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The Wigner–Weyl isomorphism for quantum mechanics on a compact simple Lie
groupG is developed in detail. Several features are shown to arise which have no
counterparts in the familiar Cartesian case. Notable among these is the notion of a
semiquantized phase space, a structure on which the Weyl symbols of operators
turn out to be naturally defined and, figuratively speaking, located midway between
the classical phase spaceT* G and the Hilbert space of square integrable functions
on G. General expressions for the star product for Weyl symbols are presented and
explicitly worked out for the angle-angular momentum case.

. INTRODUCTION

It is well known that the method of Wigner distributions,1 which describes every state o
uantum mechanical system by a corresponding real quasiprobability density on the c
hase space, is dual to the Weyl mapping2 of classical dynamical variables to quantum mecha
perators. Together they provide the Wigner–Weyl isomorphism, whereby both states and

ors in quantum mechanics can be givenc-number descriptions on the classical phase space
race of the product of two operators is then calculable as the integral of the product of t
orresponding Weyl symbols or phase space functions. Combined with the work of Moyal,3 which
hows how products and commutators of operators are expressed in phase space lang
ntire development may be called the Wigner–Weyl–Moyal or WWM method in quantum
hanics and has been instrumental in giving rise to the fertile subject of deformation quanti4

n important feature of the Wigner distribution is that while it is not by itself a phase
robability density, its marginals obtained by, respectively, integrating over momenta o
oordinates do reproduce the quantum mechanical expressions for probability densities in
ate and in momentum space, respectively.

The WWM method has been studied most extensively in the case of Cartesian sys
uantum mechanics. By this we mean those systems whose configuration spaceQ is Rn for some

ntegernù1. The classical phase space is thenT* Q.R2n. While Schrödinger wave functions a
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quare integrable functions onRn, both Wigner distributions and Weyl symbols are functions
2n. Quantum kinematics can be expressed via the Heisenberg canonical commutation

or Cartesian coordinates and their conjugate momenta, or via the exponentiated Weyl for
amilies of unitary operators. An important feature in this case is that as far as their eige
pectra are concerned, the momenta do not experience any quantization on their own; they
or the second factor inT* Q.R2n.Rn3Rn. Furthermore we have in this case the Stone–
eumann theorem on the uniqueness of the irreducible representation of the Heisenberg

ation relations, and the important roles of the groups Sps2n,Rd and Mps2nd corresponding t
inear canonical transformations on coordinates and momenta.

There has been for some time considerable interest in developing the Wigner–Weyl
hism for other kinds of quantum systems, that is, for non-Cartesian systems.5–16 In these case

ypically the underlying quantum kinematics cannot be expressed by Heisenberg-type co
ion relations. The situations studied include the quantum mechanics of an angle-angular
um pair, where the configuration space isQ=S1,17,18and finite state quantum systems corresp
ng to a finite dimensional Hilbert space.19,20 More recently, the method of Wigner distributio
as been developed for quantum systems whose configuration space is a compact si
roup; and in the discrete case when it is a finite group of odd order.21,22 In all these departure

rom the Cartesian situation, an important aspect is the occurrence of new features which
how up at all with Cartesian variables.

The aim of the present work is to develop in detail the Wigner–Weyl isomorphism for
um mechanics on a compact simple Lie group. Here the configuration spaceQ is a (compac
imple) Lie groupG, so the corresponding classical phase space isT* G.G3GI *, where GI * is
he dual to the Lie algebraGI of G. In the quantum situation, Schrödinger wave functions
omplex square integrable functions onG, and observables or dynamical variables are li
ermitian operators acting on such functions. The replacements for the canonical Hei
ommutation relations are best formulated using the(commutative) algebra of suitable smoo
unctions onG, and (say) the left regular representation ofG acting on functions on itself. Th
atural question that arises in trying to set up a Wigner–Weyl isomorphism in this case is w
uantum states and operators are to be described using suitable functions on the classi
paceT* G. In Ref. 21 an overcomplete Wigner distribution formalism for quantum states,
ransforms in a reasonable way under left and right group actions and also reproduces th
arginal probability distributions, has been developed. The methods developed there a
xploited to set up a Wigner–Weyl isomorphism in full detail, disclosing many interesting
nces compared to the Cartesian case. In particular we find that this isomorphism does no
tilize c-number functions onT* G at all, but instead uses a combination of functions onG and
perators on a simpler Hilbert space, standing in a sense midway betweenT* G and the Hilber
pace of the quantum system. This feature is traceable to the non-Abelian nature ofG, something
hich is absent in the Cartesian case whenQ is the Abelian groupRn.

The material of this paper is organized as follows. In Sec. II we briefly recapitulat
eatures of the Wigner–Weyl isomorphism for the Cartesian and angle-angular momentum
his sets the stage for Sec. III where we develop the quantum kinematics for situations wh
onfiguration space is a compact Lie group and thus go beyond the Abelian cases discusse
. This analysis leads to a proper identification of the analogues of the momenta of the C
ase and helps set up the Wigner distribution for such situations possessing properties ex
Wigner distribution. The Wigner distributions so defined have a certain degree of overco
ess about them, a circumstance forced by the non-Abelian nature of the underlying groG. A
ey ingredient in this construction is the notion of the midpoint of two group elements intro

n an earlier work.21 In Sec. IV a more compact description in terms of Weyl symbols devo
ny redundances is developed and correspondences facilitating transition from the Cartes

o more general situations are established. The results of Sec. IV are exploited in Sec. V
efining a star product between Weyl symbols for operators and the general expression fo
roduct is explicitly worked out for the non-Cartesian, albeit Abelian case of angle-angul

entum. Section VI is devoted to analyzing the minimal structure on which the Weyl symbols for
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perators find their natural definition. This leads to the concept of a noncommutative co
pace or a semiquantized phase space the ramifications of which are examined further
ighlighting the structural similarity between classical phase space functions and the We
ols. A short appendix contains some technical details concerning results used in Sec. V

I. THE WIGNER–WEYL ISOMORPHISM: CARTESIAN AND ANGLE-ANGULAR
OMENTUM CASES

In this section we recall briefly the relevant structures needed to set up the Wigne
somorphism for Cartesian quantum mechanics. This is to facilitate comparison with the Lie
ase later on. For simplicity we choose one degree of freedom only, as the extension toQ=Rn is
traightforward. We also recall the angle-angular momentum case,Q=S1, where we already se
ignificant differences from the Cartesian case; these increase when we go toQ=G.

One-dimensional Cartesian quantum mechanics:The canonical Heisenberg commutation
ation between Hermitian coordinate and momentum operatorsq̂ and p̂, fixing the kinematics, i

fq̂,p̂g = i . s2.1d

In the unitary Weyl form this is expressed as follows:

Uspd = expsipq̂d, Vsqd = exps− iqp̂d,

UspdVsqd = VsqdUspdeiqp, q,p [ R. s2.2d

In the Cartesian case the exponentials can be combined to define a phase space disp
perator

Dsq,pd = UspdVsqde−iqp/2 = VsqdUspdeiqp/2 = expsipq̂ − iqp̂d. s2.3d

However this cannot be done even in the single angle-angular momentum pair case,
hen we treat the Lie group case. We therefore use expressions in which the exponentials
eparate.

The standard form of the unique irreducible representation of Eqs.(2.1) and (2.2) uses th
ilbert space of square integrable functionscsqd on R. Introducing as usual an ideal basis
igenvectors ofq̂ we have

H = L2sRd =Hcsqdu ici2 =E
R

dqucsqdu2 , `J ,

csqd = kqucl, q̂uql = quql, s2.4d

kq8uql = dsq8 − qd.

On suchcsqd (subject to relevant domain conditions) the actions ofq̂, p̂, Uspd, Vsqd are

sq̂cdsqd = qcsqd, sp̂cdsqd = − i
d

dq
csqd,

sUsp8dcdsqd = eip8qcsqd, sVsq8dcdsqd = csq − q8d. s2.5d

The momentum space description ofucl uses the Fourier transform ofcsqd; in terms of the
deal eigenstatesupl for p̂,

c̃spd = kpucl =E dq
Î2p

exps− ipqdcsqd,

R
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dpuc̃spdu2. s2.6d

The displacement operators(2.2) form a complete trace orthonormal set(in the continuum
ense) in the space of operators onH,

TrssUsp8dVsq8dd†UspdVsqdd = 2pdsq8 − qddsp8 − pd. s2.7d

The completeness property will be used later.
The definitions of the Wigner distribution for a normalized pure stateuclPH, or more gen

rally for a mixed state with density operatorr̂, are

Wsq,pd =
1

2p
E

R
dq8 cSq −

1

2
q8DcSq +

1

2
q8D*

expsipq8d,

Wsq,pd =
1

2p
E

R
dq8Kq −

1

2
q8ur̂uq +

1

2
q8Lexpsipq8d. s2.8d

The dependences onucl, r̂ are left implicit.) While Wsq,pd is real though not always no
egative, the recovery of the marginal position and momentum space probability dens
ssured by

E
R

dp Wsq,pd = kqur̂uql, E
R

dq Wsq,pd = kpur̂upl. s2.9d

It is possible to expressWsq,pd in a more compact form by introducing a family of Hermit

peratorsŴsq,pd on H with interesting algebraic properties. They are essentially the d
ourier transforms of the displacement operators(2.2),

Wsq,pd = Trsr̂Ŵsq,pdd,

Ŵsq,pd = Ŵsq,pd† =
1

s2pd2E
R
E

R
dq8 dp8 Usp8dVsq8deipq8−ip8sq+s1/2dq8d. s2.10d

It has been shown in Ref. 17 that, apart from sharing the trace orthonormality proper(2.7)
hich is preserved by the Fourier transformation,

TrsŴsq8,p8dŴsq,pdd =
1

2p
dsq8 − qddsp8 − pd, s2.11d

e have the following behaviors under anticommutation withq̂ and p̂:

1
2hq̂,Ŵsq,pdj = qŴsq,pd, 1

2hp̂,Ŵsq,pdj = pŴsq,pd. s2.12d

Thus we may regardŴsq,pd as operator analogues of Dirac delta functions concentra
ndividual phase space points. In Ref. 19 they have been called phase point operators.

Turning to the Weyl map, it takes a general classical dynamical variable, a(square integrable)
unctionasq,pd on the classical phase space, to a corresponding(Hilbert–Schmidt) operatorÂ on
:
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asq,pd → ãsp8,q8d =E
R
E

R
dq dp asq,pdeispq8−qp8d

→ Â =
1

2p
E

R
E

R
dq8 dp8 ãsp8,q8dUsp8dVsq8de−iq8p8/2. s2.13d

The important property of this map is that traces of operators onH go into integrals ove
hase space,

TrsÂ†B̂d =E
R
E

R
dq dp asq,pd * bsq,pd. s2.14d

ne can immediately see that the relation betweenasq,pd and Â is given by

Â = 2pE
R
E

R
dq dp asq,pdŴsq,pd, s2.15d

hus establishing that the Wigner and Weyl maps are inverses of one another. Indeed exten

efinition of the Wigner distribution(2.10) to a general operatorÂ on H, we have

asq,pd = TrsÂŴsq,pdd. s2.16d

t is this kind of isomorphism that we wish to develop whenR is replaced by a compact simple L
roupG.

The angle-angular momentum case:We now trace the changes which appear if we replac
artesian variableqPR by an angleuP s−p ,pd. The corresponding Hermitian operator is

oted by û, with eigenvaluesu; its canonical conjugateM̂ has integer eigenvaluesm

0, ±1, ±2, . . ..ThusmPZ unlike the Cartesianp, so M̂ is already quantized. The replaceme
or Eqs.(2.4) and (2.6) are

H = L2sS1d =Hcsudu ici2 =E
−p

p

duucsudu2 , `J ,

csud = kuucl, ku8uul = dsu8 − ud, ûuul = uuul,

cm = kmucl =
1

2p
E

−p

p

du e−imucsud, s2.17d

ici2 = o
mPZ

ucmu2,

M̂uml = muml, kuuml =
1

Î2p
eimu.

n place of the Heisenberg commutation relation(2.1), we have only the exponentiated W
ersion,

Usmd = expsimûd, Vsud = exps− iuM̂d,

imu
UsmdVsud = VsudUsmde . s2.18d
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With the actions

sUsm8dcdsud = eim8ucsud,

sVsu8dcdsud = csfu − u8gd, s2.19d

fu − u8g = u − u8 mod 2p,

e have an irreducible system onH=L2sS1d. The analogues of the displacement operators(2.3)
re now

UsmdVsude−imu/2 = VsudUsmdeimu/2, s2.20d

ut here the exponents cannot be combined. They do however form a complete trace orth
ystem,

TrssUsm8dVsu8dd†UsmdVsudd = 2pdmm8dsu8 − ud. s2.21d

With this preparation we can turn to the definition of the Wigner distribution and the
ap. For a given density operatorr̂ on H, the former is

Wsu,md =
1

2p
E

−p

p

du8Ku −
1

2
u8ur̂uu +

1

2
u8Lexpsimu8d. s2.22d

e see immediately that this is not a function on the classical phase spaceT* S1.S13R, which
s a cylinder, but on a partially quantized spaceS13Z. We may regard this space as stand
omewhere in betweenT* S1 and the fully quantum mechanical Hilbert space and operator s
he marginals are properly reproduced in the sense that

E
−p

p

du Wsu,md = kmur̂uml,

o
mPZ

Wsu,md = kuur̂uul. s2.23d

We can displayWsu ,md as

Wsu,md = Trsr̂Ŵsu,mdd,

Ŵsu,md = Ŵsu,md† =
1

s2pd2 o
m8PZ

E
−p

p

du8 Usm8dVsu8deimu8−im8su+1/2u8d, s2.24d

nd like their Cartesian counterparts these operators form a trace orthonormal system,

TrsŴsu8,m8dŴsu,mdd =
1

2p
dsu8 − uddmm8. s2.25d

In a similar spirit, the Weyl map now takes any classical functionasu ,md on S13Z into an
2 1
perator onL sS d,
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asu,md → ãsm8,u8d = o
mPZ

E
−p

p

du asu,mdeismu8−m8ud

→ Â =
1

2p
o

m8PZ
E

−p

p

du8 ãsm8,u8dUsm8dVsu8de−im8u8/2. s2.26d

hen the trace operation becomes, as in(2.14),

TrsÂ†B̂d = o
mPZ

E
−p

p

du asu,md * bsu,md. s2.27d

ombining Eqs.(2.24) and (2.26) we are able to get the analogue to(2.15),

Â = 2p o
mPZ

E
−p

p

du asu,mdŴsu,md. s2.28d

n this way the similarities as well as important differences compared to the Cartesian c
asily seen.

II. QUANTUM KINEMATICS IN THE LIE GROUP CASE AND THE WIGNER DISTRIBUTION

Let G be a(non-Abelian) compact simple Lie group of ordern, with elementsg,g8 , . . . and
omposition lawg8 ,g→g8g. To set up the kinematics appropriate for a quantum system
onfiguration spaceQ=G, it is simplest to begin with the Hilbert space of Schrödinger w
unctions. The normalized left and right invariant volume element onG is written as dg. For
uitable functionsfsgd on G we have the invariances and normalization condition

E
G

dg fsgd =E
G

dg sfsg8gd or fsgg8d or fsg−1dd,

E
G

dg = 1. s3.1d

orrespondingly we can introduce a Dirac delta function onG characterized by

E
G

dgsdsg8−1gd or dsgg8−1d or dsg−1g8d or dsg8g−1ddfsgd = fsg8d. s3.2d

husdsgd is a delta function concentrated at the identity elementePG.
We take the Hilbert spaceH for the quantum system to be made up of all complex sq

ntegrable functions onG:

H = L2sGd =Hcsgd P Cu ici2 =E
G

dgucsgdu2 , `J . s3.3d

convenient basis of ideal vectorsugl can be introduced such that for a generaluclPH we may
rite

csgd = kgucl, kg8ugl = dsg8g−1d. s3.4d

The notion of position coordinates is intrinsically captured by the commutative algebr
esenting real valued smooth functionsfsgd on G, i.e., f PFsGd. To each such function w

ˆ
ssociate a Hermitian multiplicative operatorf on H:
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f P FsGd → f̂ =E
G

dg fsgduglkgu,

s f̂cdsgd = fsgdcsgd. s3.5d

hus all these operators commute with one another, being diagonal in the position des
sgd of ucl.

To complete the kinematics and to obtain an irreducible system of operators onH we have to
djoin suitable momenta. Here we have two choices, corresponding to the left and right

ions of G on itself by group action. We choose the former, and so define a family of u
peratorsVsgd to give the left regular representation ofG:

sVsg8dcdsgd = csg8−1gd,

Vsg8dugl = ug8gl. s3.6d

hey obey

Vsg8dVsgd = Vsg8gd,

Vsgd†Vsgd = I . s3.7d

o identify their Hermitian generators, we introduce a basisherj in the Lie algebraGI of G. Using
he exponential mapGI →G, we write a generalgPG as

g = expsarerd, s3.8d

he sum onr being from 1 ton. The generatorsĴr of Vsgd are then identified by

Vsexpsarerdd = exps− iarĴrd. s3.9d

hese are Hermitian operators on the Hilbert spaceH, obeying commutation relations involvi
he structure constantsCrs

t of G:

fĴr,Ĵsg = iCrs
tĴt. s3.10d

n Schrödinger wave functionscsgd each Ĵr acts as a first order partial differential opera
ndeed if the(right invariant) vector fields generating the left action ofG on itself are written a

r, then we have

Ĵrcsgd = iXrcsgd. s3.11d

he commutation relations(3.10) are direct consequences of similar commutation relations a
he vector fieldsXr.

The analogue of the Cartesian Heisenberg–Weyl system(2.1) and (2.2) is now obtained b
etting together the following ingredients:

f1, f2 P FsGd → f̂1f̂2 = f̂2f̂1,

ˆ −1 ˆ
f P FsGd, g8 P G → Vsg8dfVsg8d = f8, s3.12d
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f8sgd = fsg8−1gd,

long with the representation property(3.7) for Vsgd. This is in the spirit of the unitary We
ystem(2.2). In infinitesimal terms we have

fĴr, f̂g = isXr f d̂, s3.13d

ombined with(3.10). The spaceH is indeed irreducible with respect to the family of opera

f̂ ,Vs·dj or equivalentlyh f̂ , Ĵrj.
We can express functions of position also via unitary operators in the Weyl spirit as fo

or each realf PFsGd, we define the unitary operatorUsfd by

Usfd = eif̂ : sUsfdcdsgd = eif sgdcsgd. s3.14d

t is then easy to see that we have the relations

sUsfdVsg8dcdsgd = eif sgdcsg8−1gd,

sVsg8dUsfdcdsgd = eif sg8−1gdcsg8−1gd, s3.15d

sUsfdVsg8dsVsg8dUsfdd†cdsgd = eif sgd−i f sg8−1gdcsgd,

hich is in the spirit of Eqs.(2.2) and (2.18), except thatf is not restricted to be linear in a
oordinate variables.

We see here that unlike in then-dimensional Cartesian case the canonical momenta
oncommutative system. Therefore the analogue or generalization of the single momentum
tate upI l in the Cartesian situation will turn out to be a generally multidimensional Herm
rreducible representation of(3.10), namely the generators of some unitary irreducible repre
ation (UIR) of G. We will see this in detail as we proceed.

For completeness we should mention the operators giving the right regular represent

. These are, say,Ṽsgd, defined by and obeying

sṼsg8dcdsgd = csgg8d,

Ṽsg8dugl = ugg8−1l,

s3.16d
Ṽsg8dṼsgd = Ṽsg8gd,

Vsg8dṼsgd = ṼsgdVsg8d.

owever as is well known their generatorsJ̃
ˆ

r are determined byĴr and the matricessDr
ssgdd of the

djoint representation ofG, by

J̃
ˆ

r = − Dr
ssgdĴs. s3.17d

herefore it suffices to regard the collection of operatorsh f̂ ,Vs·dj as providing the replacement
he Heisenberg–Weyl system in the present case.

Complementary to the position basisugl for H is a momentum basis. This can be set up u
he Peter–Weyl theorem involving all the UIR’s ofG. We denote the various UIR’s byj , with
imensionNj; we label rows and columns within thej th UIR by magnetic quantum numbersm,n.

hus the unitary matrix representinggPG in the j th UIR is
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g → sDmn
j sgdd. s3.18d

In general each ofj ,m,n is a collection of several independent discrete quantum number
here is a freedom of unitary changes in the choice ofm,n. In addition to unitarity and th
omposition law,

o
n

Dmn
j sgd * Dm8n

j sgd = dmm8,

o
n

Dmn
j sg8dDnn8

j sgd = Dmn8
j sg8gd, s3.19d

e have orthogonality and completeness properties,

E
G

dg Dmn
j sgdDm8n8

j8 sgd * = d j j 8dmm8dnn8/Nj ,

o
jmn

NjDmn
j sgdDmn

j sg8d * = dsg−1g8d. s3.20d

hen a simultaneous complete reduction of both representationsVs·d, Ṽs·d of G is achieved b
assing to a new orthonormal basisu jmnl for H. Its definition and basic properties are

u jmnl = Nj
1/2E

G

dg Dmn
j sgdugl,

k j8m8n8u jmnl = d j8 jdm8mdn8n,

s3.21d
Vsgdu jmnl = o

m8

Dmm8
j sg−1du jm8nl,

Ṽsgdu jmnl = o
n8

Dn8n
j sgdu jmn8l.

herefore inu jmnl the indexn counts the multiplicity of occurrence of thej th UIR in the reductio

f Vs·d andm performs a similar function in the reduction ofṼs·d.
We now regard the sets ofNj

2 stateshu jmnlj for each fixedj as momentum eigenstates in
resent context. This means that then-dimensional real momentum eigenvaluepI in Cartesian
uantum mechanics is now replaced by a collection of(discrete) quantum numbersjmn. A vector

clPH with wave functioncsgd is given in the momentum description by a set of expan
oefficientsc jmn,

c P H → c jmn = k jmnucl = Nj
1/2E

G

dg Dmn
j sgd * csgd,

ici2 = o
jmn

uc jmnu2. s3.22d

normalizeducl then determines two complementary probability distributions,ucsgdu2 on G and
c jmnu2 on momentum space.

In this situation a(provisional and overcomplete) Wigner distributionW̃sg; jmn m8n8d can be
ˆ
efined for eachuclPH (or for any mixed stater as well). (Here we depart slightly from the
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otation in Ref. 21, so that our later expressions are more concise.) It transforms in a reasonab

anner whenucl is acted upon byVs·d or Ṽs·d; and it reproduces in a simple and direct way
wo probability distributions determined byucl, as marginals. We give only the latter prope
ere,

o
jmn

W̃sg; jmn mnd = ucsgdu2,

E
G

dg W̃sg; jmn m8n8d = c jm8n8 c jmn
* . s3.23d

he right-hand side of the second relation is a natural generalization ofuc jmnu2, to allow for
reedom in the choice of labelsm,n within each UIRj . The expression for this Wigner distributi
nvolves a functions, G3G→G obeying certain conditions and is

W̃sg; jmn m8n8d = NjE
G

dg8E
G

dg9 csg9dcsg8d * Dm8n8
j sg9d * Dmn

j sg8ddsg−1ssg8,g9dd.

s3.24d

eality in the Cartesian or single angle-angular momentum cases is replaced here by He

W̃sg; jmn m8n8d * = W̃sg; jm8n8 mnd. s3.25d

he conditions onssg8 ,g9d to ensure that all the above properties are secured are

g8,g9 P G → ssg8,g9d = ssg9,g8d P G,

ssg1g8g2,g1g9g2d = g1 ssg8,g9dg2, s3.26d

ssg8,g8d = g8.

e can simplify the problem of constructing such a function by exploiting the second of
elations to write

ssg8,g9d = g8sse,g8−1g9d = g8s0sg8−1g9d, s3.27d

o the functions0sgd of a single group element must satisfy

s0sed = e,

s0sg−1d = g−1s0sgd = s0sgdg−1, s3.28d

s0sg8gg8−1d = g8 s0sgdg8−1.

he solution proposed in Ref. 21 is to takes0sgd to be the midpoint along the geodesic from
dentity ePG to g. These geodesics are determined starting from the invariant Cartan–

etric onG, and have the necessary behaviors under left and right group actions to ensure
f Eqs.(3.26) and (3.28) are obeyed. In the exponential notation of Eq.(3.8) we have

s0sexpsar erdd = exps 1
2ar erd, s3.29d

ince it is true that geodesics passing through the identity are one parameter subgroups.

xplicit construction we have the additional relation
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s0sg−1d = s0sgd−1,

.e.,

s0sgd s0sgd = g. s3.30d

huss0sgd is the(almost everywhere unique) square root ofg andssg8 ,g9d is a kind of symmetri
quare root ofg8 andg9.

We shall explore the properties ofW̃sg; jmn m8n8d in the next section, especially the sens
hich it contains information aboutuclkcu in an overcomplete manner. This will then lead to
igner–Weyl isomorphism for quantum mechanics on a(compact simple) Lie group.

V. THE WIGNER–WEYL ISOMORPHISM IN THE LIE GROUP CASE

The definition(3.24) can be immediately extended to associate an objectW̃Âsg; jmn m8n8d
ith every linear operatorÂ on H (of Hilbert–Schmidt class). In terms of the integral kern

g9uÂug8l of Â we have

W̃Âsg; jmn m8n8d = NjE
G

dg8E
G

dg9kg9uÂug8lDm8n8
j sg9d * Dmn

j sg8ddsg−1ssg8,g9dd. s4.1d

t is indeed the case that this expression describes or determinesÂ completely, however th

appens in an overcomplete manner. There are certain linear relations obeyed byW̃Âsg; jmn m8n8d
hich have anÂ independent form. We now obtain these relations, then proceed to cons

impler expression which contains complete information aboutÂ without redundancy.
The Dirac delta function in the integral on the right-hand side of Eq.(4.1) means that the on

ontributions to the integral are from the points where

ssg8,g9d = g. s4.2d

riting this as

s0sg8−1g9d = g8−1g, s4.3d

nd then using Eq.(3.30), we see that, say, in theg9 integration the delta function picks out t
ingle point determined by

g8−1g9 = sg8−1gd2,

.e.,

g9 = gg8−1g. s4.4d

his means thatdsg−1ssg8 ,g9dd is some Jacobian factor timesdsg9−1gg8−1gd. We are therefor
ermitted to use this value forg9 elsewhere in the integrand, so

W̃Âsg; jmn m8n8d = NjE
G

dg8E
G

dg9kgg8−1guÂug8lDm8n8
j sgg8−1gd * Dmn

j sg8ddsg−1ssg8,g9dd.

s4.5d

ransferring theg-dependent representation matrices from the right-hand side to the left-ha

nd using unitarity, we get
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m8n8

Dm8m9
j sgdDn9n8

j sgdW̃Âsg; jmn m8n8d = NjE
G

dg8E
G

dg9 dsg−1ssg8,g9dd

3kgg8−1guÂug8lDn9m9
j sg8dDmn

j sg8d. s4.6d

t is now clear we have symmetry of the expression on the left-hand side under the simul

nterchangesm↔n9, n↔m9, a statement independent ofÂ. This is the sense in whic
˜

Âsg; jmn m8n8d contains information aboutÂ in an overcomplete manner, and this happens
henG is non-Abelian.

Taking advantage of this, we now associate toÂ the simpler quantity

WÂsg; jmm8d = Nj
−1o

n

W̃Âsg; jmn m8nd =E
G

dg8E
G

dg9kg9uÂug8lDmm8
j sg8g9−1ddsg−1ssg8,g9dd.

s4.7d

e shall call this the Weyl symbol corresponding to the operatorÂ. The passageÂ→ Â† results in

WÂ†sg; jmm8d = WÂsg; jm8md * . s4.8d

t is easy to obtain the transformation properties of the Weyl symbol under conjugation oÂ by
ither the left or the right regular representation,

Â8 = Vsg0dÂVsg0d−1,

WÂ8sg; jmm8d = o
m1m18

Dmm1

j sg0dDm8m18
j sg0d * WÂsg0

−1g; jm1m18d,

s4.9d
Â9 = Ṽsg0dÂṼsg0d−1,

WÂ9sg; jmm8d = WÂsgg0; jmm8d.

ext we can verify that ifÂ andB̂ are any two Hilbert–Schmidt operators onH, then TrsÂB̂d can
e simply expressed in terms of their Weyl symbols,

TrsÂB̂d = o
jmm8

NjE
G

dg WÂsg; jmm8dWB̂sg; jm8md. s4.10d

he proof exploits the completeness relation in(3.20) and the properties(3.26) of ssg8 ,g9d. This

ey result proves thatÂ is indeed completely determined by its Weyl symbol:Â is certainly

etermined by the values of TrsÂB̂d for all B̂, and the latter are known once the Weyl symbols
nown.

Before expressing the Weyl symbol ofÂ in a form analogous to Eq.(2.16), we give example
ˆ
or some simple choices ofA,
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Â WÂsg; jmm8d

f̂ =E
G

dg fsgduglkgu fsgddmm8

Vsg0d Dmm8
j sg0

−1d

Ṽsg0d Dmm8
j sgg0g

−1d

f̂Vsg0d fss0sg0dgdDmm8
j sg0

−1d

Vsg0d f̂ fss0sg0d−1gdDmm8
j sg0

−1d

s4.11d

We shall comment later on the structure of these Weyl symbols. However it is already i
ive to compare these results with the Cartesian situation

Â Wsq,pd

f̂ = fsq̂d fsqd

Vsq8d exps− ipq8d

f̂Vsq8d = fsq̂dVsq8d fsq + q8/2dexps− ipq8d

Vsq8dfsq̂d fsq − q8/2dexps− ipq8d
s4.12d

Now we turn to the problem of expressing the Weyl symbol ofÂ in the form

WÂsg; jmm8d = TrsÂŴsg; jmm8dd s4.13d

or a suitable operatorŴsg; jmm8d. This would be the analogue ofŴsq,pd in Eq. (2.10). Since the

ernel kg9uÂug8l is quite general, Eq.(4.13) and Eq.(4.7) imply

kg8uŴsg; jmm8dug9l = Dmm8
j sg8g9−1ddsg−1ssg8,g9dd = Dmm8

j sg8g9−1ddsg−1s0sg9g8−1dg8d.

s4.14d

e shall synthesizeŴsg; jmm8d in steps. We begin by defining a family of commuting opera
s jmnd in the manner of Eq.(3.5), all of them diagonal in the position basis,

sUs jmndcdsgd = Dmn
j sgdcsgd. s4.15d

hese are analogous to the CartesianUsp8d, labeled by a momentum eigenvaluejmn, functions o
osition alone. They are unitary in the matrix sense,

o
m

Us jmnd†Us jmn8d = o
m

Us jnmd†Us jn8md = dn8nI . s4.16d

These operators allow us to express the mapf PFsGd→ f̂ of Eq. (3.5) more explicitly as
ollows:

fsgd = o
jmn

f jmnDmn
j sgd ⇒ f̂ = o

jmn

f jmnUs jmnd. s4.17d

pon conjugation byVsgd we have

Vsgd−1Us jmndVsgd = o
m8

Dmm8
j sgdUs jm8nd. s4.18d
ombining Eqs.(3.16), (3.20), and(4.15) we easily obtain the trace orthonormality property
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TrssUs j8m8n8dVsg8dd†Us jmndVsgdd = Nj
−1d j8 jdm8mdn8ndsg−1g8d, s4.19d

nalogous to Eqs.(2.7) and (2.5). The action ofUs j8m8n8d on the momentum eigenstatesu jmnl
an be worked out; it involves the Clebsch–Gordan coefficients for the reduction of direct p
f two general UIR’s ofG and reads

Us j8m8n8du jmnl = o
j9m9n9l

Î Nj

Nj9
Cm8mm9

j8 j j 9l * Cn8nn9
j8 j j 9lu j9m9n9l. s4.20d

erel is a multiplicity index keeping track of the possibly multiple occurrences of the UIRDj9

n the reduction of the direct productDj83Dj. The significance of this relation is similar in sp
o the statement in the Cartesian case thatUsp8d=expsip8q̂d generates a translation inp̂, in other
ords that in the momentum descriptionq̂ is given by the differential operatorisd/dpd. The resul

4.20) however involves discrete labels sinceG is compact, unlike continuous Cartesian variab
nd incorporates non-Abelianness as well. Therefore translating the momentumjmn by the
mountj8m8n8 yields several final momentaj9m9n9 according to the contents of the direct prod
j83Dj of UIR’s of G.

Now multiply both sides of Eq.(4.14) by Dm1m18
j1 sgd and integrate with respect tog, this is

ourier transformation with respect tog and gives

kg8uE
G

dg Dm1m18
j1 sgdŴsg; jmm8dug9l = Dmm8

j sg8g9−1dDm1m18
j1 ss0sg9g8−1dg8d. s4.21d

ow perform an inverse Fourier transformation with respect to the momentajmm8 to get

o
jmm8

NjDmm8
j sg1d * kg8uE

G

dg Dm1m18
j1 sgdŴsg; jmm8dug9l

= Dm1m18
j1 ss0sg9g8−1dg8ddsg1g9g8−1d = Dm1m18

j1 ss0sg1
−1dg8ddsg1g9g8−1d

= kg8ug1g9lDm1m18
j1 ss0sg1

−1dg8d = o
m2

kg8uUs j1m2m18dVsg1dug9lDm1m2

j1 ss0sg1
−1dd. s4.22d

omparing the two sides and peeling offkg8u and ug9l gives

o
jmm8

NjDmm8
j sg1d * E

G

dg Dm1m18
j1 sgdŴsg; jmm8d = o

m2

Dm1m2

j1 ss0sg1
−1ddUs j1m2m18dVsg1d.

s4.23d

hen Fourier inversion twice yields the result

Ŵsg; jmm8d = o
j1m1m2

Nj1E
G

dg1 Us j1m2m1dVsg1dDmm8
j sg1dDm1m2

j1 sg−1s0sg1
−1dd. s4.24d

his may be compared in every detail with the Cartesian result in Eq.(2.10), the corresponden
f arguments and integration/summation variables is(including the factors representing mom

um eigenfunctions)

q → g, p → jmm8, q8 → g1, p8 → j1m1m2,

eipq8 → Dmm8
j sg1d, e−ip8sq+q8/2d → Dm1m2

j1 sg−1s0sg1
−1dd. s4.25d

iving due attention to the new matrix features, the correspondence is quite remarkable.

Combining Eqs.(3.28) and (4.14) we obtain the relation
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Ŵsg; jmnd† = Ŵsg; jnmd. s4.26d

imilarly combining Eqs.(4.24) and(4.19) and carrying out quite elementary operations lead
nalogues to the Cartesian relations(2.11) and (2.15) in the forms

TrsŴsg8; j8m8n8d†Ŵsg; jmndd = Nj
−1d j j 8dmm8dnn8dsg−1g8d,

Â = o
jmn

NjE
G

dg WÂsg; jnmdŴsg; jmnd. s4.27d

e may thus conclude that we have succeeded in setting up a Wigner–Weyl isomorph
uantum mechanics on a compact simple Lie group with reasonable properties.

. THE STAR PRODUCT FOR WEYL SYMBOLS

In this section we sketch the derivation of the expression for noncommutative operato
iplication in terms of the corresponding Weyl symbols, relegating some details to the App

hus, for two operatorsÂ and B̂ we seek an expression for the Weyl symbol ofÂB̂ in terms o

hose ofÂ and B̂ in the form

WÂB̂sg; jmnd = sWÂ ! WB̂dsg; jmnd. s5.1d

rom Eq.(4.13) we have

sWÂ ! WB̂dsg; jmnd = TrsÂB̂Ŵsg; jmndd, s5.2d

o using Eq.(4.27) for Â as well as forB̂ we have

sWÂ ! WB̂dsg; jmnd = o
j8m8n8

j9m9n9

Nj8Nj9E
G

dg9E
G

dg8 WÂsg9; j9n9m9dWB̂sg8; j8n8m8d

3 TrsŴsg9; j9m9n9dŴsg8; j8m8n8dŴsg; jmndd. s5.3d

e therefore need to compute the trace of the product of threeŴ’s, which is a nonlocal integr
ernel defining the(associative but noncommutative) star product on the left-hand side. The t
ngredients for this calculation are expressions for the productUs jmndVsgd in terms o
ˆ sg8 ; j8m8n8d, and for the productUs j8m8n8dVsg8dUs jmndVsgd in terms of similar productsUV.
hese are

Us jmndVsgd = o
j8m8n8

Nj8Dm8n8
j8 sgd * E

G

dg8 Dmn
j ss0sgdg8dŴsg8; j8m8n8d, s5.4ad

Us j8m8n8dVsg8dUs jmndVsgd = o
j9m9n9k

Cm8n8
j8

kn
j

m9n9
j9 Dmk

j sg8−1dUs j9m9n9dVsg8gd. s5.4bd

he derivations are given in the Appendix, and theC-symbol on the right-hand side in the sec
quation is a sum of products of Clebsch–Gordan coefficients of the type occurring in Eq.(4.20).

ˆ
Starting from Eq.(4.24) and using Eq.(5.4b) we have for the product of twoW’s,
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Ŵsg8; j8m8n8dŴsg; jmnd

= o
j0,m0,n0

j08m08n08

Nj0
Nj08E

G

dg0E
G

dg08 Dmn
j sg0dDm8n8

j8 sg08d

3Dn0m0

j0 sg−1s0sg0
−1ddD

n08m08
j08 sg8−1s0sg08

−1ddUs j08m08n08dVsg08dUs j0m0n0dVsg0d

= o
j0m0n0k0

j08m08n08

j09m09n09

Nj0
Nj08

C
m08n08
j08

k0n0

j0
m09n09
j09 E

G

dg0E
G

dg08 Dmn
j sg0dDm8n8

j8 sg08d

3Dm0k0

j0 sg08
−1dDn0m0

j0 sg−1s0sg0
−1ddD

n08m08
j08 sg8−1s0sg08

−1dd 3 Us j09m09n09dVsg08g0d. s5.5d

f here we use Eq.(5.4a) and then Eq.(4.27) we obtain for the kernel in Eq.(5.3),

TrsŴsg9; j9m9n9dŴsg8; j8m8n8dŴsg; jmndd

= o
j0m0n0k0

j08m08n08

j09m09n09

Nj0
Nj08

C
m08n08
j08

k0n0

j0
m09n09
j09 E

G

dg0E
G

dg08 Dmn
j sg0dDm8n8

j8 sg08dDn9m9
j9 sg08g0d *

3Dm0k0

j0 sg08
−1dDn0m0

j0 sg−1s0sg0
−1ddD

n08m08
j08 sg8−1s0sg08

−1ddD
m09n09
j09 ss0sg08g0dg9d. s5.6d

he star product of Eq.(5.3) is then obtained by inserting this integral kernel on the right-h
ide.

A slightly simpler expression—which amounts to trading four of theD-functions for Dirac
elta functions—results from direct use of Eq.(4.14),

TrsŴsg9; j9m9n9dŴsg8; j8m8n8dŴsg; jmndd

=E
G

dg0E
G

dg08E
G

dg09kg0uŴsg9; j9m9n9dug08lkg08uŴsg8; j8m8n8dug09lkg09uŴsg; jmndug0l

=E
G

dg0E
G

dg08E
G

dg09 Dm9n9
j9 sg0g08

−1dDm8n8
j8 sg08g09

−1d

3Dmn
j sg09g0

−1ddsg9−1ssg0,g08dddsg8−1ssg08,g09dddsg−1ssg09,g0dd. s5.7d

These expressions for the star product show an unavoidable complexity for general c
on-AbelianG. In the one-dimensional Abelian(but non-Cartesian) caseQ=S1, there are som
implifications. Referring to Sec. II, we have the rule for Weyl symbols given by Eq.(2.25) and
2.28),

asu;md = TrsÂŴsu;mdd,

Â = 2p o
mPZ

E
−p

p

du asu;mdŴsu;md. s5.8d
he star product then appears as
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sa ! bdsu;md = o
m8,m9PZ

E
−p

p

du9E
−p

p

du8 TrsŴsu9;m9dŴsu8;m8dŴsu;mddasu9;m9dbsu8;m8d,

TrsŴsu9;m9dŴsu8;m8dŴsu;mdd =
1

4p2 o
m0,m08PZ

E
−p

p

du08E
−p

p

du0e
i/2sm08u0−m0u08dexpfismu0 − m0u

+ m8u08 − m08u8 + sm0 + m08du9 − m9su0 + u08ddg. s5.9d

his expression for the kernel results from Eq.(5.6) if we first drop the magnetic quantu
umbersm,n,m8 ,n8 ,m9 ,n9 ,m0,n0,k0,m08 ,n08 ,m09 ,n09; then set the dimensionalitiesNj0, Nj08

equa
o unity; next make the replacementsj →m, j8→m8 , j9→m9 , j0→m0, j08→m08 ,g0→u0,g08→u08,
nd use for theC coefficient the Kronecker deltad j09,m0+m08

. Even with some simplifications, t
ernel in Eq.(5.9) remains nonlocal because of(among other things) the occurrence of half-angl

n the exponent.

I. DISCUSSION AND CONCLUDING REMARKS

The characteristic feature revealed by our analysis is that for quantum mechanics o
roupG as configuration space, the concept of canonical momentum is a collection of no

uting operatorsĴr, in fact constituting the Lie algebra of the left regular representation ofG on
2sGd. This in itself is known, but it results in the analogues of momentum eigenvalue bein
f discrete labelsjmn, and the single Cartesian momentum eigenvectorupl being replaced by

ultidimensional set of vectorshu jmnlj. Other consequences of this non-Abelianness shou
oted. One needs to work with both overcomplete and with complete nonredundant Weyl s

or general operatorsÂ: the former are useful for reproducing in a simple manner the two com
entary marginal probability distributions associated with a pure or mixed quantum state f
igner distribution as shown in Eq.(3.23); while the latter lead to the Wigner–Weyl isomorph

n a reasonable manner.
It is interesting that the Weyl symbolsWÂsg; jmm8d are not complex valued functions on

lassical phase spaceT* G. They may be more compactly viewed as follows. Whereas b
eter–Weyl theorem the Hilbert spaceH=L2sGd carries each UIRDs jds·d of G as often as it
imensionNj, the structure of Eq.(4.7) leads us to define a smaller Hilbert spaceH0 carrying eac
IR of G exactly once:

H0 = o
j

% Hs jd,

Hs jd = Sphu jmdj, dimHs jd = Nj , s6.1d

s j8m8u jmd = d j8 jdm8m,

ith Hs jd carrying the UIR Ds jds·d of G. Then the Weyl symbol of a general operatorÂ,

Âsg; jmm8d, may be regarded as a function ofgPG and an operator onH0. This is evident from
he examples of Weyl symbols given in Eq.(4.11); in the Cartesian case in Eq.(4.12) such feature
re of course absent. This can be understood also from the following point of view. In the

uantum description an operatorÂ on H=L2sGd can be given via its kernelkg9uÂug8l, or via its

omplementary diagonal plus off-diagonal matrix elementsk j8m8n8uÂu jmnl. If in the latter we
rade half of the labels for a dependence on a group elementg, we arrive at the Weyl symb

Âsg; jmm8d viewed as a block diagonal operator onH0 with simultaneously a dependence ong.

hus while the Wigner–Weyl isomorphism does not work directly with the true classical phase
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paceT* G, it seems to use what may be called a noncommutative cotangent space, s
omewhere betweenT* G and operators onL2sGd.

Nevertheless the link to functions on the classical phase spaceT* G can be established, as
ill see below.

We may use the phrase “semiquantized phase space” for the space on which the Weyl

Âsg; jmnd of operatorsÂ are defined. It is to be understood that this phrase includes the r
ion that only(g-dependent) block-diagonal operators onH0 are encountered. This may be view

s a superselection rule. In detail, given an operatorÂ on H=L2sGd, we associate with it th
-dependent block-diagonal operator,

Ãsgd = o
j

o
m,n

ÎNjWÂsg; jmndu jmds jnu, s6.2d

cting onH0, and we then have the connection

TrHsÂB̂d =E
G

dg TrH0
sÃsgdB̃sgdd. s6.3d

he Weyl symbolÃsgd is simpler thanÂ both in that it acts on the much smaller Hilbert spaceH0,
nd in that it is block diagonal.

To finally establish the link to suitable functions on the classical phase spaceT* G, we exploit
oth the fact that the representation ofG on H0 has a multiplicity-free reduction into UIR’s, a

he fact thatÃsgd is block diagonal. Let us denote the generators ofG on H0 by Ĵr
s0d, r

1,2, . . . ,n. The Weyl symbolÃsgd may initially be written as the direct sum of symbolsÃjsgd
cting within each subspaceHs jd in H0,

Ãsgd = o
j

% Ãjsgd,

Ãjsgd = o
m,n

ÎNjWÃsg; jmndu jmds jnu. s6.4d

ext, using the irreducibility ofhĴr
s0dj acting onHs jd, we can expandÃjsgd uniquely as a sum o

ymmetrized polynomials inĴr
s0d,

Ãjsgd = o
N=0,1,. . .

o
r1,r2,. . .,rN

ar1. . .rN
sg; jdhĴr1

s0dĴr2

s0d
¯ ĴrN

s0djS
s jd,

hĴr1

s0dĴr2

s0d
¯ ĴrN

s0djS
s jd =

1

N! o
PPSN

sĴrPs1d

s0d
¯ ĴrPsNd

s0d ds jd. s6.5d

ere the upper limit ofN is determined by the UIRDj; SN is the permutation group onN symbols
nd the superscripts jd denotes the restriction toHs jd. The coefficientsar1,. . .,rN

sg; jd arec-numbe
uantities symmetric inr1, . . . ,rN. If we now replace theirj dependences by dependences on

ndependent mutually commuting Casimir operatorsĈ of G, themselves symmetric homogene

olynomials inĴr
s0d, we can use(6.5) in (6.4) and write

Ãsgd = o
N=0

`

o
r1,. . .,rN

ar1,. . .,rN
sg; ĈdhĴr1

s0d
¯ ĴrN

s0djS. s6.6d

his expression for the Weyl symbolÃsgd of Â can now be set into one-to-one correspond

ith the classical phase space function
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asg;Jd = o
N=0

`

o
r1,. . .,rN

ar1,. . .,rN
sg;CdJr1

¯ JrN
, s6.7d

here the commuting classical variablesJr are the canonical momentum coordinates of the
ical phase spaceT* G,21 while C are invariant(Casimir) homogeneous polynomials in them. Th
e have the two-stage sequence of correspondences

Â on H = L2sGd ⇔ Ãsgd = block-diagonal operator onH0 ↔ asg;Jd P FsT * Gd. s6.8d

he importance of the multiplicity-free nature of the representation ofG on H0, and the supe
election rule, is evident. In contrast to the Cartesian case in Sec. II, the appearanc
emiquantized phase space as an intermediate step is to be noted. We hope to return to t

n a future publication.

PPENDIX

We indicate here the derivations of Eqs.(5.4a) and(5.4b). For Eq.(5.4a), we begin with Eq
4.23) and use the unitarity of theD-matrices to shift theD-matrix on the right-hand side to t
eft-hand side. This immediately gives Eq.(5.4a). For Eq.(5.4b) we begin with the decompositio
f the product of twoU’s; from Eq. (4.15), using Eq.(A29) in Ref. 21,

Us j8m8n8dUs jmndugl = Dm8n8
j8 sgdDmn

j sgdugl = o
j9m9n9l

Cm8
j8

m
j

m9
j9l*Cn8

j8
n
j

n9
j9lDm9n9

j9 sgdugl. sA1d

ere theC’s are the usual Clebsch–Gordan coefficients for the decomposition of the direct p
j83Dj of two UIR’s into UIR’s Dj9, with a multiplicity index l to keep track of multipl
ccurrences of a givenDj9. If we introduce the short-hand notation

Cm8n8
j8

mn
j

m9n9
j9 = o

l

Cm8
j8

m
j

m9
j9l*Cn8

j8
n
j

n9
j9l, sA2d

e get from(A1):

Us j8m8n8dUs jmnd = o
j9m9n9

Cm8n8
j8

mn
j

m9n9
j9 Us j9m9n9d. sA3d

e can now tackle the product of four factors in Eq.(5.4b). First using Eqs.(3.7) and(4.18) and
hen using(A3) above gives

Us j8m8n8dVsg8dUs jmndVsgd = Us j8m8n8do
k

Dmk
j sg8−1dUs jkndVsg8gd

= o
j9m9n9k

Dmk
j sg8−1dCm8n8

j8
kn
j

m9n9
j9 Us j9m9n9dVsg8gd, sA4d

hich is Eq.(5.4b).
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