general operatdk on H, we have

a(q,p) = Tr(AW(q,p)). (2.1

It is this kind of isomorphism that we wish to develop whgis replaced by a compact simple Lie
groupG.

The angle-angular momentum ca¥®e now trace the changes which appear if we replace the
Cartesian variablg e R by an anglef e (-, ). The corresponding Hermitian operator is de-

noted by @, with eigenvalues#; its canonical conjugatel\?l has integer eigenvaluem

=0,%1,+2,....Thusme Z unlike the Cartesiap, soM is already quantized. The replacements
for Egs.(2.4) and(2.6) are

H=L2%sY = { NORES f do|y(0)]> < w}

WO =(6ly), (0)6)=3806"-6), 66)=60),

1 (™ .
¢m:(m|¢)=2—J doe ™y (9), (2.17)
77 —aT
tl = EZ|¢/m|21

. 1
Mim) =mm), (fm)=——==€e"’.
V2

In place of the Heisenberg commutation relati@hl), we have only the exponentiated Weyl
version,

U(m) = ex;iimb), V(6) = exp(—i al\7l),

UmV(6) = V(6)U(m)e™?. (2.18



With the actions
(U(mM")p)(6) =™ y(6),
M@ P)(0) = y[6-6']), (2.19

[0-6']=6-6 mod 2,

we have an irreducible system @6=L%(S'). The analogues of the displacement operat@r3)
are now

U(mV(0)e M2 = v(g)U(m)e™??, (2.20

but here the exponents cannot be combined. They do however form a complete trace orthonormal
system,

Tr((U(mM V(") U(M)V(6)) = 2 8mm 86 - 6). (2.21)

With this preparation we can turn to the definition of the Wigner distribution and the Weyl
map. For a given density operatpron #, the former is

1 (" 1 . 1 .
W(G,m):—f do'{ 6-=6'|p|6+ =6 )expime’). (2.22
2w)_, 2 2
We see immediately that this is not a function on the classical phase $paée=S' X R, which
is a cylinder, but on a partially quantized spatex Z. We may regard this space as standing

somewhere in betweeR* S and the fully quantum mechanical Hilbert space and operator setup.
The marginals are properly reproduced in the sense that

fﬂ doW(6,m) = {m|p|m),

> W(8,m) = (6|p|6). (2.23

meZ

We can displayM(6,m) as

W(6,m) = Tr(pW(6,m)),

A ~ l m B ! _imn! !
W(e,m):W(G,m)T:W > f de’ U(m’)V(g')eme -im'(e+1/207) (2.24
mezY-m

and like their Cartesian counterparts these operators form a trace orthonormal system,

Tr(W(8',m)W(6,m)) = ia(e' — 0) Sy - (2.25

In a similar spirit, the Weyl map now takes any classical functiof, m) on S'x7 into an
operator on_?(SY),



a(g,m —am’,6)= > d6 a(,m)eme’-m'o

meZ J -x

~ 1
HA—ZTE

meZ

F de’ a(m',0)U(m )\V(9)e ™2, (2.26)

Then the trace operation becomes, ag2ii4),

Tr(A'B) = D " do a(6,m) * b(8,m). (2.27)

meZ J -x

Combining Eqs(2.24 and(2.26) we are able to get the analogue(fb15),

A=27, . dé a6, m)W(6,m). (2.28

meZ J -7

In this way the similarities as well as important differences compared to the Cartesian case are
easily seen.

III. QUANTUM KINEMATICS IN THE LIE GROUP CASE AND THE WIGNER DISTRIBUTION

Let G be a(non-Abelian compact simple Lie group of order, with elementsy,g’,... and
composition lawg’,g—g’g. To set up the kinematics appropriate for a quantum system with
configuration spac®=G, it is simplest to begin with the Hilbert space of Schrédinger wave
functions. The normalized left and right invariant volume elementGois written as d@. For
suitable functiond(g) on G we have the invariances and normalization condition

f dg f(g) = f dg (f(g'g) or f(gg) or f(g™),
G G

f dg=1. (3.1
G

Correspondingly we can introduce a Dirac delta functionGooharacterized by

f dg(8g'~'g) orasgg ™) ordgty) orsggh)f(g) =f(g). (3.2
G

Thus &(g) is a delta function concentrated at the identity eleneaG.
We take the Hilbert spac# for the quantum system to be made up of all complex square
integrable functions oG:

H:m(e):{w(g) < ol o= | dg|w<g>|2<oo}. 33
G

A convenient basis of ideal vectojg can be introduced such that for a genégale H we may
write

W9 =gy, (g'lgy=dg'g™. (3.9

The notion of position coordinates is intrinsically captured by the commutative algebra rep-
resenting real valued smooth functiof@) on G, i.e., f e 7(G). To each such function we

associate a Hermitian multiplicative operafoon H:



fe FG) —f= f dg f(g)lg)(g
G

’

(fp)(@) = (@) (3.5

Thus all these operators commute with one another, being diagonal in the position description

Q) of |¢).

To complete the kinematics and to obtain an irreducible system of operat@{snamhave to
adjoin suitable momenta. Here we have two choices, corresponding to the left and right transla-
tions of G on itself by group action. We choose the former, and so define a family of unitary
operatorsV(g) to give the left regular representation Gf

V(@) = ¢y ),

V(g)lg)=1g'9). (3.6
They obey

V(g")V(g) =V(9'9),

V(g)'V(g) =1. (3.7)

To identify their Hermitian generators, we introduce a bésisin the Lie algebraG of G. Using
the exponential mag — G, we write a generaj e G as

g=expa'e), (3.9

the sum orr being from 1 ton. The generatorglr of V(g) are then identified by

Viexpa'e)) = exg—ia'J,). (3.9

These are Hermitian operators on the Hilbert spicebeying commutation relations involving
the structure constan@}, of G:

[3,,3]=iC, 3. (3.10

On Schrodinger wave functiong(g) each:]r acts as a first order partial differential operator;
indeed if the(right invariany vector fields generating the left action Gfon itself are written as
X, then we have

J49) =iX, Q). (3.11)

The commutation relation®.10) are direct consequences of similar commutation relations among
the vector fieldsX;.

The analogue of the Cartesian Heisenberg—Weyl sysgty and (2.2) is now obtained by
setting together the following ingredients:

f1.f, e F(G) — %1%2:?2%1,

fe FG), g eG—V(g)iV(g)t=F, (3.12



/(g =f(g' "),

along with the representation propeity.7) for V(g). This is in the spirit of the unitary Weyl
system(2.2). In infinitesimal terms we have

[3,f1=i0%D), (3.13

combined with(3.10. The spaceH is indeed irreducible with respect to the family of operators
{f,V(-)} or equivalently{f,J,}.

We can express functions of position also via unitary operators in the Weyl spirit as follows:
for each realf e F(G), we define the unitary operattk(f) by

u(f) =" (U y)(g) ="V (g). (3.19
It is then easy to see that we have the relations

(UHV() () = €"9y(g'1g),
(V(@)U(H)(g) =€ 9y(g'g), (3.15

(UHV(G)(V(G)U(F)'y)(g) = €701 0y g),

which is in the spirit of Eqs(2.2) and (2.18), except thatf is not restricted to be linear in any
coordinate variables.

We see here that unlike in thedimensional Cartesian case the canonical momenta are a
noncommutative system. Therefore the analogue or generalization of the single momentum eigen-
state|p) in the Cartesian situation will turn out to be a generally multidimensional Hermitian
irreducible representation ¢8.10), namely the generators of some unitary irreducible represen-
tation (UIR) of G. We will see this in detail as we proceed.

For completeness we should mention the operators giving the right regular representation of

G. These are, sa;)?{(g), defined by and obeying

V(") ¥)(9) = ¥gg),

V(g)lg)=lgg’ ™,
o (3.16)
V(g')V(9) =V(g'0),

V(g')V(g) = V(Q)V(g").

However as is well known their generatdksare determined bﬁr and the matriceéD;(g)) of the
adjoint representation db, by

3= - D39 (3.17

Therefore it suffices to regard the collection of opera{dr¥(-)} as providing the replacement for
the Heisenberg—Weyl system in the present case.

Complementary to the position basis for # is a momentum basis. This can be set up using
the Peter-Weyl theorem involving all the UIR’s &. We denote the various UIR’s by with
dimensionN;; we label rows and columns within theéh UIR by magnetic quantum numbersn.
Thus the unitary matrix representiggs G in the jth UIR is



g— (D),{(9)). (3.18

In general each gf,m,nis a collection of several independent discrete quantum numbers, and
there is a freedom of unitary changes in the choiceamph. In addition to unitarity and the
composition law,

> Dii(9)* DL, (9) = Sy
n

> Dl{(g")D! (9)=D! (g'g), (3.19

we have orthogonality and completeness properties,

f dg Dan(g)DL;rnr(g) * = 5jj’5mm5nn’/Nj,
G

> N,DL{(9)Dh{(g)* = 8g7'g'). (3.20

jmn

Then a simultaneous complete reduction of both representaMOhSV(-) of G is achieved by
passing to a new orthonormal ba§isin) for . Its definition and basic properties are

[jmn) = N,-l’zf dg D!,{(9)|9),
G

G0 [0 = 8 Srmi
' (3.21)
V(@)limn) =3 D), (g lim'n),
m/

V(g)limn)y =X, D!, (g)|imn’).

Therefore injmn) the indexn counts the multiplicity of occurrence of theh UIR in the reduction
of V(:) andm performs a similar function in the reduction Qf-).

We now regard the sets NJZ states{|jmn)} for each fixedj as momentum eigenstates in the
present context. This means that thelimensional real momentum eigenvalpein Cartesian
quantum mechanics is now replaced by a collectiotdifcretg quantum numbergmn. A vector
| € H with wave functiony(g) is given in the momentum description by a set of expansion
coefficientsijmn,

V€ H— G = (i) = N2 f dg Dl (0)* 1(g),
G

4% = 2 [l (3.22

jmn
A normalized|+) then determines two complementary probability distributidpég)|?> on G and
|#mnl? ON MOMentum space.

In this situation gprovisional and overcomplet&Vigner distribution\7V(g;jmn m'n’) can be
defined for eachy) e H (or for any mixed statep as wel). (Here we depart slightly from the



notation in Ref. 21, so that our later expressions are more conttiseansforms in a reasonable

manner wheny) is acted upon by/(-) or V(-); and it reproduces in a simple and direct way the
two probability distributions determined Hy»), as marginals. We give only the latter property
here,

> W(g;jmn mn = |¢(g)|?,

jmn

J dg Wg;imn n'n’) = ¢y Yimn- (3.23
G

The right-hand side of the second relation is a natural generalizatigy;af? to allow for
freedom in the choice of labets, n within each UIR]j. The expression for this Wigner distribution
involves a functiors, GX G— G obeying certain conditions and is

W(g;jmn mn’) = N; f dg’ f dg” ¥(g")(g') * D}, (g") * D) &g 7's(g',g").
G G
(3.29
Reality in the Cartesian or single angle-angular momentum cases is replaced here by Hermiticity,
\7V(g;jmn mn’)* = \7V(g;jm’n’ mn). (3.2

The conditions ors(g’,g") to ensure that all the above properties are secured are

g/'gll e G s S(g/,g//) =S(gll'g/) e G,
S(019'92:019"92) = 01 S(9'.9") 92, (3.26

sg'.9)=¢".
We can simplify the problem of constructing such a function by exploiting the second of these
relations to write
s(g',9") = g's(e,g' 9" =9'so(9' 9", (3.27)
so the functionsy(g) of a single group element must satisfy

So(e) =e,
S0 =g7s0(9) =sp(9)g 7, (3.29

(9’99 D=9 (@9’

The solution proposed in Ref. 21 is to taggg) to be the midpoint along the geodesic from the
identity ee G to g. These geodesics are determined starting from the invariant Cartan—Killing
metric onG, and have the necessary behaviors under left and right group actions to ensure that all
of Egs.(3.26) and(3.28) are obeyed. In the exponential notation of E&8) we have

soexpa’ e)) =exp3a’ &), (3.29

since it is true that geodesics passing through the identity are one parameter subgroups. With this
explicit construction we have the additional relation



(@) =097,

S(9) so(9) = 9. (3.30

Thussy(g) is the(almost everywhere unigiisquare root of ands(g’,g”) is a kind of symmetric
square root ofy’ andg’.

We shall explore the properties ﬁf(g;jmn m'n’) in the next section, especially the sense in
which it contains information aboli/)(#{ in an overcomplete manner. This will then lead to the
Wigner—-Weyl isomorphism for quantum mechanics ofc@mpact simplgLie group.

IV. THE WIGNER-WEYL ISOMORPHISM IN THE LIE GROUP CASE

The definition(3.24) can be immediately extended to associate an okprﬁg;jmn mn’)
with every linear operatoA on H (of Hilbert—-Schmidt class In terms of the integral kernel
(g"|Alg’y of A we have

Wi(g;jmn nfn’) =N f dg’ f dg(g’|Alg")D),(g") * Dl 8lg7is(g',g").  (4.D)
G G

It is indeed the case that this expression describes or deterrﬂirmsnpletely, however this
happens in an overcomplete manner. There are certain linear relations obéjgthbymn m'n’)
which have amA independent form. We now obtain these relations, then proceed to construct a

simpler expression which contains complete information abBowithout redundancy.
The Dirac delta function in the integral on the right-hand side of(Edq) means that the only
contributions to the integral are from the points where

s(g’,g") =g. (4.2
Writing this as

(g9 =g'"g, (4.3

and then using Eq3.30, we see that, say, in thgf integration the delta function picks out the
single point determined by

gr—lgrr — (gr—lg)Z,

g'=99 9. (4.4)

This means that(g*s(g’,g")) is some Jacobian factor time¥%g”’ ‘gg’'~'g). We are therefore
permitted to use this value f@" elsewhere in the integrand, so

Wi(g;jmn nin’) = N; f dg’ f dg’(gg *g/Alg’)D! , (g9 g) * D!, (9" ) &(g7s(g’,g")).
G G

(4.9

Transferring theg-dependent representation matrices from the right-hand side to the left-hand side
and using unitarity, we get



> D@D, (@Wa(g; jmn min’) = N f dg’ J dg” 8(g7's(g’.g"))
m'n’ G G

x(gg' 'g/Alg"D!, (g)DL(g). (4.6

It is now clear we have symmetry of the expression on the left-hand side under the simultaneous
interchangesm«+n”, n—m’, a statement independent @&. This is the sense in which

\7v;\(g;jmn m'n’) contains information abow in an overcomplete manner, and this happens only
whenG is non-Abelian.

Taking advantage of this, we now associatéitthe simpler quantity

Wa(g:jmm’) = N* X Wi(g; jmn nin) = f dg’ f dg"(g'|Alg")D},,,(9'g" Ha(gs(g’,g")).
n G G
(4.7

We shall call this the Weyl symbol corresponding to the oper&td’rhe passagé—n&’r results in

Wai(g;jmm’) = Wa(g;jm’'m) * . (4.8

It is easy to obtain the transformation properties of the Weyl symbol under conjugatf@ﬂoyof
either the left or the right regular representation,

A" =V(gg)AV(go) %,

Wi (@1mm) = 3 Dl (60Dl (o) * Wa(Go'g:mymy),
mymy
(4.9)
A" =V(go)AV(go) ™,

War(g:jmm’) = Wa(ggo; jmm’).

Next we can verify that i\ andB are any two Hilbert—Schmidt operators #f) then T(Aé) can
be simply expressed in terms of their Weyl symbols,

TrAB) = 2 N, f dg WAa(g;imm’)We(g; jm’m). (4.10
- G

jmm

The proof exploits the completeness relation(3r20) and the propertie€3.26) of s(g’,g"). This
key result proves thaf is indeed completely determined by its Weyl symbaAlis certainly

determined by the values of (‘l&é) for all B, and the latter are known once the Weyl symbols are
known.

Before expressing the Weyl symbol Afin a form analogous to E@2.16), we give examples
for some simple choices &,



A Wa(g; jmm)

f= f dg f(9)|g)g| ()
G
V(go) D (G0Y)
V(go) f(So(90)9) DYy (G0 )
V(gy)t f(50(90) 29) D)y (95Y)

We shall comment later on the structure of these Weyl symbols. However it is already instruc-
tive to compare these results with the Cartesian situation

A W(q,p)
f=1(G) f(q)
V(q') exp(—ipq’)
V(@) = f@V(a) f(a+a'/2)exp-ipq’) (4.12

V(@) f(@ f(q-q'/2)exp(-ipq’)
Now we turn to the problem of expressing the Weyl symbof\dh the form
Wi(g; jmm) = Tr(AW(g; jmm) (4.13
for a suitable operatd?\/(g;jmm’). This would be the analogue W(q,p) in Eq.(2.10. Since the
kernel(g"|A|g’) is quite general, Eq4.13 and Eq.(4.7) imply
(@'|W(g:jmm)|g") = D}, (a'g" Hag™s(g’,9") = D}y (90" g (9" ).
(4.14

We shall synthesizkgv(g;jmm’) in steps. We begin by defining a family of commuting operators
U(jmn) in the manner of Eq(3.5), all of them diagonal in the position basis,

(U(MN)$)(9) = Dh(Q)¥(). (4.15
These are analogous to the Cartedidp’), labeled by a momentum eigenvaljmen, functions of
position alone. They are unitary in the matrix sense,

> U(imn)u(mn’) = > U(jinm)Tu(jn’m) = 8,,I. (4.16)

These operators allow us to express the rﬁaﬂ-‘(G)—ﬁ of Eq. (3.5 more explicitly as
follows:

f(9) = 2 fimnDhd(@) O F= X fimU(jmn). (4.17)
jmn jmn
Upon conjugation by/(g) we have

V(g U(jmn)V(g) = >, D _(g)u(jm’n). (4.18

m

Combining Eqgs(3.16), (3.20), and(4.15 we easily obtain the trace orthonormality property



Tr((U('m'n)V(g") TUGmMnV(@)) = N6,/ S mbrnd@ g, (4.19

analogous to Eqg2.7) and(2.5). The action ofU(j’m’n’) on the momentum eigenstatgsin)
can be worked out; it involves the Clebsch—Gordan coefficients for the reduction of direct products
of two general UIR’s ofG and reads

uG'm'n’)|jmny= > o C’m”m;,*CL'r'mA,

j"m”n”)\ J

i"mm’y. (4.20

Here\ is a multiplicity index keeping track of the possibly multiple occurrences of the DIR
in the reduction of the direct produﬂj' X DI. The significance of this relation is similar in spirit
to the statement in the Cartesian case that’')=explip’d) generates a translation i) in other
words that in the momentum descriptigns given by the differential operatofd/dp). The result
(4.20 however involves discrete labels sinGds compact, unlike continuous Cartesian variables,
and incorporates non-Abelianness as well. Therefore translating the momemmunby the
amountj'm’'n’ yields several final momen§&m’n” according to the contents of the direct product
DI’ X DI of UIR’s of G. ‘

Now multiply both sides of Eq(4.14) by D‘nﬁlmi(g) and integrate with respect @ this is

Fourier transformation with respect ¢pand gives

(d'] f dg DJl (QW(g;jmm)|g"y =D}, (g'g" 1)D"nim(s()(szl”sii"1)9’). (4.21)

Now perform an inverse Fourier transformation with respect to the monjemté to get
2 NDp (9 * (@'l j dg D2 ., (@W(g;imm)|g")
jmm’ G !

=D}! m(S0(9'9" 9 (0:9'g" ) = Djnim (so(91M)g") (g:9"9" ™)

=(0'l0:0")D} 1y (50(019") = 2 (0’ [UGamem) V(G0 90D (So(G ). (4.22

my

Comparing the two sides and peeling ¢ff| and|g”) gives

E N} (90) * J dg Dy, (9/W(g;jmn) = EDmlmz (So(g1 DU (1mmpV(gy).

(4.23

Then Fourier inversion twice yields the result

W(g;jmm)= 3 N f dgy U(j3mom)V(gy)Dh 1 (9)DR, o (07'0(01 ) (4.29)
jamimy G

This may be compared in every detail with the Cartesian result ifZE#0), the correspondence
of arguments and integration/summation variablegnsluding the factors representing momen-
tum eigenfunctions

q—g, p—jmm, q —g;, P —jimm,

€ — D} (g, €@ Dl (g7so(0rY). (4.25

Giving due attention to the new matrix features, the correspondence is quite remarkable.
Combining Eqs(3.28 and(4.14) we obtain the relation



W(g;jmn)" = W(g; jnm). (4.26)

Similarly combining Eqs(4.24) and(4.19 and carrying out quite elementary operations leads to
analogues to the Cartesian relatiq@sll) and(2.15 in the forms

Tr(W(g’ ;' m'n’) ' W(g; jmn)) = N33 Sy O 0G0,

A= N, f dg Wa(g; jnm)W(g; jmn). (4.27)
G

jmn

We may thus conclude that we have succeeded in setting up a Wigner—Weyl isomorphism for
guantum mechanics on a compact simple Lie group with reasonable properties.

V. THE STAR PRODUCT FOR WEYL SYMBOLS

In this section we sketch the derivation of the expression for noncommutative operator mul-
tiplication in terms of the corresponding Weyl symbols, relegating some details to the Appendix.
Thus, for two operatoré. and B we seek an expression for the Weyl symbolA® in terms of
those ofA andB in the form

Wag(g;imn) = (Wa x We)(g;jmn). (5.1
From Eq.(4.13 we have

(W * Wa)(g; jmn) = Tr(ABW(g; jmn)), (5.2)

so using Eq(4.27) for A as well as forB we have

(Wax We)(g:jmn) = X Nj’Nj”f dg”J dg” Wa(g":j"n"m")Wa(g';j'n'm’)
jrmrn/ G G
J'Hrr(!nll
X Tr(W(g”;j”M’n”)W(g’ i ’m’n’)W(g;jmn)). (5.3

We therefore need to compute the trace of the product of Wreewhich is a nonlocal integral
kernel defining thgassociative but noncommutatjvstar product on the left-hand side. The two
ingredients for this calculation are expressions for the produgmn)V(g) in terms of

\7V(g’ ;j'm’n’), and for the product(j’'m’'n")V(g’)U(jmn)V(g) in terms of similar product&V.
These are

u(mnVvig = > NyDL;rn,(g)*f dg’ Dl (So(@)g)W(G';j'm'n’), (5.49
G

jrmrnr

UG'm V(@ U(mnV(g) = > cb 1 Dl(g UG mm)\V(g'g).  (5.4b)

jrrmrrnuk

The derivations are given in the Appendix, and @symbol on the right-hand side in the second

equation is a sum of products of Clebsch—-Gordan coefficients of the type occurring (. Eiy.
Starting from Eq(4.24) and using Eq(5.4b we have for the product of twaVs,



W(g';j’m'n’)W(g;jmn)

= 2 NN f dgo f dgg D} (9o) Dl (90)
oMo G G
ioméns
XDlgyn (97 '50(05) Dy (8 so(85 ™) U igmeng) V(g U omono) V(o)

= - N., J(/) i ]8 Yl i’ ’

) J’o"%oko NJON]OCméné k%no m(éngfe dgofG dgo Dmn(gO)Dm,n’(g())

o

/U]

0 0
XDl (95 D8 (0750(G0))D;2 (9 s0(Go ) X Uigmgn)V(gggo)- (5.5
If here we use Eq(5.49 and then Eq(4.27) we obtain for the kernel in Eq5.3),
Tr(W(g” ; j”M’n”)W(g’ pm’ n’)W(g; jmn))

= 2 N NGCo L i e f dgo f g Dhnr(Go) Dl (96) Dy (G0T0) *
ko 0JG G

joMgNg Yo mgng oMo

iomér

iomono

X DI (001D (07 50(00 ")) Dy (0" 50(G5 ™)) (56(0580)9"). (5.6

The star product of Eq5.3) is then obtained by inserting this integral kernel on the right-hand

side.
A slightly simpler expression—which amounts to trading four of Bxunctions for Dirac

delta functions—results from direct use of Eq.14),
TrW(g"; j"m'n")W(g' ;' m'n’")W(g; jmn)

= f dgo J dgy f dgi(golW(G"; §"m"n") | go){(gel WG’ ;5 M’ ") g WIg; jmn)|go)
G G G

= f dgo J dag f dgy D (9086 DY (9605
G G G

X D! (9390 1) (0" s(00, 90)) (9" ~2s(g5, G5)) (g™ s(9, 9o)) - (5.7

These expressions for the star product show an unavoidable complexity for general compact
non-AbelianG. In the one-dimensional Abeliagbut non-CartesiancaseQ=5%, there are some
simplifications. Referring to Sec. Il, we have the rule for Weyl symbols given by(ZEg5 and

(2.28),
a(6;m) = THAW(6;m)),

A=27> ! dé a(g;mW(e;m). (5.9)

meZ J —-m

The star product then appears as



(axb)(em= > Wd&”fw de’ TrOW(8"; m")W(8' ;" )W(8;m)a( @ m")b(8' :m'),
m' m'ez Y -m -

~ ~ ~ 1 m m . ’ !
TMMmmﬁWWmﬂwwmm:Z? > Jﬂd%f(mﬁm%W%mem%—mﬁ
mo,m('JeZ - -
+m' ) —my0’ + (Mg +mp) 8" —m'(6y+ 6)))]. (5.9

This expression for the kernel results from E§.6) if we first drop the magnetic quantum
numbersm,n,m’,n’,m",n",my, Ny, Ky, My, Ny, My, Ng; then set the dimensionalitiédo, Njé equal
to unity; next make the replacemerijts-m,j’ —m’,j” —m",jo— My, jo— My, do— 6o, 95— G,
and use for theC coefficient the Kronecker deltajg,momé. Even with some simplifications, the
kernel in Eq.(5.9) remains nonlocal because @mong other thingghe occurrence of half-angles
in the exponent.

VI. DISCUSSION AND CONCLUDING REMARKS

The characteristic feature revealed by our analysis is that for quantum mechanics on a Lie
group G as configuration space, the concept of canonical momentum is a collection of nhoncom-
muting operatorg;, in fact constituting the Lie algebra of the left regular representatio@ oh
L2(G). This in itself is known, but it results in the analogues of momentum eigenvalue being a set
of discrete labelgmn, and the single Cartesian momentum eigenvelgipbeing replaced by a
multidimensional set of vector§jmn)}. Other consequences of this non-Abelianness should be
noted. One needs to work with both overcomplete and with complete nonredundant Weyl symbols
for general operator,é: the former are useful for reproducing in a simple manner the two comple-
mentary marginal probability distributions associated with a pure or mixed quantum state from its
Wigner distribution as shown in E¢3.23); while the latter lead to the Wigner—Weyl isomorphism
in a reasonable manner.

It is interesting that the Weyl symboW/,(g; jmm’) are not complex valued functions on the
classical phase spade* G. They may be more compactly viewed as follows. Whereas by the
Peter—Weyl theorem the Hilbert spa¢e=L%G) carries each UIRDU)(.) of G as often as its
dimensionN;, the structure of Eq4.7) leads us to define a smaller Hilbert spa¢gcarrying each
UIR of G exactly once:

Ho=2> & HY,
j

HY =sg|jm)}, dimHP =N,;, (6.1)

(jlm’“m): (Sj’jfsm’mv

with H carrying the UIRDY(-) of G. Then the Weyl symbol of a general operaty
Wai(g;jmm’), may be regarded as a functiongé& G and an operator of,. This is evident from

the examples of Weyl symbols given in E¢.11); in the Cartesian case in E@.12) such features

are of course absent. This can be understood also from the following point of view. In the normal
quantum description an operataron H=L2(G) can be given via its kernél’|A|g’), or via its

complementary diagonal plus off-diagonal matrix eleme(mtm’n’|A|jmn>. If in the latter we
trade half of the labels for a dependence on a group elegenwe arrive at the Weyl symbol
Wi(g;jmm'’) viewed as a block diagonal operator #fy with simultaneously a dependence @n
Thus while the Wigner—-Weyl isomorphism does not work directly with the true classical phase



spaceT* G, it seems to use what may be called a noncommutative cotangent space, standing
somewhere betweeR* G and operators oh%(G).

Nevertheless the link to functions on the classical phase spaGecan be established, as we
will see below.

We may use the phrase “semiquantized phase space” for the space on which the Weyl symbols

Wai(g; jmn) of operatorsA are defined. It is to be understood that this phrase includes the restric-
tion that only(g-dependentblock-diagonal operators dH, are encountered. This may be viewed

as a superselection rule. In detail, given an operétcom H=L?G), we associate with it the
g-dependent block-diagonal operator,

A(Q) = 2 X VNWi(g; jmn)|jm)(jn], (6.2

j mn

acting onH,, and we then have the connection

Try,(AB) = f dg Try, (A(Q)B(Q)). 6.9
G

The Weyl symboﬂ(g) is simpler tharA both in that it acts on the much smaller Hilbert spatg
and in that it is block diagonal.

To finally establish the link to suitable functions on the classical phase JgaBewe exploit
both the fact that the representation®fon H,y has a multiplicity-free reduction into UIR’s, and

the fact thatzx(g) is block diagonal. Let us denote the generatorsGofon H, by :lﬁo), r

=1,2,...n. The Weyl symbolA(g) may initially be written as the direct sum of symbaigg)
acting within each subspadg! in H,,

Ag) =2 @ Alg),
J

A(@) = 2 N;Wi(g; jmn) jm)(jn]. (6.4
m,n
Next, using the irreducibility o{f]io)} acting onH", we can expan@\j(g) uniquely as a sum of
symmetrized polynomials idio),

A= X X a, @)E00 - 30,

N=0,1,... ry,ro,. iy

"p(N

A A ~ . 1 ~ ~ .
(030 ... 301 = = 0 ...3530 O
{Jrl Jr2 JrN}S - N! PEES\I (er(l) J )) . (65)

Here the upper limit oN is determined by the UIIE)J; Sy is the permutation group dd symbols;
and the superscriffj) denotes the restriction ta!). The coefficients, _ (g;j) arec-number
quantities symmetric imq, ... ,ry. If we now replace theij dependences by dependences on the

independent mutually commuting Casimir operaﬁbnsf G, themselves symmetric homogeneous
polynomials inJEO), we can us€6.5) in (6.4) and write

AQ=2 2 a5 @CHIY I (6.6

N=0rq,...rN

This expression for the Weyl symb@l(g) of A can now be set into one-to-one correspondence
with the classical phase space function



a(g;J) = E E B BN HUNSEEEN 6.7)

N=0ry,..

where the commuting classical variablbsare the canonical momentum coordinates of the clas-
sical phase spack* G, while C are invarian{Casimiy homogeneous polynomials in them. Thus
we have the two-stage sequence of correspondences

AonH= LAG) - Z(g) = block-diagonal operator ol < a(g;J) e A(T* G). (6.9

The importance of the multiplicity-free nature of the representatio® @n H,, and the super-
selection rule, is evident. In contrast to the Cartesian case in Sec. Il, the appearance of the
semiquantized phase space as an intermediate step is to be noted. We hope to return to this aspect
in a future publication.

APPENDIX

We indicate here the derivations of E@5.4g and(5.4b). For Eq.(5.49, we begin with Eq.
(4.23) and use the unitarity of thB-matrices to shift théd-matrix on the right-hand side to the
left-hand side. This immediately gives E&.49. For Eq.(5.4b) we begin with the decomposition
of the product of twaJ’s; from Eg. (4.15), using Eq.(A29) in Ref. 21,

UG m'n)u(mnlg) =D (@DL(@lgy= > C LIl il (g)g). (A1)
/In{/ N)\

Here theC's are the usual Clebsch—Gordan coefficients for the decomposition of the direct product
DI’ x DI of two UIR's into UIR's DI", with a multiplicity index \ to keep track of multiple
occurrences of a givej". If we introduce the short-hand notation

. . H}\*
C:-n n! mn rn’ln!! = E Cm! m rn’/ C:-ll f,] :"l" ) (AZ)
we get from(Al):

uG'mn)u(mn = X cl,
Hn,.{! ua

U(J//ml II) (A3)

m’n’ mn m(’n”

We can now tackle the product of four factors in E5.4b). First using Eqs(3.7) and(4.18 and
then using(A3) above gives

UG’ m'n)V(g")U(jmn)V(g) = U(j'm'n") X, D@’ HU(jkn)V(g'g)
k

S D@ ICh ko by U MIMOV(G'G),  (A4)

j "m'n"k

which is Eq.(5.4D).
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